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Abstract: Soil organic carbon storage (SOCS) estimation is a crucial branch of the atmospheric–
vegetation–soil carbon cycle study under the background of global climate change. SOCS research
has increased worldwide. The objective of this study is to develop a two-stage approach with good
extension capability to estimate SOCS. In the first stage, an artificial neural network (ANN) model is
adopted to estimate SOCS based on 255 soil samples with five soil layers (20 cm increments to 100 cm)
in Luoding, Guangdong Province, China. This method is compared with three common methods:
The soil type method (STM), ordinary kriging (OK), and radial basis function (RBF) interpolation. In
the second stage, a linear model is introduced to capture the regional differences and further improve
the estimation accuracy of the Luoding-based ANN model when extending it to Xinxing, Guangdong
Province. This is done after assessing the generalizability of the above four methods with 120 soil
samples from Xinxing. The results for the first stage show that the ANN model has much better
estimation accuracy than STM, OK, and RBF, with the average root mean square error (RMSE) of
the five soil layers decreasing by 0.62–0.90 kg·m−2, R2 increasing from 0.54 to 0.65, and the mean
absolute error decreasing from 0.32 to 0.42. Moreover, the spatial distribution maps produced by the
ANN model are more accurate than those of other methods for describing the overall and local SOCS
in detail. The results of the second stage indicate that STM, OK, and RBF have poor generalizability
(R2 < 0.1), and the R2 value obtained with ANN method is also 43–56% lower for the five soil layers
compared with the estimation accuracy achieved in Luoding. However, the R2 of the linear models
built with the 20% soil samples from Xinxing are 0.23–0.29 higher for the five soil layers. Thus, the
ANN model is an effective method for accurately estimating SOCS on a regional scale with a small
number of field samples. The linear model could easily extend the ANN model to outside areas
where the ANN model was originally developed with a better level of accuracy.

Keywords: ANN model; soil organic carbon; carbon storage; soil organic carbon density; model
estimation method; linear model; model extension

1. Introduction

Against the background of global warming, the accurate estimation of soil organic
carbon storage (SOCS) has become a massive task faced by the forestry and ecological
circles. Due to the different data acquisition platforms available in China, putting forward
an accurate and useful SOCS estimation standard and method [1] is urgently needed for
SOCS-related research to progress. In recent years, the amount of research on soil organic
carbon (SOC) and SOCS has increased, both domestically and overseas [1,2], with a mean
annual growth rate of 9%. Emerging SOCS estimation methods have been promoted by
a few researchers. The existing SOCS estimation methods can be roughly classified into
three categories: Soil-type methods, life-zone methods, and modelling methods. A recent
study showed that 93 of the 500 previously published papers on carbon storage focus
on soil carbon estimation, among which 79 (84.9%) used the soil-type method [2]. The
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soil-type method has a high frequency of use in soil carbon estimation research due to its
simple calculation method and concise results. However, due to its shortcomings, such
as the use of different data sources and calculation inconsistency, the soil-type method’s
estimation accuracy is low [3]. Except for the estimation result, extra information cannot
be obtained through this method. Recently researchers have rarely adopted the life-zone
method [4], which estimates the SOCS based on the Holdridge Life Zone Classification
System, because the broad life-zone classification does not take the region’s characteristics
and heterogeneity into consideration. Regarding the modelling method, there are two main
categories. Firstly, there are statistical models, including regression models and spatial
interpolation model [5,6]. Since statistical models have strict requirements in terms of data
characteristics [7,8], it is hard to meet the requirements for their use in some cases. The
other type of model is machine learning, including random forest (RF), support vector
machine (SVM), and artificial neural network (ANN) methods. These can use temperature,
soil physicochemical properties, precipitation, and other factors as parameters for model
training [9]. Machine learning is a burgeoning type of algorithm for SOCS estimation.
A study [10] concerning how RF, SVM, and ANN perform when taking precipitation,
topographic, and remote sensing variables as model inputs with the highest resolution of
30 m showed that the ANN has a moderate capability to carry out SOCS estimation and
digital mapping.

In order to estimate SOCS, different researchers have developed criteria for soil profile
division. Huang indicated that, in China, SOCS aggregates on the surface [11]. The majority
of studies have concentrated on the surface layer [12,13] or a 1 m deep soil profile [14,15],
which has led to few pieces of research focusing on the SOCS below the surface at divided
depths [16]. A previous study [17] showed that SOCS accounts for 46–63% of the entire
soil profile at depths of 30–100 cm. Therefore, the research subject should be changed to
the SOCS below the surface layer to reveal its distribution characteristics. In previous
studies on divided depth calculation and the analysis of SOCS, global or regional scales
have been used [18], resulting in low-resolution predicted maps, which may have led to
homogenization of the results on a regional scale. Others have tended to unevenly stratify
the soil profile [19,20], for instance, the soil profile depth below 50 cm was merged into one
layer. Such methods cannot display the actual vertical distribution pattern of SOCS.

The objective of this study was to develop a two-stage approach to estimate SOCS
with a good extension capability, as follows: (1) The artificial neural network (ANN) model
was adopted to estimate SOCS based on 255 soil samples with five soil layers (20 cm
increments to 100 cm) in Luoding, Guangdong Province. This was compared with three
commonly used methods: The soil-type method (STM), ordinary kriging (OK), and Radial
basis function (RBF) interpolation. (2) A linear model was introduced to capture the
regional differences and further improve the estimation accuracy of the Luoding-based
ANN model when extending it for use in Xinxing, Guangdong Province after assessing the
generalizability of the above four methods with 120 soil samples from Xinxing.

2. Materials and Methods
2.1. Study Area

The study area included the entire forest area of Luoding and Xinxing (22◦22′–22◦58′ N,
111◦03′–112◦32′ E) in Yunfu City, Guangdong Province, China (Figure 1). The two study
areas were in the subtropical monsoon zone with high temperatures and rich precipitation
in the same months (from May to October) [21]. The total study area was 3860.5 km2,
with Luoding and Xinxing accounting for 2327.5 and 1533 km2, respectively. The primary
geomorphic type in the study area was hills [22], and the elevation ranged from 12.4 to
1319.6 m with a mean of 224.6 m. There were different forest types present, including
natural secondary evergreen broad-leaved forest, coniferous forest, and mixed forest. The
main tree species present were Cunninghamia lanceolata (Lamb.) Hook., Eucalyptus robusta
Smith, and Pinus massoniana Lamb. [23]. The soil parent materials included granite, sand
shale, and erosive parent materials [21]. The soil zone of the study area was the lateritic
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red earth zone of the south Asian subtropical monsoon rain forest. The mean soil thickness
in the Luoding and Xinxing study areas was 107.8 and 99.3 cm, respectively.
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Figure 1. DEM and field samples of study areas.

2.2. Field Sample

Soil profile data for Luoding (Estimation area) and Xinxing (Extension area) were
obtained from Guangdong Academy of Forestry Sciences as part of an investigation and
evaluation in a forest soil nutrient survey project that began in 2015 [23]. In total, 345 soil
profiles were collected, of which 225 and 120 samples came from Luoding and Xinxing,
respectively. Each profile was divided into five layers: 0–20 cm (L1), 20–40 cm (L2),
40–60 cm (L3), 60–80 cm (L4), and 80–100 cm (L5). The excavation depth of the profiles was
either 1 m or to the parent material layer if a profile’s thickness was less than 1 m. A total
of 1695 samples were collected from 345 soil profiles with 3–5 layers. The bulk density (BD)
was measured by the ring (core) method [24,25]. The BD was calculated with Equation (1),
and its statistics are listed in Table 1. The soil samples were air-dried in the laboratory stage
and then sieved through 3, 2, and 0.25 mm sieves. The weight and volume of the gravel
(diameter > 2 mm) were recorded. The soil organic matter (SOM) content of soil samples
was measured by the potassium dichromate-titration method [26]. Then, the SOM values
of the soil samples were transformed into the SOCD using Equation (2):

BDs =
(M× 100)

V × (100 + w)
(1)

SOCDs= BDs × SOMs × T × 0.58× (100− α)

100
× 10−2 (2)

where BDs is the bulk density of the samples (g·cm−3), M is the original weight of the
soil (g), w is the soil water content (as a percentage), V is the cylinder’s volume (cm3).
SOCDs is the soil organic carbon density (kg·m−2) of the samples, T is the thickness of the
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soil layer (cm), SOMs is the SOM content of the samples (g·kg−1), 0.58 is the Bemmelen
coefficient [27], and α is the percentage of rock fragments (gravel) in the soil with diameters
greater than 2 mm.

Table 1. Summary statistics of bulk density (g·cm−3) of the study area.

Study Areas Soil Layers Max Min Mean

Luoding

L1 1.73 0.85 1.31
L2 1.82 0.89 1.36
L3 1.89 0.82 1.41
L4 1.93 0.97 1.43
L5 1.94 0.91 1.46

Xinxing

L1 1.84 0.83 1.30
L2 1.84 1.06 1.37
L3 1.84 1.04 1.40
L4 1.79 1.12 1.42
L5 1.88 1.00 1.45

2.3. Other Data and Materials

The coarse resolution 0–20 cm soil organic matter map (CSOM) was obtained from
the Atlas of Guangdong soil on a scale of 1:2,800,000 and was compiled by the Guangdong
soil survey team (Guangdong Soil Survey Team, 1993). Then, it was transferred to a digital
map within a geographic information system. The content of coarse-resolution soil organic
matter (CSOM) in the map was delineated at six levels (Level 1: greater than 40 g/kg;
Level 2: 30–40 g/kg; Level 3: 20–30 g/kg; Level 4: 10–20 g/kg; Level 5: 6–10 g/kg; Level 6:
<6 g/kg; National soil survey office, 1998). This study applied the CSOM as the required
input parameter for the ANN model to represent the general conditions of SOM in a region.
For the purposes of modelling and map production, the CSOM map was converted from
features to a raster map with a 10 m resolution after the levels of the maps were numbered.

The digital elevation model (DEM) data obtained from Guangdong Academy of
Forestry Sciences were derived from stereo images of Cartosat-1 (IRS-P5) with a 12.5 m
resolution [28] and resampled to a 10 m resolution to meet the map production needs. The
spatial analyst extension and developed Forest Hydrology Tools of ArcGIS [29,30] (ArcGIS
10.2 for Desktop. Version 10.2.0.3348. RedLands, Esri Inc., Redlands, CA, USA) were used
to derive four topographic variables, slope, aspect, topographic position index (TPI), and
potential solar radiation (PSR), and five hydrological variables, the soil terrain factor (STF),
sediment delivery ratio (SDR), depth to water (DTW), flow length (FL), and flow direction
(FD). The TPI refers to the relative topographic position of the central point, which is the
difference between the elevation of this point and the mean elevation of a predetermined
neighborhood [31,32]. The SDR is the ratio of the sediment transported to the outlet to
the total erosion in the watershed area [33]. The DTW refers to the elevation differences
between the land and the nearest water surfaces [34,35]. This study applied nine variables
derived from the DEM model as the candidate parameters for the ANN model input.

A soil-type map (Figure 2) with a 1:1,000,000 scale was downloaded from the Soil
SubCenter, National Earth System Science Data Center, National Science and Technol-
ogy Infrastructure of China (http://soil.geodata.cn (accessed on 1 June 2020)) [36]. The
classification units used in this study were subtypes. Lateritic earth was present in the
greatest frequency in both Luoding and Xinxing, accounting for 37.1% and 69.4% of the
total area, respectively. Additionally, for the purpose of map production, the soil-type map
was converted from features to a raster map with a 10 m resolution after the classes of the
maps were numbered.

http://soil.geodata.cn
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2.4. The First Stage: SOCS Estimation Methods
2.4.1. The Artificial Neural Network (ANN) Estimation Method

1. ANN modeling. This study applied the back-propagation ANN (BP-ANN) because
it can accommodate nonlinearity when limited discontinuous points are available between
the input and output data [37]. This ANN model was trained with a back-propagation
technique, which adjusted the weight and bias values along a negative gradient descent to
minimize the mean squared error (MSE) between the network outputs (predicted values)
and the targeted values (measured values) [38]. The BP-ANN model had a three-layer
structure: an input layer, an output layer, and a hidden layer. The input layer was made
up of several predictors (required parameters and candidate parameters) with 2–10 nodes
according to the parameters’ combination. The output layer contained one node, SOCD.
The number of hidden layer nodes was 35, and this was determined based on previous
studies [39,40]. An early stopping method was used to quickly confirm the fittest model
coefficients and avoid over-fitting [41]. The early stopping method divided the training
data into a training subset and test subset, in which the latter was used to test the training
error by the end of a training period. In this process, if the training root mean square error
(RMSE) decreased while the testing RMSE increased, the early stopping method stopped
the training [42]. The programming was implemented in Matlab software (Matlab (R2016a).
Version 9.0.0.341260. Natick, The MathWorks Inc., Natick, MA, USA).

2. Selection of model inputs. This study took the CSOM maps as the required
parameter and the nine topographic and hydrological variables derived from the 10 m
resolution DEM data as the candidate parameters. These parameters were used because
the CSOM was able to capture the SOCS at regional scales, providing basic data support
for the ANN model. The DEM-derived variables were able to modify the SOCS on the local
scale [39]. Each combination of candidate parameters corresponded to an ANN model.
For the nine parameters the number of combinations, as calculated by C1

9 + . . . + C9
9 , was

511 [39,40].
The required parameter, the candidate parameters, and 90% of soil samples in Luoding

were input into the ANN model. We chose the optimal combination of candidate parame-
ters with the best accuracy through 10-fold cross-validation. In the 10-fold cross-validation
mode, the modeling dataset (90% of soil samples) was divided into 10 equal subsets. A
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model was built with data in nine subsets as the calibration data, and this was validated
with the remaining subset as validation data; this process was repeated 10 times until all
subsets were used in the validation set [39].

3. SOCD estimation. After obtaining the optimal SOCD prediction values and the
spatial distribution maps with 10 m resolution for five soil layers, we were able to calculate
the SOCS of each layer by multiplying the forest area of Luoding with the mean SOCD of
each layer.

2.4.2. The Common Estimation Methods

1. The soil type method (STM): This study used ArcGIS 10.2 software (ArcGIS 10.2
for Desktop. Version 10.2.0.3348. RedLands, Esri Inc., Redlands, CA, USA) to extract soil
subtype information from 90% of soil samples from a soil type map at a scale of 1:1,000,000
(Figure 2). After obtaining the information on the corresponding subtypes from 90% of the
soil samples, the SOCD of each subtype at the Ln layer was calculated using Equation (3)
(for subtypes not covered by samples, the SOCD was replaced by the mean SOCD of
all subtypes in the mapping process). Then, the SOCD and SOCS of a soil layer were
determined using Equations (4) and (5), respectively:

SOCDtn=
∑x

s=1 SOCDst × (100−α)
100

x
(3)

SOCDn=
∑9

t=1 SOCDtn

9
(4)

SOCSn = SOCDn × A× 10−3 (5)

where SOCDtn is the soil organic carbon density (kg·m−2) of a subtype (refers to “t” in
the equation) at the Ln soil layer, SOCDst is the soil organic carbon density (kg·m−2) of
samples belonging to subtype t, x is the number of samples within subtype t, and α is the
percentage of rock fragments (gravel) in the soil with diameters greater than 2 mm. SOCDn
is the soil organic carbon density of the Ln soil layer. SOCSn is the soil organic carbon
storage (Tg) of the Ln soil layer and A is the area of Luoding (km2).

2. Ordinary Kriging (OK): The samples used for OK interpolation had to meet the
intrinsic hypothesis or second stationary assumption. Additionally, the samples had to
obey a normal distribution. This study adopted the number field sieve method to identify
the extremum by using samples’ mean values to add or subtract three-fold standard
deviations [43]. The extremum, which is outside the number field, was replaced by
extreme values within the number field. For the first step, a semivariogram (Equation (6))
using the field samples was expressed as a function of the distance between sampled
points, and the integrity of spatial continuity was calculated in one or multiple directions.
We chose the optimal model from the Gaussian, exponential, and spherical models to
form the experimental semivariograms [44–46]. The semivariogram analysis of OK was
conducted using GS+9.0 software. The second step of OK interpolation was to calculate
the values of unknown points as weighted sums of the adjacent samples’ SOCD values
(Equation (7)) [47,48]:

γ(h) =
1

2N(h) ∑N(h)
h=1 [Z(xi)− Z(xi + h)]2 (6)

Zx =
n

∑
i=1

γiZ(xi) (7)

where γ(h) is the semivariogram for the distance interval class h known as lag, N(h) is the
number of paired samples in the lag interval, and Z(xi) and Z(xi + h) are the sample’s
SOCD values at two points separated by the distance interval h. Z(x) is the value to be
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estimated at location x, and n is the number of sites within the search neighborhood used
for the SOCD estimation.

3. Basis Function (RBF): The RBF is suitable for calculating a large number of samples.
It can achieve smooth interpolation by calculating a set of weighted coefficients of the
nodes through the basis function. The RBF method involves the use of a family of five
deterministic exact interpolation techniques: The inverse multi-quadric function, the
multi-quadric function, the spline with tension, the completely regularized spline, and the
thin-plate spline [6,44]. Of these five functions, the spline with tension with the lowest
error was selected for SOCD interpolation.

The interpolation process of OK and RBF was achieved using the Geostatistical Analyst
module in ArcGIS 10.2 software (ArcGIS 10.2 for Desktop. Version 10.2.0.3348. RedLands,
Esri Inc., Redlands, CA, USA).

2.5. Extension Test of the Four Estimation Methods

This part of the study was conducted to determine the extension capability of the four
methods when facing a nearby area with similar hydrological and geological conditions to
the estimation area (Luoding). The four estimation methods only extended their results
estimated in Luoding to Xinxing, and no soil profile data from Xinxing were adopted. The
accuracy assessment of the extension results used 80% of the soil profile data from Xinxing.

2.6. The Second Stage: The Linear Model for Extending the ANN Estimation Method

The aim of building the linear model was to modify the SOCD estimated by the ANN
method to adapt the geological differences over a large extended area, so we used Xinxing
as the test area. Besides improving the ANN model’s estimation accuracy at Xinxing, the
linear model used a small number of field samples to reduce the sampling cost. In line with
Zhao’s research [39], 1/5 soil samples can be used to build a steady linear model; hence
20% of soil samples from Xinxing were randomly selected as the modelling data for the
linear model in this study. The other 80% of the samples were applied for validation. In the
first step, we used Matlab software (Matlab (R2016a). Version 9.0.0.341260. Natick, The
MathWorks Inc., Natick, MA, USA) to produce maps of Xinxing by adopting the Luoding-
based ANN model. In this process, we did not use any data from Xinxing. In the second
step, linear model building used SOM levels from the CSOM map for classification, which
meant that one level corresponded to a linear model. In the CSOM map, the proportions
of SOM from Xinxing from high to low were 45.2%, 44.0%, 10.6%, and 0.2% of the total
area for Level 3, Level 5, Level 4, and Level 2, respectively. In the calculation process, we
merged Level 2 with Level 3 and classified the 120 soil profiles of Xinxing according to
their corresponding levels. Subsequently, 20% of the soil samples from each level were
selected to build a corresponding linear model (Equation (8)):

SOCDe = ai + bi·SOCDANN (8)

where SOCDe is the adapted SOCD. SOCDANN is the initial SOCD estimated by the
Luoding-based ANN model. i is an SOM Level of Xinxing. ai is the shifting parameter,
which describes the average difference in SOCD between the ANN model area (Luod-
ing) and the extended linear model area (Xinxing). bi is the stretching parameter, which
describes the rate of change in SOCD between Luoding and Xinxing.

2.7. Accuracy Assessment

The estimation results for Luoding were validated by 10% of the Luoding soil samples,
and the extended accuracy validation used 80% of the soil samples from Xinxing. Three
indices were adopted to describe the accuracy: the root mean square error (RMSE), the
determination coefficient (R2), and the mean absolute error (MAE). The calculations used
were as follows:

RMSE=

√
∑n

i=1
(
Xm,i − Xpre,i

)2

N
(9)
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R2= 1−
∑n

i=1
(
Xpre,i − ˆXpre,i

)2

∑n
i=1
(
Xpre,i − Xpre,i

)2 (10)

MAE=
∑n

i=1
∣∣Xm,i − Xpre,i

∣∣
N

(11)

where Xm,i is the measured value, Xpre,i is the predicted value, N is the number of samples,
ˆXpre,i is the fit value, and Xpre,i is the mean of predicted value.

3. Results
3.1. Statistical Characteristics of the Field SOCD

As Table 2 shows, the mean SOCD of the soil profiles decreased from L1 to L5, and the
mean SOCD of L1 was double that of L5 in both study areas. The sharpest decrease in the
mean SOCD, a decline of approximately 1 kg·m−2, occurred from L3 to L4. Additionally,
the mean SOCD of Xinxing at each layer greater than that in Luoding. The CV shows
that all soil layers had a moderate level of variation in both study areas under the CV
classification standard [46]. The skewness near 0 and kurtosis near 3 showed that the data
followed a normal distribution. As Table 2 shows, the data had a skewed distribution at
each layer.

Table 2. Summary statistics of field samples of the study areas.

Area Layers Sample Sizes Min Max Median Mean
SD 2 CV

(%) Skewness Kurtosis
(kg·m−2)

Luoding

L1 1 225 0.10 15.60 3.31 3.54 1.85 52.3 1.70 2; 0.50 3 7.65 2; 2.89 3

L2 1 225 0.43 8.77 3.04 3.17 1.38 43.6 0.72 2; 0.51 3 0.86 2; 3.08 3

L3 1 225 0.40 7.39 2.84 2.92 1.16 39.8 0.79 2; 0.42 3 1.14 2; 3.09 3

L4 1 218 <0.01 9.09 1.67 1.94 1.30 66.7 1.88 2; 0.29 3 5.65 2; 3.42 3

L5 1 202 <0.01 8.41 1.43 1.52 1.17 76.5 2.01 2; 0.80 3 7.95 2; 3.88 3

Xinxing

L1 120 0.31 17.29 3.73 3.97 2.38 60.0 2.77 13.28
L2 120 0.30 10.48 3.32 3.45 1.71 49.6 1.33 3.69
L3 120 0.27 8.44 2.98 3.14 1.49 47.5 1.08 2.13
L4 120 0.19 6.17 1.91 1.99 1.01 50.5 1.59 4.30
L5 120 0.05 8.22 1.62 1.81 1.14 62.8 2.30 9.45

1 L1: 0–20 cm; L2: 20–40 cm; L3: 40–60 cm; L4: 60–80 cm; L5: 80–100 cm. 2 refers to the original data; 3 refers to the data processed by the
number field sieve method. SD: standard deviation, CV: coefficient of variation.

3.2. The First Stage: SOCS Estimation Methods
3.2.1. Accuracy of SOCS Estimation Methods

The accuracy levels of the four methods verified by the estimation samples were
generally higher than the validation accuracy levels, as shown in Table 3. For the ANN
method, the R2 verified by the estimation samples at all soil layers exceeded 0.8, which
was the best modelling accuracy. The accuracy of OK verified by the estimation samples
was better than that of the RBF for each soil layer. The STM, which generally had R2 values
lower than 0.3, showed a poor estimation capability.
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Table 3. Estimation accuracies of the ANN, STM, OK, and RBF methods.

Methods Layer
Calibration Validation

RMSE
(kg·m−2) R2 MAE RMSE

(kg·m−2) R2 MAE

ANN

L1 2.40 0.84 0.29 2.54 0.82 0.60
L2 2.09 0.82 0.36 2.29 0.67 0.76
L3 1.69 0.82 0.37 1.92 0.59 0.91
L4 1.72 0.81 0.41 1.79 0.78 0.66
L5 1.53 0.82 0.37 1.46 0.81 0.60

STM

L1 2.60 0.17 1.32 3.89 0.05 1.51
L2 1.48 0.25 0.99 2.77 0.10 1.22
L3 1.09 0.27 0.81 2.47 0.09 0.96
L4 1.22 0.26 0.86 2.75 0.08 1.02
L5 2.45 0.10 0.73 2.64 0.07 0.93

OK

L1 1.62 0.66 1.00 3.42 0.13 1.53
L2 0.97 0.66 0.76 2.57 0.34 1.07
L3 0.70 0.78 0.62 2.32 0.32 0.82
L4 1.50 0.50 0.96 2.72 0.01 1.30
L5 0.77 0.44 0.79 2.67 0.05 0.77

RBF

L1 2.03 0.45 1.21 3.60 0.17 1.55
L2 1.35 0.53 0.89 2.45 0.31 1.09
L3 0.97 0.55 0.74 2.22 0.37 0.76
L4 1.20 0.34 0.80 2.50 0.10 0.95
L5 0.95 0.37 0.75 2.34 0.03 0.80

L1: 0–20 cm; L2: 20–40 cm; L3: 40–60 cm; L4: 60–80 cm; L5: 80–100 cm. ANN: ANN estimation method; STM: soil
type method; OK: ordinary Kriging; RBF: radial basis function.

The accuracy levels of the four methods are shown in Table 3. For the RMSE and
MAE indices, the STM, OK, and RBF had higher values than the ANN method. The low R2

of the STM indicates that the estimation results have little reference significance. For the
two interpolation methods, the R2, which was between 0.13 and 0.37 at L1–L3, declined
dramatically at L4 and L5. The R2 of the ANN was generally higher than that for the three
other methods, especially at L1, L4, and L5. For the STM, its R2 was lower than for the
ANN by 0.77, 0.57, 0.50, 0.70, and 0.74 at L1–L5, respectively, with a mean of 0.66. For
the OK, its R2 was lower than for the ANN by 0.69, 0.33, 0.27, 0.77, and 0.76 at L1–L5,
respectively, with a mean of 0.56. For the RBF, its R2 was lower than for the ANN by 0.65,
0.36, 0.22, 0.68, and 0.78 at L1–L5, respectively, with a mean of 0.54.

3.2.2. Results of SOCS Estimation Method

Figure 3 represents the SOCD distribution estimated by the four methods at L1–L5.
The results display a decreasing trend for SOCD with an increase of soil depth. The SOCD
estimation results for the whole soil profile are higher with the RBF than with the other
methods and are 9.5% higher than the ANN estimation method. The results with the OK
are 3.1% higher than with the ANN estimation method. Thus, we can reasonably speculate
that the SOCS values estimated by the RBF and OK may lead to higher values. The results
estimated by the STM are quite similar to those obtained with the ANN method, only 1.0%
lower than the results for the ANN across the whole soil profile. Although the STM is not
an effective method for the estimation of samples, the results are still reliable when the
mean value is considered.
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In terms of the SOCS estimation results (Figure 4), all methods show that the SOCS
values at L1 and L2 account for approximately half of the 0–100 cm soil profile. The mean
SOCS proportions in L3, L4 and L5 are 21%, 16% and 14%, respectively, and the total
proportion is 51%. Therefore, the other half of the SOCS exists in L3–L5. This result is
consistent with Batjes’s [17] conclusion that the SOCS in the soil profile of 30–100 cm
accounts for 46–63% of the whole profile. This result demonstrates that the SOCS is divided
in half at a depth of about 40 cm in relation to the whole profile (0–100 cm).
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3.2.3. The Correlation between ANN Model Parameters and the Predicted SOCD

As Table 4 (blot fonts) shows, the combination of candidate parameters adopted
by the ANN model is not in accordance with the Pearson correlation, because machine
learning methods like ANN are black box methods [7] that cannot reveal the functional
relationships between the target and predictor variables [10]. Therefore, we performed the
Pearson correlation to analyze the functional relationships between the parameters and
SOCD predicted with the ANN model.

Table 4. Correlation of the covariates with SOCD.

Required Parameters Candidate Parameters

CSOM Aspect Slope SDR DTW STF PSR FL FD TPI

SOCD(L1) 0.20 ** −0.09 0.31 ** 0.09 0.12 −0.24 ** −0.09 −0.01 −0.08 −0.04
SOCD(L2) 0.28 ** −0.02 0.37 ** 0.12 0.23 ** −0.29 ** −0.12 −0.02 −0.02 −0.04
SOCD(L3) 0.23 ** 0.06 0.30 ** 0.13 * 0.10 −0.15 * −0.22 ** −0.07 0.20 ** 0.05
SOCD(L4) 0.13 * 0.03 0.34 ** 0.14 * 0.22 ** −0.19 ** −0.15 * −0.10 −0.03 −0.02
SOCD(L5) 0.16 ** 0.07 −0.06 0.03 0.09 0.07 0.04 −0.06 −0.03 0.02

* means significant correlation at the 0.05 level, ** means significant correlation at the 0.01 level. Optimal combination of candidate
parameters in the ANN model are in bold (SDR: Sediment delivery ratio; DTW: Depth to water; STF: Soil terrain factor; PSR: Potential solar
radiation; FL: Flow length; FD: Flow direction; TPI: Topographic position index).

The CSOM was significantly correlated with the predicted SOCD at a soil profile of
0–100 cm. For the candidate parameters, the slope had a significant positive correlation
with SOCD at L1–L4, which agreed with previous research [47,48] showing that the slope
is a strong determinant of the SOCD distribution. Researchers have mostly discussed how
the slope affects the SOC distribution in horizontal space, and there are still opposing
viewpoints for different factors [21,49]. Our study focused on the correlation between the
slope and SOCD with a vertical distribution. According to Table 4, the positive correlation
proves that the larger the slope is, the weaker the human influence appears, which provides
a favorable environment for SOC aggregation. The slope has no correlation with the SOCD
under the 80 cm soil layer, which indicates that the SOCD under the 80 cm soil layer is
not affected by the slope. The STF was found to be negatively correlated with the SOCD
at L1–L4. The STF is used to define the hydrologic similarity between points [50], which
only describes the influence of terrain on streamflow formation [51]. This study deduced
that a higher STF represents higher streamflow activity, and higher streamflow activity
prevents the SOC accumulation process occurring. It is worth pointing out that the nine
hydrological and topographic parameters of L5 did not correlate with SOCD. We deduced
that the hydrological and topographic parameters had little influence on the SOCD under
the 80 cm soil profile where the SOCD was low and the SOM had been deposited on the
bottom for a long period of time.

3.2.4. Spatial Mapping of SOCD Estimation Methods

For the ANN estimation method, the SOCD at L1 was found to be comparatively high
among the five layers, as shown in Figure 5a, with an evident fluctuation trend, which
shows that the SOCD of the southwest grid exceeded 5.0 kg·m−2. Under L1, similar to
the estimation results, the SOCD in L1–L4 decreased evenly. However, the maps of L2–L4
were slightly indistinct across the overall SOCD spatial distribution. At L2 and L3, an
apparent difference in the spatial distribution maps appeared in the western hilly areas
with elevations above 150 m, where the SOCD was generally greater than 3.1 kg·m−2. The
main difference between the ANN and the other three methods was that the ANN maps can
portray a change of detail in grid resolution. However, except for L1, regional differences
were not distinctly displayed on the maps, which is a weakness of ANN model mapping.

For the soil type method, the classification of patches is completely based on the
soil-type map, so the SOCD distribution cannot be clearly described. Moreover, mapping
is also restricted by the number of samples, which means that when fewer samples are
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owned by the subtype, the estimation result is less reliable. Taking the map of L4 as an
example (Figure 5b), the map shows that the SOCD is higher in the northeast than in
the surrounding areas, which is contrary to the results of the other three methods. In
practice, areas with abnormal values all belong to one soil subtype, which has merely one
corresponding soil sample within 90% of soil samples. The abnormal values resulted in
a notable rise in the CV, 63.2% at this layer, while the CVs of the other layers were lower
than 30%. This reveals the defect of STM in spatial mapping.

For the OK and RBF, the bull’s eye effect of the RBF (Figure 5d) resulted in an unsmooth
surface, especially at L4. However, the OK maps were smooth and not affected by extreme
values of samples. This shows that the RBF has a strict demand for sample values, which
significantly affects the map’s smoothness. In terms of the variation tendency from L1 to
L5, the SOCD values continuously declined. The SOCD in the west region of Luoding
was lower than in the northeast region. However, the overall SOCD at L5 predicted by
the two interpolation methods was less than 3 kg·m−2, showing a relatively flat variation
in SOCD. The 10 m resolution maps produced by the ANN estimation method have the
capability to precisely portray the detail of the SOCD distribution. The RBF and OK can
only describe the SOCD in grid resolution. Additionally, the RBF map displayed a bull’s
eye effect, leading to an unsmooth surface. Similarly to the two interpolation methods,
the STM only describes the difference in SOCD in grid resolution, where a soil subtype
corresponds to one result. Therefore, it is difficult to determine the precise distribution of
SOCD through the STM map.

3.3. Extension Results of SOCD Estimation Methods

Table 5 shows the accuracy of the extension results. The R2 index of STM, OK, and
RBF did not exceed 0.1, which suggests that the three methods have little generalizability
when there is no data from the target area to support the methods’ operation. The accuracy
of estimation results obtained by extending the Luoding-based ANN model to Xinxing
was relatively high. However, compared with the validation accuracy in Luoding (Table 2),
the R2 decreased by 43–56%, the RMSE rose by 0.60–0.82 kg·m−2, and the MAE rose by
35–78%. The level of error increased significantly, and the mean R2 was lower than 0.5.
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Table 5. The accuracies of extension results.

Methods Layers RMSE (kg·m−2) R2 MAE

ANN

L1 3.36 0.40 0.92
L2 3.10 0.39 1.00
L3 2.58 0.30 1.23
L4 2.40 0.35 1.09
L5 2.16 0.37 0.90

STM

L1 6.89 0.00 1.78
L2 3.55 0.00 1.49
L3 3.22 0.01 1.33
L4 2.92 0.01 0.96
L5 2.68 0.01 1.02

OK

L1 3.79 0.02 1.94
L2 3.41 0.02 1.80
L3 3.18 0.01 1.63
L4 2.69 0.01 1.21
L5 2.71 0.00 1.14

RBF

L1 3.94 0.02 1.85
L2 3.14 0.00 1.57
L3 2.94 0.01 1.42
L4 2.43 0.01 1.01
L5 2.55 0.01 1.01

L1: 0–20 cm; L2: 20–40 cm; L3: 40–60 cm; L4: 60–80 cm; L5: 80–100 cm. ANN: ANN estimation method; STM: soil
type method; OK: ordinary Kriging; RBF: radial basis function.

Compared with the high accuracy and low error rate of the ANN method in Luoding,
the accuracy level in Xinxing was unacceptable. Because of the low estimation accuracy
under similar topographic and hydrologic circumstances between Luoding and Xinxing,
we suggest that the accuracy of the ANN estimation method may decrease greatly when
the two target areas have a larger distance and different circumstances. Therefore, the ANN
model performs poorly when extended to a new area. Nevertheless, of all the estimation
methods, only the ANN method has the ability to improve. To further improve the accuracy,
the linear model was added to tackle this weakness of the ANN estimation method to
improve the generalizability.

3.4. The Second Stage: The Linear Model
3.4.1. Coefficients and Accuracy of the Linear Model

The linear model of each layer was built based on the CSOM Levels of Xinxing
presented in Table 6. By using 20% of soil samples from Xinxing to build the linear model,
the accuracy improved significantly compared with the results shown in Table 5. From
L1 to L5, the mean RMSE declined by 0.65, 0.33, 0.32, 0.59, and 0.39 kg·m−2, respectively.
The mean MAE declined by 33%, 17%, 20%, 34%, and 28%, respectively. The mean R2

increased by 0.29, 0.23, 0.25, 0.27, and 0.27, respectively. As shown in Table 6, only two
sample points from level 4 were used for model building, which led to lower R2 values
for the three CSOM levels at each layer. Nevertheless, despite using a small number of
samples to build a linear model, which may have resulted in lower accuracy, we conclude
that the linear model still effectively improved the ANN estimation method′s estimation
accuracy for an extended area.
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Table 6. Coefficients and accuracy of the linear model at each soil layer.

Layer CSOM
Levels

Linear Models Validation

Numberof
Samples

Coefficients Numberof
Samples

RMSE
(kg·m−2) R2 MAE

a b

L1

Level 3 10 0.09 0.98 42 2.65 0.70 0.60
Level 4 4 0.24 0.77 15 2.99 0.66 0.72
Level 5 10 −0.02 0.93 39 2.48 0.71 0.53
Mean - - - - 2.71 0.69 0.62

L2

Level 3 10 0.35 1.14 42 2.48 0.67 0.75
Level 4 4 −0.37 1.29 15 3.02 0.57 0.88
Level 5 10 −0.14 1.11 39 2.83 0.61 0.83
Mean - - - - 2.78 0.62 0.82

L3

Level 3 10 −0.23 1.35 42 1.89 0.63 0.80
Level 4 4 −0.41 1.30 15 2.59 0.48 1.20
Level 5 10 0.04 1.18 39 2.33 0.55 0.93
Mean - - - - 2.27 0.55 0.98

L4

Level 3 10 −0.13 0.97 42 1.51 0.66 0.63
Level 4 4 −0.47 0.89 15 2.03 0.57 0.78
Level 5 10 −0.29 0.91 39 1.89 0.60 0.74
Mean - - - - 1.81 0.61 0.72

L5

Level 3 10 −0.16 0.87 42 1.51 0.70 0.58
Level 4 4 −0.32 0.79 15 2.15 0.57 0.68
Level 5 10 0.05 0.85 39 1.64 0.66 0.69
Mean - - - - 1.77 0.64 0.65

The mean accuracies of each layer are in bold.

3.4.2. Spatial Distribution Maps of the Extended Area

The Xinxing SOCD spatial distribution map at L1 modified by the linear model for
which the R2 index was the highest, shown in Figure 6c, improved the R2 by 0.29. The
original SOCD map of Xinxing extended by the Luoding-based ANN model is shown in
Figure 6a, and it did not involve the input of any data from Xinxing. To allow a distinct
contrast, the water bodies were not removed from the maps.

According to Table 5, the accuracy of Level 4 was lower than at the other two levels,
and it is shown in Figure 6c that the SOCD of Level 4 patches was distinctly lower than
that of other levels. On the one hand, the linear model based on CSOM level was able
to effectively modify the original extended data to give a higher level of accuracy, which
allowed is to produce 10 m resolution maps and results using only the linear model and
24 soil samples. We should emphasize that the linear model operates under the condition
of having one already-built ANN model. On the other hand, the small number of input
samples and the use of coarse-resolution SOM maps could lead to deviations on the map.
As shown in Figure 6c, the original boundary of the CSOM map was still visible. We
should point out that the variation in the patches at level 4 was not accurate because the
boundaries between the levels in the CSOM map were portrayed artificially, and they do
not exist in reality.
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4. Discussion
4.1. Estimation Capability of the Four Methods

1. The ANN model method. The estimation accuracy of the ANN decreased at L2 and
L3 because of the low CV of samples. We speculate that when applying profile data with
low CV values, the ANN method’s estimation accuracy is relatively inferior. However, the
accuracy of the ANN method was higher than that of the other three methods, and the
mean R2 of the five soil layers was 0.78. Meanwhile, the ANN method produced SOCD
spatial distribution maps that could reveal the local-scale variation with a resolution of
10 m. One drawback was that the overall variation of SOCD at L2–L4 on the regional scale
was somewhat vague, which means we could not obtain more distribution information
from these maps. This drawback may become our next focus in improving the mapping
capability and evaluating the impact of parameters on mapping.

2. The Soil type method. In the accuracy assessment, The STM had the worst level
of accuracy in every soil layer. It performed the worst because the STM is a taxonomic
statistical method, which means that its estimation results are based on soil taxonomy
but estimated value of sample. As the estimation result showed, the 0–100 cm SOCD
result of the STM was the nearest to the ANN method, revealing that the STM’s estimation
results could be credible when the mean value is considered. The STM’s accuracy would
be significantly affected by the profile data and number of samples, making the STM an
imprecise SOCS estimation method at the point dimension.

3. The two interpolation methods. The accuracy of the two interpolation methods
showed a similar pattern: the accuracy declined sharply at L4 and L5. The following
factors may cause this decline: (i) The spatial distribution of file samples was uneven and
aggregated and (ii) some samples at L4 and L5 layers may reach the parent material layer,
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leading to a high CV value. Especially for deterministic interpolation methods like the RBF,
a significant fluctuation of data within a short distance greatly affects the interpolation
accuracy, which illustrates the relatively strict data requirements of the interpolation
method [7]. We suggest that the interpolation method is not suitable for estimating the
SOCS of bottom layer soil. As the estimation results showed, the SOCD values at 0–100 cm
estimated by OK and RBF, especially the values of the RBF, were higher than those obtained
with the ANN method. We conclude that the ability of the two interpolation methods to
perform SOCD estimation of the profile data of this study is lower.

4.2. Extension Capability of ANN Model Estimation Method

In this paper, the linear model is chosen as the extension model to meet the require-
ments of a small number of samples and simple operability. Theoretically, a stable linear
model could be established with a number of samples twice that of its independent vari-
ables. Therefore, only 20% of the soil samples were selected to establish the linear model in
this study. As the results showed, the ANN model extension results modified by the linear
model met the expectations of this study. However, because SOCS changes are affected by
human activities, natural conditions [52,53], and many other factors, simply describing the
statistical relationship between samples and predicted values with a linear model might
cause a poor fitting result. The prediction results are also directly affected by the sample
quality. Once the sample outliers appear, the linear model′s prediction result will deviate
from the actual situation. This study found that the linear models built at level 4 had lower
modeling accuracy because of the small number of samples, but the relationship between
number of samples and accuracy was not further discussed. Thus, the next task related
to the use of the linear model in extension is to find the relationship between number of
samples and model accuracy and to determine the upper limit value of the accuracy.

For the linear model building classification criteria, the CSOM causes a distinct bound-
ary in the distribution maps. This result demonstrates that taking the CSOM map as the
model building criteria was effective but may affect our judgment on the real SOCS distri-
bution law. To avoid this condition, finer or other classification maps could be introduced
as the linear model building criteria and the potential of the linear model in the ANN
model generalization could be further explored.

4.3. SOCS Vertical Distribution of the Estimation Area

The results show that the SOCS of all soil layers in Luoding decreased with the soil
depth, and the SOCS of L1 accounted for 30% of the 0–100 cm soil layer. We verified that
Luoding’s SOCS significantly gathers at the soil surface (0–20 cm) by comparing our results
with those of other research. For example, Xie et al. [54] concluded that the SOCS at a soil
layer of 0–20 cm accounted for 32.5% of the 0–100 cm soil layer in China; Li et al. [55] found
that the SOCS at 0–20 cm accounted for 38.7% of the total in Eastern China; and Chen
et al. [56] estimated the SOCS results in Fujian Province and concluded that the SOCS at
0–20 cm accounted for 39.3% of the 0–100 cm soil layer. We suggest that the proportion
of Luoding’s surface SOCS is relatively low. In terms of the SOCS in the 0–100 cm soil
layer, on a global scale, according to previous studies [4,17,57,58], the global average SOCD
of the 0–100 cm soil layer is about 10.6 kg·m−2. Using the scale of terrestrial ecosystems
in China, Liang et al. [59] predicted that the average SOCD in the 0–100 cm soil layer in
China is about 10.31 ± 3.39 kg·m−2, and Xu et al. [9] predicted that the terrestrial SOCD in
China is about 9.13 ± 0.87 kg·m−2. Compared with the SOCD of the 0–100 cm soil layer
(12.1 kg·m−2) predicted by the ANN model in Luoding, it is evident that Luoding has a
higher level than the national level. The comparison results indicate that the SOCD is
relatively high in Luoding, but it does not concentrate in the surface layer (0–20 cm).

5. Conclusions

Our results demonstrate that the ANN estimation method had the best performance
in terms of the estimation accuracy and spatial distribution mapping when used to assess
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data obtained from Luoding City, Guangdong Province, China. The generalization test
demonstrated that the soil-type method, Ordinary Kriging, and Radial basis function have
little generalizability. The extension results for the linear model built with only 24 samples
show that it is practical to improve the estimation results of the ANN model. Thus, the
ANN estimation method is an effective method for obtaining accurate SOCS estimation
results on a regional scale. By adopting a linear model approach, the ANN estimation
method can effectively extend the estimation region with only a small number of field
samples with a preferable level of accuracy. However, one drawback of this study is the
classification of the linear model. In future research, we will try to use a higher resolution
and more precise mapping as the classification criteria to build the linear model to remove
the artificial boundary.
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