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Abstract: Enriching Asian perspectives on the rapid identification of urban poverty and its impli-
cations for housing inequality, this paper contributes empirical evidence about the utility of image
features derived from high-resolution satellite imagery and machine learning approaches for iden-
tifying urban poverty in China at the community level. For the case of the Jiangxia District and
Huangpi District of Wuhan, image features, including perimeter, line segment detector (LSD), Hough
transform, gray-level cooccurrence matrix (GLCM), histogram of oriented gradients (HoG), and local
binary patterns (LBP), are calculated, and four machine learning approaches and 25 variables are
applied to identify urban poverty and relatively important variables. The results show that image
features and machine learning approaches can be used to identify urban poverty with the best model
performance with a coefficient of determination, R2, of 0.5341 and 0.5324 for Jiangxia and Huangpi,
respectively, although some differences exist among the approaches and study areas. The importance
of each variable differs for each approach and study area; however, the relatively important variables
are similar. In particular, four variables achieved relatively satisfactory prediction results for all
models and presented obvious differences in varying communities with different poverty levels.
Housing inequality within low-income neighborhoods, which is a response to gaps in wealth, income,
and housing affordability among social groups, is an important manifestation of urban poverty.
Policy makers can implement these findings to rapidly identify urban poverty, and the findings
have potential applications for addressing housing inequality and proving the rationality of urban
planning for building a sustainable society.

Keywords: urban poverty; high-resolution satellite imagery; image features; machine learning
approaches; China

1. Introduction

“End poverty in all its forms everywhere” was the first Sustainable Development Goal
proposed by the United Nations in 2015. Poverty is a global problem that hinders sustain-
able development. Eradicating poverty is a global goal and one of the greatest challenges
for developing countries. Measuring and monitoring poverty are essential for govern-
ments to help prevent poverty traps and promote resource reallocation. According to the
poverty situation in middle-income countries, urban poverty has gradually become the
main poverty problem associated with urbanization. For example, there were 244 million
urban populations living on less than US $1.90 a day in China in 2015, according to the
World Bank’s latest data. Urban and rural areas are interconnected organisms; thus, urban
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poverty research should be given the same attention as rural poverty research [1]. In partic-
ular, suburbs, as an important part of modern cities, have experienced a regional structural
transformation from agriculture to manufacturing and services, and their population com-
position is diverse (e.g., landless farmers, intraurban residents, and immigrants) [2–4].
The social problems accompanied by rapid urbanization make suburban regions more
vulnerable to poverty traps and regional inequality [5].

In recent decades, China has witnessed remarkable success in poverty reduction: the
number of extremely poor was reduced by 646 million between 1993 and 2013 according to
the World Bank’s statistical data [6]. However, poverty is still a serious problem in China
based on new poverty characteristics [7]. One of the prominent features of poverty is that
it has increasingly become urbanized. Since the reform and opening up of China in the
1980s, China’s economy has gradually moved from central planning to a market-oriented
economy. During this period, China experienced rapid urbanization expansion, with an
increase in over 39.45% of the urban population from 1978 to 2016, creating the world’s
greatest population resettlement [8,9]. All population growth is expected to be absorbed
by urban areas; however, some growth has occurred in less developed urban regions,
and urban boundaries have extended beyond previous perimeters and into suburban
areas [5]. Since the late 1990s, China has witnessed unprecedented suburbanization, with a
large percentage of its population moving out of urban centers [10]. Subsequently, inner
suburbs have been partly reconstructed, and with this increasing population, outer suburbs
have attracted and activated local real estate development [11], which affects suburban
development. Flourishing suburbanization has created inestimable socioeconomic benefits,
especially improved residential housing conditions; however, this urbanization has also
caused many problems, such as differentiation within urban low-income groups, problems
caused by the development of suburban housing, and traffic jams, which increase suburban
poverty and urban–suburban inequalities [5,12]. However, traditional poverty studies in
China have focused on regional income inequality and rural poverty, and urban poverty
was disregarded until the late 1990s [13,14]. Thus, with urbanization currently accelerating
in China, it is worth focusing on raising the profile and enhancing our understanding of
deprivation in urban contexts.

Urban poverty, as a comprehensive and complicated social phenomenon, has many
indicators and dimensions for measurement [13,15]. Mapping and monitoring urban
poverty have traditionally been conducted by household survey data or census data
collected by National Bureau Statistics. These data are time consuming, expensive, and
labor-intensive, which limits the ability to frequently and cyclically collect data in many
areas. It is difficult to measure multidimensional urban poverty without focusing on the
dimensions of living standards and housing conditions because they often reflect people’s
consumption levels and basic economic situations [16–18]. Many scholars have explored
the potential for using spatial, spectral, and textural features of built-up areas derived from
high-resolution remote sensing imagery to measure urban poverty, which has been proven
to be useful in monitoring local variations in poverty, especially when widely applied in
exploring slum, informal, and formal settlements that are closely related to poverty [19–27].
These studies are mainly based on the premise that people who have similar demographic
and social characteristics tend to cluster in neighborhoods with similar physical housing
conditions. Remote sensing imagery, with the main advantages of higher frequencies,
faster acquisition, and lower costs, has been increasingly utilized to explore urban poverty.
For urban areas, different built-up areas share different unique sets of spatial and textural
features (e.g., geometry, patterns, orientation, and spatial variability) that distinguish them
from other areas [28]; therefore, local research is always needed.

Can the features of built-up areas extracted from remote sensing imagery be applied to
rapidly explore urban poverty in China? There are many features that can be derived from
imagery. Which features can be used to identify urban poverty in China, either in subsets
or together? What do these features represent? To address these explorative questions,
this study is organized as follows: After the introduction, Section 2 describes the study
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area, data source and processing, and methods. The experimental results are presented in
Section 3 and discussed in Section 4. The last section summarizes this study and provides
some implications.

2. Materials and Methods
2.1. Study Areas

The case study areas are situated in the Jiangxia and Huangpi suburbs (Figure 1),
which are located in Wuhan, China. Wuhan, the capital city of Hubei Province and
the fast-growing metropolitan area with a strategic position in China, is situated in the
eastern region of the Jianghan Plain at the intersection of the Yangzi River and Han River.
Jiangxia, the southern gateway to Wuhan, is one of the six suburbs of Wuhan, with a total
land area of 2018.3 km2 and a total resident population of 0.91 million in 2017. As an
important connection and geographical location of the Wuhan metropolitan area, Jiangxia
is experiencing an increasing population and urbanization rate. Huangpi, as the urban
fringe of Wuhan, covers a total area of 2256.7 km2. Its regional gross domestic product
(GDP) is approximately 70.25 billion Chinese yuan (CNY), with a total population of
1.13 million in 2017 and an urbanization rate of 45.52% in 2016.
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2.2. Spatial Scale and Data Sources

This study assesses the relationship between urban poverty and the image features of
built-up areas derived from remote sensing imagery at the lowest administrative level to
ensure the relative homogeneity of regional built-up areas and efficient resource allocation
by policy makers. The neighborhood committee or village committee, which is the lowest
administrative level in China, serves urban communities. Influenced by the statistical unit
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of population data, some neighborhood/village committee units in Jiangxia have been
split; thus, there are 408 spatial units in Jiangxia and 653 spatial units in Huangpi, which
constitute the analytical region of this study.

The research data utilized in this study include the following data: (1) A collection of
Google Earth (GE) imagery acquired in 2016, which contains 3 band multispectral (R: red
wavelength, G: green wavelength, and B: blue wavelength) stacks with a 4.09 m spatial
resolution, was applied to the analysis. GE imagery is an integration of satellite, aerial, and
Street View images after data preprocessing; among them, the satellite imagery includes
QuickBird, Landsat, and WorldView, and aerial data are mainly obtained from commercial
companies. (2) A land cover dataset and boundary of administrative division from the
Geographical Information Monitoring in 2016 was provided by the local department.
(3) The 2016 population census and poor population statistics of neighborhood and village
committees are sourced from the local department. All the datasets have geographic
coordinate information, so we can combine them spatially. In this study, poverty incidence
(PI) (proportion of poor to the regional total population) was selected to identify urban
poverty, which is typically reported as one criterion to describe regional poverty.

2.3. Calculation of Features

From the remote sensing perspective, image features such as geometric features, shape
features, and texture features that are detectable and observable are variables with great
potential to quantitatively distinguish the difference in built-up areas of committees with
different poverty levels from the spatial patterning, texture, irregularity, and homogeneity
of built-up layouts. Geometric features are constructed by a set of geometric elements such
as lines, curves, or surfaces, which can be applied variables such as perimeter, orientation,
and distance to differentiate objects. Shape features that are based on shape boundary
information or boundary and interior content are the main basis of shape representation for
describing the image content [29]. Reasonable shape descriptors, such as the line segment
detector (LSD) [30] and Hough transform [31], can effectively distinguish similar shapes,
although the database is affinely transformed. Textural features, which comprise an im-
portant low-level feature in the image, provide information about the spatial arrangement
and distribution of the intensities or colors in an image. The gray-level co-occurrence
matrix (GLCM) [32], histogram of oriented gradients (HoG) [33], and local binary patterns
(LBP) [34] are significant measures that can be applied to quantify the perceived texture of
an image by using texture features such as smoothness and coarseness.

To demonstrate the image features of built-up areas at the committee level, the six
features calculated for this study were perimeter, LSD, Hough transform, GLCM, HoG,
and LBP. Regional perimeters are especially useful in distinguishing simple or complex
shapes. The simpler the shape is, the shorter the perimeter. The LSD aims to detect
local straight contours on images, giving accurate subpixel-level results. The Hough
transform is a measure for detecting curves based on the duality between points on a curve
and the parameters of the curve. The GLCM is a typical method for describing image
texture by exploring the cooccurrences of the pixel values, which is generally described
by a set of textural variables, such as contrast, entropy, correlation, variance, inverse
difference moment, and covariance. HoG, an edge and object detection method, captures
the distribution of structure orientations [33]. LBP differentiates the forms of surfaces,
edges, and corners and sorts them into a histogram [28]. Using the land cover dataset,
the built-up area of imagery was obtained at the committee level. After processing, the
built-up area of imagery and analytical region boundaries were employed to calculate
the GLCM, Hough transform, and perimeter using the FETEX 2.0 software program [35],
which is an interactive computer package that can be run in ENVI. LBP, HoG, and LSD were
computed in Visual Studio 2017 using the Open Source Computer Vision Library (OpenCV),
which is a cross-platform computer vision and machine learning library. Window size,
a key parameter in image feature extraction, was chosen based on how many pixels the
image feature calculation could differentiate in committees with different poverty levels in
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this study. Table 1 lists the variables that were included within the model to explore the
relationship between the image features and urban poverty based on the variable selection
procedure—the removal of variables that cannot be calculated for some committees or are
unstable. In particular, random forests (RF), a technique for variable selection, can address
instability and remove certain variables that do not significantly contribute to explaining
results but can create random noise to prevent distinguishing the main effects [36]. Selected
feature examples are shown in Figure 2. In particular, examples of screenshots of some
features generated by FETEX 2.0 and OpenCV are presented in Figure 3.

Table 1. Variables derived from remote sensing imagery.

Image Feature Measure Variable Description Abbreviation

Geometric features PERIMETER PER Perimeter of each object F1

Shape features LSD

LSD_TotNum Total number of lines F2
LSD_TotLen Total line length F3
LSD_MeanLen Mean line length F4
LSD_Var Line variance F5

Texture features

GLCM

UNIFOR GLCM uniformity F6
ENTROP GLCM entropy F7
CONTRAS GLCM contrast F8

IDM GLCM inverse
difference moment F9

COVAR GLCM covariance F10
VARIAN GLCM variance F11

HOG

HOG_Max Histogram maximum F12
HOG_Total Histogram total F13
HOG_Mean Histogram mean F14
HOG_Var Histogram variance F15

HOG_SD Histogram standard
deviation F16

HOG_Kur Histogram kurtosis F17
HOG_Skew Histogram skewness F18

LBP

LBP_Max Histogram maximum F19
LBP_Total Histogram total F20
LBP_Mean Histogram mean F21
LBP_Var Histogram variance F22

LBP_SD Histogram standard
deviation F23

LBP_Kur Histogram kurtosis F24
LBP_Skew Histogram skew F25
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2.4. Modeling Approaches

In an effort to explore whether features derived from remote sensing imagery are
significant in differentiating urban poverty in China, 4 state-of-the-art machine learn-
ing regression approaches were selected in this research: Random Forest (RF), Gaussian
Process Regression (GPR), Support Vector Regression (SVR), and Neural Network (NN).
Machine learning approaches, which utilize example data or past experiences to optimize
performance criteria to reflect nonlinear and complex relationships, have been increasingly
applied to make predictions to guide or aid decision making [37]. As a branch of computer
science, there are two major paradigms with machine learning approaches: regression
and classification. Given that each approach has both merits and drawbacks, this study
identified urban poverty by means of different regression models derived from the training
data. In addition, two-thirds of the samples were selected for training, and the remainder
were selected for validation.

Introduced by Breiman [38], RF is a regression or classifier model that consists of many
regression trees, with each tree that is grown utilizing some form of randomization and with
the same distribution for all trees in the dataset. This counterintuitive strategy performs
better than many other classifiers and is robust against overfitting [39,40]. Originally
developed as “kriging” in geostatistics, GPR is a nonparametric, nonlinear, Bayesian
regression technique that is generally the most computationally demanding algorithm to
train and that is useful in many fields because of its flexibility and expressiveness [41,42].
SVR, a kernel learning method, is based on the kernel technique for the distance-based
optimization problem and linear approximation, which can achieve better accuracy and
avoid computational complexity [43,44]. NN, an artificial neural network, is composed
of artificial nodes or neurons, which can derive conclusions from a complex and weakly
related set of information through self-learning from experiences that can occur within
networks [45].

To select relatively important variables for identifying urban poverty, variable impor-
tance was calculated for all regression models used in this study. Variable importance quan-
tification is an important procedure in pattern recognition, prediction, and phenomenon
mining and for the interpretation of features and their effect on model accuracy [46,47]. The
input variables for the different machine learning algorithms produce feature importance
differences from one approach to another approach. In this study, the Mean Decrease Gini
(MDG) and Permutation Accuracy Importance (PAI) are variable importance measures in
RF, and the receiver operating characteristic curve (ROC) is applied to measure variable
importance for GPR, SVR, and the NN. The MDG is the total decrease in node impurities
measured by the Gini index and averaged over all trees. As the most advanced variable
importance measure in an RF, PAI records the out-of-bag portion for each tree and after
permuting each predictor feature. An ROC curve was created for each predictor, and the
area under the curve (AUC) was calculated to measure variable importance. Relatively
important variables are the independent variables needed for all the regression approaches
in this study to achieve similar and better fitting results and are also important variables
for identifying and explaining urban poverty. All modeling and variable importance for
each regression model in this study were performed using the “caret”, “randomForest”,
and “rpart” packages in R (version 3.5.2) and RStudio (version 1.1.463).

2.5. Model Performance Validation Method

The coefficient of determination (R2) was used in this study to quantify the model
performance; it is defined in Equation (1).

R2 =

 ∑n
i=1 (Ti − T)(Pi − P)√

∑n
i=1 (Ti − T)2

(Pi − P)2

2

(1)
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where Ti, Pi, T, P, and n are the true values, predicted values, average true value at the
ith analyzed unit, predicted PI value at the ith analyzed unit, and the number of analyzed
units, respectively.

3. Results
3.1. Model Performance

The best model performances are selected for each machine learning model by ad-
justing the parameters and number of sampling functions, which is defined as “set.seed”
in the R software. Table 2 summarizes the model performances of the four models. The
validation indicator of the regression results shows that the R2 that represents models’
performance of Jiangxia ranges from 0.3492 to 0.5341, and that of Huangpi ranges from
0.4231 to 0.5324. In particular, the results show that among the analyzed regressions, the
SVR approach best presents the performance of Jiangxia and Huangpi, with R2 values of
0.5341 and 0.5324, respectively. It is concluded that in the best regression, features of built-
up areas extracted from remote sensing imagery perform reasonably well independently
for identifying urban poverty, exceeding 53% for explaining the poverty of Jiangxia and
Huangpi. Compared to the prediction accuracy of Jiangxia, all of the algorithms, except
for the SVR of Huangpi, generally present better model performances. Local indicator of
spatial association (LISA) [48] is used to identify committees of concentrated poverty and
to see if the predicted PI from remote sensing using NN can identify the same committees
than the survey-based PI. Figure 4 shows a comparison of LISA maps of the predicted
PI with the remote sensing-derived variables versus survey-based PI, which were both
created using GeoDA. The maps show a general good match between the Low–Low and
High–High committees, which means that the model fitted well throughout the Jiangxia
and Huangpi rather than deviating toward high or low values. Although the model per-
formance in this paper is general, it is acceptable for policy makers to rapidly determine
which urban areas are poor.

Table 2. Model performance of each machine learning model of Jiangxia and Huangpi.

RF GPR SVR NN

Jiangxia 0.3581 0.3653 0.5341 0.3492
Huangpi 0.5082 0.4231 0.5324 0.4937

3.2. Important Variables for Identifying Urban Poverty

The relative importance of each variable for the applied machine learning models in
this study is presented in Figure 5. The results show that the importance of each variable
differs among the different models and study areas. In particular, the importance of
each variable is similar when similar variable importance measures are employed for
different models (e.g., GPR and SVR) and differs for the same approach (e.g., RF) when
different variable importance measures are employed. Additionally, different study areas
have a significant impact on the variable importance rankings. Although the importance
of variables varies with models and study areas, the relatively important variables are
similar and can be selected based on the frequency of occurrence in the order of variable
importance. As shown in Figure 5, the variables that are relatively important for identifying
urban poverty in the different machine learning models mainly include F18, F17, F7, F6, F9,
and F10, representing the importance of GLCM and HoG for describing the characteristics
of built-up areas with different poverty levels.
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To better identify the variables that are most important for the regression results,
we select several combinations of variables according to the frequency of each variable
in the variable importance ranking for all models of Jiangxia and Huangpi to identify
urban poverty. The model performance of the four models under five combinations of
variables (4 variables: F18, F17, F7, and F6; 5 variables: F18, F17, F7, F6, and F9; 6 variables:
F18, F17, F6, F7, F9, and F10; 10 variables: F18, F17, F6, F7, F9, F10, F11, F20, F24, and
F5; 12 variables: F18, F17, F6, F7, F9, F10, F11, F24, F8, F4, F20, and F5) based on the
proportion of variable importance of Jiangxia and Huangpi are summarized in Table 3. The
results show that all models of Jiangxia and Huangpi with five combinations generally
present relatively satisfactory prediction results, with R2 values that represent the models’
performance ranging from 0.2903 to 0.4793 and 0.3783 to 0.5189 for Jiangxia and Huangpi,
respectively. Among them, the model performances for all models of Huangpi are mostly
better than those of Jiangxia and vary among the five combinations. For the same model
and study area, the five combinations have different model performances, and the best
model performance does not correspond to the same combination. For example, the best
model performance of NN in Jiangxia corresponds to four variables, while that of SVR
corresponds to 10 variables. For different models and study areas, the model performance
fluctuates with an increase in the number of variables, even achieving better results when
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there are four variables. Compared with Table 2, the results show that different models
with different conditions can achieve better model performance, which is comparable to
or even exceeds all variables included, indicating the effect of some important variables
on the overall model performance. Although different models have different relatively
important variables that guarantee better prediction results for each model, the top four
variables (F18, F17, F7, and F6) achieved relatively satisfactory model performance for all
of the models employed in this study, which indicates the importance of the four variables
for identifying urban poverty in Wuhan city.
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From Figure 5 and Tables 2 and 3, the results show that a limited set of explicit features
derived from imagery are sufficient for rapidly identifying urban poverty. In particular, F18,
F17, F7, and F6 are the most relatively important variables in this paper, which suggests that
textural features in terms of uniformity and entropy of pixels and kurtosis and skewness
computed by a histogram should be considered more in similar future studies. Committees
with positive HoG skewness and kurtosis represent a more uniform spatial layout, in
which their buildings tend to be oriented homogeneously, as described in the histogram
by most orientations falling into a minority of bins [25]. The uniformity and entropy
demonstrate the complexity of committee texture features; specifically, the higher the
value of entropy is, the more complex the gray distribution of the committee. To better
understand the difference in important variables with lower and higher PI, the boxplots
of F18, F17, F7, and F6 of Jiangxia and Huangpi are shown in Figure 6. From this figure,
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we can see that the four variables of Jiangxia and Huangpi present similar characteristics.
For F18, F17, and F6, the variable value of relatively affluent committees is less than that
of committees with a relatively low poverty level, while for F7, the characteristic is the
opposite; that is, for Jiangxia and Huangpi, the layout of the less developed committees is
more homogeneous, while the texture of built-up areas in the better developed committees
is more complex. The well-developed committees are mostly mixed by residential land,
commercial land, and industrial land, which makes the built-up areas of the committee
quite different and heterogeneous. This phenomenon coincides with the current social
situation in China, in which poor people are found to live in areas with a greater distance
from social infrastructure. Thus, features calculated from high-resolution satellite imagery
can be applied to study urban poverty, which has significance for rapidly monitoring and
exploring regional poverty. Additionally, the application of those features can objectively
reflect the rationality of urban planning, especially in China, with its rapid suburban
development. In particular, the key to reducing suburban poverty is reasonable committee
planning and developing a regional economy without increasing the problems caused by
rapid suburbanization.

Table 3. Model performance of each machine learning regression of Jiangxia and Huangpi with
different numbers of variables.

Variables RF GBR SVR NN

Jiangxia
F18, F17, F7, F6

0.2974 0.3076 0.3674 0.3234
Huangpi 0.3980 0.4237 0.4843 0.4647
Jiangxia

F18, F17, F7, F6, F9
0.2903 0.3171 0.3655 0.2946

Huangpi 0.3911 0.4079 0.4808 0.4269
Jiangxia

F18, F17, F6, F7, F9, F10
0.2963 0.3246 0.4152 0.3110

Huangpi 0.3959 0.3878 0.4754 0.3783
Jiangxia F18, F17, F6, F7, F9, F10, F11,

F20, F24, F5
0.3258 0.3119 0.4793 0.3050

Huangpi 0.4488 0.4477 0.5111 0.4389
Jiangxia F18, F17, F6, F7, F9, F10, F11,

F24, F8, F4, F20, F5
0.3506 0.3194 0.4477 0.3019

Huangpi 0.4796 0.4649 0.5189 0.4235

4. Discussion

Many scholars have proven that structural and textural features derived from remote
sensing imagery that were applied to characterize the spatial pattern of the built-up lay-
out are useful for slum index estimation and formal and informal identification [20–22].
Furthermore, some studies have evaluated the relationship between urban poverty or
census-derived population characteristics and spatial and spectral features [19,28,49]. How-
ever, similar studies of Chinese cities are rare, especially studies in which only remote
sensing imagery is employed. This gap in research may be attributed to a lack of obvious
division among economic groups in China characterized by apparently different residential
areas. Alternatively, this gap may be due to the lack of detailed urban poverty data and
the focus on poverty alleviation in rural areas in China, which is determined by special
national conditions. In an attempt to explore whether structural and textural features de-
rived from high-resolution satellite imagery can be used to rapidly identify urban poverty
in China, the better model performances of four machine learning approaches in two study
areas provide a powerful response, which should demonstrate the exploration of urban
poverty in China using remote sensing imagery that is objective and consistent. To further
verify the relationship between structural features and textural features of built-up areas
and urban poverty in China, we roughly divide the committees into three PI levels and
compare the imagery of different levels of committees. Considering the limited imagery
data source with an ultrahigh spatial resolution (0.26 m), Figure 7 presents some image
captures showing areas of Jiangxia and Huangpi that have different levels of PI divided
into three categories (high, median, and low) according to the PI value. The image captures
are organized according to decreasing levels of PI from left to right to show the differences
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in the built-up area scenes as the level of PI decreases. From this figure, we can intuitively
differentiate the spatial pattern of the urban layout of Jiangxia and Huangpi in terms of the
settlement distribution on randomness or regularity, homogeneity or heterogeneity, and
intensity and roughness as well as that of roads’ width, regularity, and type. Therefore, it
is practical to identify urban poverty using structural and textural features from satellite
imagery for Chinese cities. Since the settlement distribution is not the only aspect repre-
senting urban poverty, satellite imagery and machine learning approaches have shown
the capacity to evaluate urban poverty at a reasonably high level of accuracy. Tables 2
and 3 reveal the following phenomenon: the model performance of Jiangxia is generally
lower than that of Huangpi, possibly because the PI of many committees in Jiangxia is 0
and Huangpi has more spatial units than Jiangxia, which inevitably affects model accu-
racy when it is sampled and calculated. In conclusion, the model performances from this
study are acceptable, and it is feasible to rapidly explore urban poverty in China using
high-resolution satellite imagery.
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The results of the statistical analysis of this study indicate that the most important re-
mote sensing predictors of urban poverty at the committee region level for Wuhan include
histogram skewness (F18) and kurtosis (F17) of HOG, and entropy (F7) and uniformity
(F6) of GLCM. These variables describe aspects of the spatial layout of buildings and
the urban layout of texture features. Further analysis shows that the PI is higher in the
analytical regions that registered higher homogeneity. However, there are some differences
in the results compared to the findings of identification in favela, slum, and informal
settlements or any other kind of urban poor area in other countries. In Medellin, the struc-
tural and texture descriptors indicate that a higher Slum Index registered higher overall
complexity and lower variation in heterogeneity with distance [21]. The use of image
texture measures for informal settlement identification has shown that these buildings
have lower homogeneity and higher contrast. The authors of [20,22,24] found that the
visual appearance and morphology of poor urban areas across the globe are very different,
and the investigated areas showed a high spatiotemporal variability of morphological
transformations. In particular, 13 cases indicated that the built-up structures led to a
homogenous building alignment with decreasing complexity. These comparisons show
that identifying urban poverty using satellite imagery for Chinese cities is needed. Fur-
ther study is needed to determine how poor areas in Chinese cities have changed and
the corresponding stages of transformation. Although high-resolution satellite imagery
can be employed to identify urban poverty in China, the input remote sensing data are
rather simple. Future research should address two main issues to improve existing models:
(1) very high spatial resolution that can capture the differences in urban layout heterogene-
ity is needed; (2) additional datasets (e.g., Normalized Difference Vegetation Index, land
cover classes, and nighttime light imagery) can be included to provide more details for
poor urban areas in China.

However, this study also specifically found that although the model performance
in identifying urban poverty using high spatial resolution imagery is often relatively
satisfactory, the general variance that can be explained by those models often remains
stable and not too high. Duque et al. [21] indicated that these variables derived from high
spatial resolution image explain up to 59% in the Slum Index. In particular, Kraff et al. [24]
revealed a high spatiotemporal variability of morphological transformations within studied
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areas, but the spatial patterns of building alignments remain predominantly constant.
That is, identifying urban poverty using high spatial resolution imagery could provide a
tendency and principal characteristics that cannot reflect all aspects of urban poverty. These
results were expected. This may be explained by the multidimensional phenomenon in
urban poverty, which involves many dimensions. The variables derived from high spatial
resolution imagery reveal typical characteristics of the urban poor neighborhoods, which
represent “morphological poverty”. Therefore, it is necessary to connect “ground survey
data” obtained by in situ observations and interviews and “imagery variables” derived
from high spatial resolution image to build valid and rigorous models. Only in this way a
holistic and tangible reference for government decision makers is possible.

Housing is not only the basic space of urban activities, but it is also closely related
to the social, economic, and spatial structure of a city. Poor people are found to live in
areas of lower quality and densely populated neighborhoods, and the interior features
of housing differ more widely between wealthier people and poor people [50]. There are
many disadvantages of urban life for urban poor people of which housing is a prominent
dimension [51]. The housing inequality pattern in China was formed before the country’s
reform and still exists; housing consolidation has even occurred in recent years [52],
while vulnerable groups contribute to experiencing housing difficulties. Thus, the rapid
identification of urban poverty also reveals housing inequality. The significant spatial
variation in urban poverty in Wuhan may be due to many geographic factors, including
accessibility and proximity to various infrastructures, while housing inequality is more
closely related to house prices and purchasing power. From a sustainability perspective,
building economic housing in ideal urban areas where the poor can access basic services
without excessive economic burden will not only contribute to social fairness but also help
improve people’s livelihoods and well-being. It seems that the important variables for
identifying urban poverty would be significant indicators for spatial analysis of housing
inequality; disregarding geographic factors may fail to identify problems.

5. Conclusions

This paper seeks to identify urban poverty for one Chinese city solely using high-
resolution satellite imagery at the community level. The usefulness of remote sensing data
for estimating urban poverty was proven in the case of Jiangxia District and Huangpi
District. Moreover, the variable importance of different models was used to identify
relatively important variables for identifying urban poverty. The variables F18, F17, F7,
and F6 achieved relatively good prediction results for all models, which indicates the
importance of textural features for exploring urban poverty and deepens the understanding
of the morphology of poor urban areas in China.

As an attempt at exploration for identifying Chinese urban poverty, this study con-
firms the validity of satellite imagery features, the existence of important variables, and
implications for urban development and housing inequality. The findings can be applied to
other cities as a directional and timely reference for policy makers to rapidly identify poor
urban areas and provide assistance for renewal planning of poor communities. However,
we should also have a clear understanding of the limitations of this study. First, restricted
by data sources, we could only use relatively low-resolution imagery, and the study area
did not include the main urban area of the city. Second, we only calculated a set of features
and may have omitted other aspects. Third, data processing and the model performance
of machine learning approaches should be improved in future studies. In future research,
more detailed effects and applications of variables and methods of measurement can be
applied to other cities with different social and environmental backgrounds.
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