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Abstract: Soil moisture anomalies underpin a number of critical hydrological phenomena with
socioeconomic consequences, yet systematic studies of soil moisture predictability are limited. Here,
we use a data-adaptive technique, Linear Inverse Modeling, which has proved useful as an indication
of predictability in other fields, to investigate the predictability of soil moisture in northern California.
This approach yields a model of soil moisture at 10 stations in the region, with results that indicate
the possibility of skillful forecasts at each for lead times of 1–2 weeks. An important advantage of this
model is the a priori identification of forecasts of opportunity—conditions under which the model’s
forecasts may be expected to have particularly high skill. Given that forecast errors (and inversely,
their skill) can be estimated in advance, these findings have the potential to greatly increase the utility
of soil moisture forecasts for practical applications including drought and flood forecasting.

Keywords: soil moisture; predictability; forecasts of opportunity; linear inverse modeling; Califor-
nia hydrology

1. Introduction

Soil moisture lies at the heart of a number of societally relevant phenomena, ranging
from ecosystem health and agricultural productivity to the frequency of hydrometeoro-
logical extremes like floods and droughts. However, it is also an inherently complicated
field to understand and predict. Its behavior is governed not only by atmospheric drivers
like precipitation and temperature, but also by overlying vegetation and the soil’s own
properties (i.e., texture and porosity). As a result, many have approached the problem
of predicting soil moisture with the notion that one must have considerable information
about each of these factors. A number of studies have thus employed the soil water balance
equation to explore the potential predictability of soil moisture based on stochastic rainfall
inputs drawn from pre-determined distributions [1–7]. However, this approach must
necessarily rely on a number of assumptions to represent the many controlling factors that
act on soil moisture. Parameterizations of the soil’s dry-down characteristics, the depth
of the active layer, the rate at which plants remove water from the soil, the amount of
precipitation interception by vegetation, and a host of others must be estimated for such a
model to function properly.

To their credit, these highly detailed models are firmly rooted in physical theory and
perform reasonably well when their parameters are carefully tuned for specific sites [1–7].
However, as with any model, there are unavoidable downsides to this approach. The
observations on which each parameterization is based are often lacking at sufficiently fine
spatial resolution, and the process of tuning those parameters for a specific location can be
a tedious, imprecise process. These complex models are also often constrained to periods
wherein the moisture can be considered in steady-state for numerical tractability—that is,
during the well-defined and somewhat homogeneous wet and dry seasons [2,5]. To predict
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the evolution of soil moisture at a larger, less restrictive scale, a more scalable approach
may be necessary.

One alternative to relying on these sorts of numerical models is to develop simpler
empirical models built solely on direct measurements of soil moisture and temperature,
avoiding the need for numerous parameterizations to characterize each site and maintain-
ing validity year-round. In other words, we might seek to understand and predict soil
moisture by using the field itself as a predictor. The empirical model studied here, Linear
Inverse Modeling (LIM), is also a dynamical model in that it is based on a specified equation
of motion [8]. The specified equation, however, is assumed to be simple enough that all of
the relevant parameters can be estimated from measured data. We make the assumption
that the dynamical system can be approximated by a linear, multivariate process driven by
stochastic forcing. This approach has several advantages. Firstly, the assumption can be
verified a posteriori. Next, estimates of forecast error accompany the forecasts. Further,
since the linear operator estimated by LIM need not be orthogonal, exponential decay of
forecast skill may be preceded by a temporary period of exceptionally skillful forecasts,
depending on the initial conditions (ICs). ICs leading to these skillful forecasts can be
identified in advance, leading to “forecasts of opportunity” [9–11].

There are, of course, disadvantages to this approach, even if the dynamical assump-
tions are valid. Direct observations of soil moisture are prone to their own shortcomings,
chief among them being the length of each record currently available. In-ground measure-
ments of soil moisture and temperature have only been reliably collected for a handful of
years now [12–14], which limits the range of internal variability that is been captured and
can hamper the verification of new models against independent data. Note, however, that
the issue of verification period hampers any soil moisture model; numerous studies have
been forced to rely on 1–2 years of data or less to validate their own more detailed soil mod-
els and explore spatiotemporal trends in the field [3,6,12,15]. Beyond issues surrounding
record length, soil observations must also undergo some level of quality control, but the
approach used for that can vary across observational networks [14,16] and, returning to the
issue of temporal longevity, must be sustained for a number of years to ensure consistently
reliable data.

It appears that a two-pronged approach to soil moisture forecasting, one that uses the
extensive physical justifications of numerical models and one using the physical reality
embodied in an empirical-dynamical model based on in situ observations, would be
desirable. Such an approach is too extensive to be contained in a single article. Detailed
descriptions of numerical hydrological models are found elsewhere; it is the purpose of
this particular study to examine the predictive properties of the other prong, LIM.

This work builds on a long history of studies that have employed LIMs for probabilistic
forecasting and diagnosis of global climate models (GCMs). The roots of this approach
date back a few decades to when it was proposed [17], with strong foundations in principal
oscillation pattern analysis [18,19]. LIM extracts dynamical information about a system
from its observed statistics [8,20,21], a fundamentally different approach than deriving
such from the governing equations of the field instead. In LIM, the system is subdivided
into two components—a slowly evolving portion that is linearly dependent on the field
itself, and a more rapidly varying component whose timescale of evolution is sufficiently
shorter so as to be described as unresolved stochasticity. The main assumption behind
LIM is thus one of dynamical linearity, which is often used in empirical and numerical
models alike. Despite the variety of assumptions that underlie this approach, LIM has
been shown to have demonstrable skill in predicting tropical sea surface temperature
anomalies [8,20–23] as well as in predicting atmospheric phenomena and the skill of such
forecasts on subseasonal scales [9,10,24].

Here, we apply the same methodology to investigate the predictability of soil moisture,
using soil moisture itself and soil temperature at specified depth as predictors. It should
be noted that the prediction information in other variables, such as vegetation cover,
are assumed to be implicitly taken into account by using the statistics of temperature
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and soil moisture in the development of the prediction model. Though not discussed at
length, precipitation itself is considered in the model as stochastic forcing rather than a
predictand; the predictable signal in soil moisture due to precipitation is integrated into the
soil temperature and soil moisture itself, yielding results that are strongly consistent with a
probabilistic description of moisture. As further justification for confining our predictors to
soil temperature and moisture alone, we present a test of whether the information contained
in these predictors is sufficient, allowing our forecasting model to be as parsimonious
as possible.

The treatment of rainfall as a stochastic process is not necessarily unique to the
model proposed here, but the proposed modeling approach is structured so as to avoid
assumptions regarding the distribution of precipitation frequency and amount that are
often included in other soil moisture models [2,4–6].

Using variables (temperature and moisture) internal to the subsurface as predictors,
we perform LIM forecasts and compare the average observed skill of these forecasts with
LIM’s predicted skill. We further show how LIM may be employed to identify ICs for
forecasts of opportunity, and provide a benchmark for the skill that could be expected in
soil moisture forecasts. This estimate can then be used in the future to diagnose errors
in comprehensive numerical hydrological models like those discussed above. Identical
diagnostic procedures to the ones established here can be applied to numerical model
output as well, with differences and similarities to these observational results used to
inform improvements to those models as in previous studies [25,26]. Establishing a baseline
predictability estimate from observations alone represents a key first step towards this goal
and others.

We choose as our first subject California soil temperature and moisture in an attempt
to isolate the internal predictability of these fields from the effects of atmospheric forcing
on daily timescales. The soil moisture in California varies with a wet season, with the
majority of precipitation occurring from late fall to late spring, and a dry season from
late spring to late fall. We have now reached a point where, at least in this region, there
exists a number of observing stations with a sufficiently long record of quality-controlled
data (5+ years) so as to reasonably capture a range of climate variability. The northern
half of the state is of particular interest not only for its economic productivity and high
level of instrumentation [27,28], but also for its vulnerability to extremes. California
suffered an intense multi-year drought from 2012 to 2015—the worst the state has seen in
centuries—with the strongest impacts concentrated near the Sierra Nevada region [29,30].
That dry period was soon followed by a historic water year that ultimately led to the
Oroville dam crisis in 2017 [31]. Soil moisture anomaly forecasting has the potential to
improve our understanding and the predictability of both drought and flood phenomena
such as these.

There is one important contrast between this study and previous applications of LIM:
the time series used here are point measurements rather than the spatially averaged values
studied in, for example, the analysis of sea surface temperature presented by [8]. Thus,
analysis of satellite products of temperature and moisture, which represent characteristics
of finite areas, would be more consistent with previous applications of LIM than this study.
Further, it may be easier to use LIM applied to satellite products rather than to point
measurements to derive physical parameterizations for use in numerical models, since
these models represent physical variables as averages over a finite grid size. In fact, the
difficult problem of how to develop numerical parameterizations from point measurements
is as well-known as the difficulty in deriving predictions at a single location from gridded
model results.

Nevertheless, there are compelling reasons to analyze point measurements. First,
time series of satellite measurements of soil moisture are often too short to apply LIM,
and even when they are long enough, specific depth information and/or corresponding
temperatures are unavailable in these data sets. Further, although soil moisture estimations
from the Gravity Recovery and Climate Experiment (GRACE) can extend below the surface
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layer (0–5 cm) [32], other satellite retrievals (e.g., Soil Moisture Active Passive satellite:
SMAP, [33]; and Soil Moisture and Ocean Salinity satellite: SMOS, [34]) are confined to
the upper 5 cm. Most importantly, operational hydrologists at the American National
Weather Service and the water management community in California use station data
to monitor drought and for flash flood guidance and require products such as those we
investigate here.

Apart from the intrinsic value of better understanding and predicting soil moisture
in California, part of the impetus behind this work lies with recent efforts from the Na-
tional Oceanic and Atmospheric Administration (NOAA) to move towards probabilistic
forecasts, outlined in their Forecasting a Continuum of Environmental Threats (FACETs)
program [35]. Though FACETs has primarily focused on severe weather in the past [35],
there is now a concerted effort to expand into other phenomena and to longer timescales.
The forecasting of soil moisture with inherent probabilistic-based skill estimates fits well
under this expanding umbrella: it varies on timescales of weeks to months, interacts
strongly with other hazards such as floods and droughts, and has potential importance for
stakeholders such as reservoir operators and farmers.

The following section describes the process of creating a LIM and subsequent forecasts,
as well as a brief description of the data used for this study. In Section 3, we investigate the
ability of LIM to describe the field via a stochastic linear equation, and assess the resulting
predictability of soil moisture relative to a first order autoregressive (AR1) model. We
show skillful forecasts of daily values on the order of 1–2 weeks. As will be seen, that
predictability window is longer for ICs satisfying criteria for “forecasts of opportunity”.
Section 4 concludes the study with a summary of the key findings, a discussion of their
implications, and suggestions for using these results both to diagnose numerical models
and to extend analysis of empirical models.

2. Data and Methods
2.1. Soil Data

The empirical model we build is based on data from 10 land stations, located primarily
in northern California. We draw from two soil networks to maximize coverage in the
region: the NOAA Hydrometeorological Testbed (HMT), where five stations are used
from the Russian River Valley, and the United States Climate Reference Network (CRN) as
provided by the National Soil Moisture Network, which yields five additional stations (see
Figure 1 for the locations of each station and Table 1 for their names and aliases). We also
include an observing station in Santa Barbara even though it does not fall in the typically
defined region of “northern” California as a means to increase data availability. We will
see later that this is also a strategic choice for increasing predictability in the model. Both
networks have undergone rigorous levels of quality control [16,36,37], and though they
use different instruments, their behavior is found to be consistent enough to warrant their
combination here.

To maintain consistency between networks, all soil observations were taken at a depth
of 10 cm for the period 23 May 2012 to 31 December 2017. Hourly data from the HMT
network were averaged to the daily scale so as to match the temporal resolution of the CRN
data. The average annual cycles in soil moisture and temperature were then calculated for
each of the 10 stations independently and removed linearly from the relevant time series to
isolate soil anomalies, which better capture the moisture/temperature variations than the
full field itself.

Though our primary interest is in the predictability of soil moisture, soil temperature
is used in addition to describe the field evolution. That is, the model we build here
is based on a combination of both metrics rather than on soil moisture alone to lend
additional predictive capacity. However, since these two characteristics vary with different
magnitudes, we make use of their z-scores for the remainder of this analysis to allow
similar contributions from each to the empirical model.
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Combining soil temperature and moisture in one form or another is not a unique
feature of this study; soil temperature has in fact often been used as a means of deriving soil
moisture. The novelty here is that we use the moisture to remove redundant information
in soil temperature, which is found to improve the predictability of the moisture field itself.
A linear regression is thus carried out to isolate only the temperature residual, removing
the portion of the field that is already explained by soil moisture. Thus, greater weight is
given to the independent information that is found in soil temperature rather than double-
counting the variability common to both soil properties. The matrix of daily, anomalous,
soil temperature residuals is then combined with soil moisture to build a linear inverse
model as described below.
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Table 1. Station names and aliases as used in figures and discussions in the text.

Station Name Station Code Temperature Code Moisture Code

Healdsburg HBG T1 M1

Lake Sonoma LSN T2 M2

Potter Valley PTV T3 M3

Rio Nido ROD T4 M4

Willits WLS T5 M5

Bodega Bay BDG T6 M6

Merced MRC T7 M7

Redding RED T8 M8

Santa Barbara STB T9 M9

Yosemite YSM T10 M10

The period of 23 May 2012–31 December 2017 was long enough to allow data denial ex-
periments for some exploration of prediction skill. However, the entire period was employed
for diagnosing skillful ICs and for hindcast experiments to measure potential predictability.

2.2. Linear Inverse Modeling: Background

We outline here the key steps used in creating the soil model, but refer the reader
to previous studies for a more detailed description of LIM and the theory behind it
(e.g., [8,17,20,21], and to Appendix A for more information on the application of it here. To
apply LIM, we assume that the system is linear with the relevant dynamics separated on
the basis of time scales; one dynamic component—the predictable part—must occur on
timescales slow enough relative the rest of the field, which varies on timescales fast enough
that it can be described as unresolved stochasticity. This allows the system to be reasonably
well approximated by a stochastic differential equation of the form:

dxi
dt

= ∑
j

Lijxj + ∑
α

Siαξα (1)

where xi is the time series of soil temperature or moisture at each station i, and Lij is
the linear operator describing the predictability of conditions at station i stemming from
knowledge of conditions at stations j. The matrix S contains the coefficients for the vector
of white noise forcing, ξ, with the individual components of white noise subscripted α.
The second term on the right-hand side of Equation (1) is described in terms of the noise
covariance matrix, Q:

Qij = ∑
α

SiαSjα (2)

For simplicity, we assume in the following that Q is independent of x, though this
may not be the case everywhere. After all, there is evidence that soil moisture may affect
phenomena such as precipitation [38], which are assumed to be included in the stochastic
forcing. In any case, the procedure we outline here results from deriving the best linear
predictions of x in the mean squared sense [18].

Given these assumptions, the matrices L and Q describe the dynamics of the system
and its evolution. Their values can be determined by starting with the appropriate Fokker-
Plank Equation (FPE) associated with Equation (1):

dp(x, t|x(0))
dt

= −∑
ij

∂

∂xi

(
Lijxj p(x, t

∣∣x(0)))+ 1
2 ∑

ij

∂2

∂xi∂xj

(
Qij p(x, t

∣∣∣x(0))) (3)
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where p(x, t|x(0)) describes the conditional probability of finding a value at a certain time,
x(t), given the initial condition x(0). This is also called the forecast probability. When
the temporal derivative on the left-hand side of Equation (3) is set to zero, the resulting
stationary FPE is satisfied by the stationary probability p(x). Taking the moments of
these FPEs allows estimation of the lagged covariance matrix C(τ0) given lag τ0 and the
contemporaneous covariance matrix C(0), which can be combined to form the Green
function G(τ0) as follows:

G(τ0) = C(τ0)C−1(0) (4)

This matrix is called the Green function because for systems governed by Equation (1)
it is equivalent to exp(Lτ0) and, when operated on an initial condition x(0), provides the
vector x(τ0) at which the forecast probability p(x, τ0|x(0)) is maximized. That is, given
Equation (1) with constant L and Q, p(x, τ0|x(0)) is Gaussian centered on G(τ0) x(0), mak-
ing G(τ0) x(0) the most likely forecast at lead time τ0 given initial condition x(0). For long
lead times, the forecast probability converges to the centered stationary probability p(x).

Details of how the eigenstructure of G(τ0) can be used to estimate matrices L and
Q are given in Appendix A. These matrices are important in diagnosing the dynamical
system generating the measured field x, and we shall consider them in detail for the
system analyzed here in Section 3.4. For now, we turn our attention to the use of LIM
for forecasting.

2.3. Linear Inverse Modeling: Forecasts

For many measured quantities, the estimate of the stationary probability distribution
p(x) given by the histogram of measurements is in fact not Gaussian. We shall see that this
is true for soil moisture in which case the forecast probabilities are not Gaussian, either.
Nevertheless, it can be shown that the best linear forecast of x(τ0) in the mean square
sense [18] is in fact still given by G(τ0) x(0), with G(τ0) estimated as in Equation (4).

However, using Equation (4) to estimate the Green function at every lead time for
which a forecast is desired is neither more nor less than forecasting by multiple linear
regression. We require more than such forecasts; we require an estimation of how good the
approximation in Equation (1) is to the true dynamics of the system and a prioi estimates
of the expected forecast error. Appendix A provides a method for estimating G(τ, τ0),
Green functions at other leads τ estimated from the original matrix G(τ0). If Equation (1) is
valid, then G(τ, τ0) is theoretically independent of τ0 (the tau test: [8,17]; Appendix A). In
practice, issues such as undersampling, Nyquist problems that arise when τ0 is roughly half
the period of an oscillation internal to the system [39], and omission of relevant variables
can all cause failure of the tau test, even when Equation (1) is valid. Nevertheless, the better
the tau test is passed (with “better” being defined by the user), the better Equation (1) is as
an approximation to the real system.

In this study, we shall apply the tau test and also estimate the expected forecast
error by considering the theoretically expected mean-square forecast error using Green
functions G(τ, τ0):

< ε2(τ, τ0) >= trace
(
< x(τ)x(τ)T >−G(τ, τ0)< x(0)x(0)T >GT(τ, τ0)

)
(5)

In Equation (5), angle brackets indicate an average over ICs x(0) or verifications x(τ).
Note that if G(τ, τ0) is strongly dependent on τ0, then so is < ε2(τ, τ0) >, indicating that
the tau test fails. In the remainder of Section 2, we shall assume that the tau test is passed
and drop the argument τ0 from our notation of the estimated Green function, henceforth
denoted as G(τ).

2.4. Linear Inverse Modeling: Forecasts of Opportunity

Clearly, not all forecasts have equal skill. We note from the last section that in this
particular model, the only entity varying from forecast to forecast is the initial condition.
Thus, since knowing when soils are likely to be anomalously wet or dry could be linked
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to increased predictability for floods or droughts, we would like to identify a class of ICs
for which forecasts may be expected in advance to be unusually skillful. To look for these
“forecasts of opportunity”, we first ask a different question: what initial condition leads
to the forecast at lead τ with the largest amplitude? This initial condition, or “optimal
structure” (defined below), has been explored by many authors [8,40–44] as a mechanism
for growth, called “optimal growth,” in geophysical systems. A brief description of optimal
growth is provided here while a more detailed discussion is provided in Appendix B.

Optimal growth occurs when the eigenvectors of a linear system (i.e., their modes)
are not orthogonal. The modes of L in Equation (1) all correspond to eigenvalues with
negative real parts. Without forcing, then, the time series coefficients of these modes decay
exponentially. However, because the imaginary parts of the eigenvalues are generally
nonzero, and modes themselves are not orthogonal, the amplitude of the system as a
whole can temporarily grow even without forcing. To illustrate, consider a system with
three modes corresponding to a purely decaying eigenvalue and to a complex conjugate
pair, as illustrated in Figure 2. The complex conjugate pair of modes is basically the same
physical mode, but requires two degrees of freedom to describe it. In Figure 2a, the vector
A represents the length of the complex mode and vector B represents the purely decaying
mode, orthogonal to A. After some time, A has rotated and decayed to A’, and B has
decayed to B’ (Figure 2b). The vector sum A’ + B’ now has a smaller magnitude than the
initial condition A + B. Now consider Figure 2c, showing the same complex mode A, but
another purely decaying mode C, which is the same length as B but is not orthogonal to A.
After some time, C has decayed to C’ having the same length and decay time as B’, and A
has decayed to A’ as before (Figure 2d). However, the magnitude of A’ + C’ is now larger
than that of the initial condition A + C. Of course, without forcing, the modes will continue
to decay and so this growth is only temporary.

In our model, the only forcing is stochastic. Thus, any predictable growth in the system
is of this non-normal type. The optimal structure is then the initial condition consisting
of the optimal combination of modes leading to the maximum amount of growth. As
discussed in Appendix B, the optimal structure Ψ1 for a forecast at lead τ is the leading
eigenvector of GTG(τ), and the variance of the forecast field G(τ)Ψ1 is amplified over the
variance of Ψ1 by a factor given by the corresponding eigenvalue γ1(τ). Typically, a graph
of γ1(τ) vs. τ has a maximum at lead time τpeak; this curve is thus called the Maximum
Amplification Curve.

Having estimated an optimal structure, which we normalize to unity, it is possible to
generate a histogram of projections of the observed field onto the structure of Ψ. In previous
studies involving LIM forecasts (e.g., [9–11] it has been shown that forecasts based on ICs
with strong positive or negative projections onto Ψ1 are also the most skillful. Recalling
that each vector in the timeseries is a candidate initial condition, we shall show that ICs in
the upper tercile of the histogram of |ΨT

1 x(t)| are indeed more skillful than other forecasts;
forecasts based on this class of ICs are therefore called “forecasts of opportunity in the field
norm,” consistent with previous work cited here.

In this study, we are less interested in forecasts of the combined soil temperature and
soil moisture field than in forecasts of the soil moisture by itself. We do, however, wish to
take advantage of whatever additional predictability soil temperature can give forecasts of
moisture. It is possible to find an optimal structure which maximizes the growth of moisture
alone, regardless of how soil temperature evolves, by employing a “moisture norm” N that
excludes forecasts of temperature from estimation of the optimal structure. That is, we use a
procedure identical to that discussed above with the modification that the optimal structure
in the moisture norm is the leading eigenvector ΨM of GTNG(τ), corresponding to leading
eigenvalue γM(τ). As with the field norm, forecasts of opportunity in the moisture norm
are based on ICs with relatively strong values of |ΨT

Mx(t)|.
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Figure 2. Illustration of how a sum of modes can temporarily grow, even though each of its components is decaying.
Case 1, top: (a) Rotating mode A and purely decaying mode B are orthogonal. Their sum is A+B. (b) After some interval,
A has decayed and rotated into A’, while B has decayed into B’. Their sum, A’+B’ has a smaller magnitude than the initial
magnitude of A+B. Case 2, bottom: (c) The same rotating mode A is added to a purely decaying mode C. Mode C is initially
the same length as B in (a) and also has the same decay time. However, C is not orthogonal to A. (d) After the same interval,
A has evolved into A’ as before and C has decayed into C’, which is the same length as B’ in (b). However, the magnitude of
A’+C’ is larger than the magnitude of A+C.

3. Results
3.1. Test of the Linearity Assumption and Field-Wide Anomaly Amplification

Before assessing the model in detail and its performance relative to observations, we
first confirm the validity of applying LIM to the selected set of soil data by employing a tau
test as described above (Figure 3; see Section 2.3). We have estimated G(τ, τ0) for lags τ0
between four and eight days, and estimated the LIM forecast error as in Equation (5) out to
a lead τ of 30 days (with day zero having zero error). Although there is a small amount
of separation between each of the five τ0 values as τ grows, the expected errors remain
similar enough that we consider the system to be roughly linear, or at least linearized
on these timescales. The choice of a linear model to describe the combined fields of soil
temperature and moisture is thus a reasonable one. In order to avoid sensitivities that arise
as we approach a Nyquist mode at eight days (see [39]), we will use a value of seven days
for τ0 moving forward.

Interacting oscillatory modes that can lead to temporary growth in the system (as
illustrated in Figure 2) are the eigenvectors of G(τ0). Characteristics of these modes are
given in Table 2. We note that these eigenvectors represent the predictable component of
field evolution, as they are identical to those of L. Each mode in this system is noticeably
damped; that is, the decay time of the oscillation is much less than its period. This suggests
that if each mode acted in isolation from the others and decayed individually, the system
as a whole would decay as well. However, their non-normal interactions allow for the field
to grow instead.
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Figure 3. The tau test showing expected error in LIM forecasts of soil moisture at lead times τ, with parameters obtained
from covariance statistics at τ0. Note that the error is normalized by the variance of the field.

Table 2. Properties of the modes of the system (i.e., the eigenvectors of G(τ0 = 7)), representing the
evolution of the system. In addition to the period and decay time of each oscillation (given in days),
we also provide its variance and its projection onto the optimal structure in the moisture norm. Due
to non-orthogonality, the sum of individual modal variances is greater than the variance of the field.

Mode Period (Days) Decay Time (Days) Variance Projection onto ΨM

1 inf 119.0 0.45 0.09
2/3 930.7 47.6 0.42 0.24
4/5 523.6 32.8 0.23 0.43

6 ∞ 22.9 0.24 0.03
7/8 576.9 17.5 0.17 0.34

9 ∞ 13.4 0.22 0.43
10/11 151.5 11.9 0.19 0.47
12/13 191.1 8.1 0.20 0.18
14/15 417.5 7.5 0.35 0.18
16/17 266.1 5.8 0.20 0.26

18 ∞ 3.7 0.20 0.16
19/20 73.3 3.3 0.23 0.16

The next step is then to determine the lead time at which the maximum amount of
growth in the field occurs, denoted here as τpeak, by constructing curves of γ1 vs. τ (the
Maximum Amplification Curve) and γM vs. τ (Figure 4). We present this curve for both
the field and moisture norm, but note that the field norm shows amplification of the full
field (soil temperature and moisture) over the initial condition while the moisture norm
shows only the variance of the soil moisture prediction compared with the variance of
the entire initial condition, including temperature (see Appendix B for details on each



Land 2021, 10, 713 11 of 24

norm). Additionally, shown in Figure 4 is the actual amplification of the soil moisture field
by itself, i.e., the variance of the soil moisture prediction compared with the variance of
soil moisture contribution to the optimal initial structure. Using the moisture norm thus
extends predictability of maximum growth from τpeak = 6 days to τpeak = 17 days. This
suggests that given an ideal set of ICs (the “optimal structure”), growth of soil moisture
could peak near a two-week lead time. The next question then is what does that set of ICs
look like that leads to this level of growth, and does it actually occur in the dataset?
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Figure 4. Maximum Amplification Curves under field (blue) and moisture (orange) norms with τ0

set to a week. The amplification of the moisture alone is plotted in green (i.e., the ratio of γM to the
variance of the moisture in ΨM). Each choice of τ is marked with a circle, and the value of τpeak under
each norm is also marked by a vertical line.

3.2. Optimal Structure and Multi-Week Forecasts of Soil Conditions

The optimal structure Ψ1 describes the set of ICs that lead to the maximum amount of
growth in the field (Figure 5, blue line); when it is operated on by G

(
τpeak

)
, the forecast

soil conditions after τpeak days can also be estimated (Figure 5, red line; see Section 2.4 and
Appendix B for details). Optimal structures and their evolution after τpeak days are pre-
sented in Figure 5 for both the field norm (top) and moisture norm (bottom). When
interpreting these plots of optimal structures and their evolved structures after τpeak days,
the sign of the soil anomaly is dependent on the sign of the loading (the station’s contri-
bution to Ψ1 or ΨM), while the absolute value of the loading indicates the magnitude of
that anomaly. From this, it becomes clear that not all stations contribute equally to the
optimal set of ICs. That is, some stations have larger loadings than others. For example, T9
(STB) stands out in the soil temperature portion of the model as contributing strongly to
the optimal structure regardless of whether the field or moisture norm is applied.

A strong contribution to the optimal structure from a certain station does not guarantee
that a large amount of actual growth will occur there (the magnitude of which is determined
by the distance between the red and blue lines in Figure 5). Let us return for example to
T9′s (STB’s) role in soil temperature evolution. Unlike T9, T5 (WLS) is not an important
contributor to the optimal set of ICs that prime the field for growth, yet it is the station
that experiences the largest change in soil temperature under the field norm. In the
moisture norm, T9 (STB) temperature anomalies are actually forecast to decrease after
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17 days. Similarly for soil moisture, M4 (ROD) and M5 (WLS) play a strong role in
terms of the optimal structure but it is M8 (RED) showing the largest increase after τpeak
days. We will return to an assessment of station-dependent contributions to the field
evolution in Section 3.4, but first we focus on the soil moisture forecasts themselves. We
can see in Figure 5 that the forecasts at each site likely vary in magnitude, but this tells us
nothing of the forecast skill.
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3.3. Forecasts of Opportunity

As discussed in Section 2.4, for a forecast to be truly useful it must have some estimate
of the confidence associated with it prior to its verification against reality. The LIM approach
used here enables just that, as the expected forecast errors are produced a priori as in
Equation (5). However, there is another critical benefit of this method—it allows for the
identification of forecasts of opportunity based on how strongly the ICs on any given
day agree with the optimal structure. We define a value for the projection of Ψ1 (or ΨM,
depending on which norm is selected) onto the observations (i.e., candidate ICs) x(0) above
which we expect particularly skillful forecasts. In this case, we define that cutoff as the
top tercile of the magnitude of that projection for the field and moisture norms separately
(Figure 6). Though the chosen threshold is somewhat arbitrary, we show in Figure 7 that it
increases skill as expected.

We assess how well the forecasts of soil moisture, whether conditioned on this up-
per tercile of ICs or covering the entire record, perform relative to verifications. As ex-
plained above, we first look at hindcasts of dependent data and interpret the results as
an indication of potential skill. Below, we present data denial experiments to estimate
independent skill. Even in hindcast experiments, though, we can compare the potential
skill in the LIM-generated forecasts relative to that of an AR1 process whose prediction
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is based solely on the preceding value of the field at a particular location as some level of
performance benchmark.

The mean square error (MSE) of these soil moisture hindcasts, normalized to the
variance of verifications, as well as the a priori expected error estimates from LIM, are
shown in Figure 7 for the moisture norm out to a 2-week lead time. We consider skill to
be maintained in the hindcast if the normalized error variance remains below 0.4. This is
again a somewhat subjective choice, but is rooted in practical forecasting (not discussed in
detail here).

For all 10 stations, the error associated with the soil moisture hindcast in LIM is
consistently lower than that associated with an AR1 process from days 2–3 onwards
(orange vs. blue lines in Figure 7). In other words, the predictions of soil moisture that
are generated in this new empirical model out-perform persistence-style forecasts on time
scales of a few days to a few weeks, depending on location.

That performance can increase further by considering forecasts of opportunity (solid
vs. dashed lines in Figure 7). With this definition, skill in the hindcasts is maintained for as
long as 20 days at MRC, 17 days at STB, and 16 days at ROD (not shown). At minimum,
skill is maintained across all stations for 8 days when conditioned on this upper tercile of
ICs. Note also that a priori estimates of skill (green lines) provide useful indications of
actual skill; i.e., the green line typically agrees with the solid orange line across all stations.
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Figure 6. Histograms of the absolute values of the (a) field norm and (b) moisture norm optimal
structure projected onto observations. If the magnitude of the projection of an initial condition is
in the top tercile of all values (marked by a vertical line and text on each plot), then the forecast is
expected to have particularly high skill and is labelled a “forecast of opportunity”.
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Although the data set is so short that withholding a year of it greatly increases the
noise in the results, we require knowing whether independent forecasts are similar to those
we have presented thus far for diagnostic purposes. For this reason, we did withhold
one year of data at a time, for five years, estimate the Green functions from the retained
values for each of the five years, and average the moisture forecast errors estimated from
the five verification periods. Recall that the calendar year in California bisects the rainy
period, and so our withheld years began on 23rd May and ended on 22nd May. Using
the moisture norm, the optimal structures from these analyses (not shown), being highly



Land 2021, 10, 713 15 of 24

derived quantities, are extremely noisy. All of them, however, agree in having their largest
loadings (absolute value > 0.2) as shown for the entire data set in Figure 5b at T6, T9,
M2, M4 and M5. Most of them also have large loadings at M6 and M7. For a field of
20 predictors, randomly distributed loadings of 0.05 to 0.1 would be expected. Given this
level of consistency with the optimal structure shown in Figure 5b, we decided to use the
same ICs as forecasts of opportunity for moisture as used in Figure 7. We emphasize that
although the selection of ICs was based on the entire data set, the forecasts were verified
on values independent of data used to estimate the predictor Green functions.

The independent error variance of moisture forecasts, normalized to the variance of
the verification field, is shown in Figure 8. With some differences, Figure 8 tells the same
basic story as Figure 7; ICs in the upper tercile of the projections onto the optimal structure
are consistently more skillful than the others. It is also gratifying to note that the moisture
forecast errors in Figure 8 are similar to the hindcast errors verified on dependent data in
regard to their temporal evolution.

We have thus far suggested an optimal structure that has the potential to lead to
substantial amounts of soil moisture growth on the order of two weeks with hindcasts
that maintain skill on similar timescales, but it is also important to determine how often
these conditions actually appear in nature. We thus seek to understand how much vari-
ance in the field is captured by the optimal structure in Figure 5. We apply a Euclidean
norm to the forecast structures based on Ψ1 and ΨM individually, and assess the ratio of
(GΨ)TC(0)(GΨ) to trace(C(0)) to isolate the portion of inter-station variance captured
by LIM either across the whole field, or modified to consider only soil moisture. When
using the field norm, about 27.4% of the variance in soil temperature and moisture can be
explained. However, the moisture norm can explain as much as 50.8% of the variance in soil
moisture alone. This structure thus captures a non-negligible portion of the variance that
has been observed to occur in nature. Given this and the above evidence on the model’s
skillful hindcasts of soil moisture, we argue that LIM is a valuable tool for advancing the
state of multi-week forecasts of soil conditions.

3.4. Assessing the Predictable and Stochastic Portions of Field Evolution

At present, it remains unclear why certain stations play a more dominant role in the
optimal structure or respond more strongly in the forecast, though it could be due to a
number of factors—distance from the coast and thus exposure to incoming storms, latitude,
elevation, soil type, vegetation cover, etc. However, additional information about the sys-
tem may be gleaned by investigating the model’s L and Q matrices in Equations (1) and (2),
corresponding to the predictable component of evolution and the unresolved stochastic
portions of the field, respectively. Heatmaps of both are presented in Figure 9. For easing
interpretation of these plots: the top left quadrant shows the contribution of temperature
at each station to another station’s temperature trends; the top right quadrant shows the
contribution of station moisture to station temperature trends; the bottom left shows the
contribution of station temperature to the soil moisture trend; and the bottom right shows
the contribution of moisture to other stations’ moisture trends.

Let us first consider the slower evolving dynamics of the system characterized by L
(Figure 9a). One feature that stands out immediately is the strong negative diagonal com-
ponent, which is to be expected—each station is most strongly reactive to local influences,
and the anomalies at each station tend to decay back to some equilibrium when considered
individually. However, less obvious properties emerge as well. T9 (STB) for example, again
stands out for the ability of its soil temperature to predict temperature trends at other
stations as well, indicated by the vertical column of positive values for T9 in the top left
quadrant. For the case of residual soil temperatures then, northern station predictability
may stem in large part from considering the conditions to their south. Soil moisture at M2
(LSN) also appears to indicate increasing anomalies in soil temperature trends at a number
of stations (mostly positive values for this column in the top right quadrant), though these
patterns are somewhat less consistent in magnitude across each station relative to the those
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of T9. However, strong negative values are important to consider as well. Soil moisture at
T6 (WLS), for instance, implies damping of both temperature and moisture anomalies at a
number of other stations.
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the soil model developed here. Grey lines are added to define the four quadrants present in each plot.

Turning now to the more rapidly evolving dynamics of the system, station dominance
in L again does not correspond to similar dominance in Q (Figure 9b). On the contrary, the
soil temperature forcing of STB actually stands out for its lack of correlation with stochastic
forcing of temperature at other stations (light red column under T9 in the top left quadrant).
However, the most apparent facet of Q is that the unresolved stochasticity is generated
primarily by the soil temperature portion of the field (largest values in the top left quadrant).
Soil moisture contributes more weakly than temperature to the rapidly varying forcing
(smaller values in the bottom right quadrant). The off-diagonal quadrants in the upper left
and bottom right of Figure 8 are generally weaker as well, and primarily negative. This
suggests that the moisture and temperature forcings are anti-correlated so that a higher
temperature forcing implies soil moisture forcing in the opposite direction, consistent with
our physical understanding of soil evolution.
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The contribution of the stochastic forcing to the optimal structure was also examined,
and found to be small regardless of whether the field or moisture norm is used (not shown).
This leads us to hope that the optimal structure itself may then be predictable to some extent,
using a method yet to be developed. If those conditions can be predicted well enough in
advance, this could increase the lead time of skillful soil moisture forecasts further.

4. Conclusions and Discussion

Accurate forecasts of soil moisture have the potential to advance the forecasting of
floods and flash droughts, and could offer tangible benefits for reservoir and agricultural
operations. However, prior attempts to craft these predictions have been hampered by a
reliance on imprecise model data, unsatisfying parameterizations of soil and vegetation
properties, and/or the necessity of careful site-specific model calibration. Here, we test the
predictability of soil moisture using an approach new to the field of terrestrial hydrologic
forecasting, linear inverse modeling, which has been used for a number of years in oceanic
and atmospheric topics [8,20–23].

The application of LIM in this context is shown to maintain skill in soil moisture
hindcasts for lead times of 1–2 weeks when built on observations of soil temperature
and moisture across a network of 10 stations in California. That skill can be extended by
utilizing a critical piece of information produced by the model: the optimal structure. This
is the set of ICs at each station that would lead to the maximum amount of growth in soil
anomalies, and when projected onto the observed ICs can give an estimate of how good
the forecast will be at the time of its creation. We thus follow in the footsteps of previous
studies [9–11] to identify forecasts of opportunity; if the magnitude of that projection is in
the upper tercile of all those observed, the forecast is expected to have higher than average
skill. Indeed, this approach extends the length of time for which forecast skill can be
maintained in an MSE sense, ranging from 8–20 days between stations. Those ICs that fall
into this upper tercile offer additional avenues for further exploration to better understand
which synoptic conditions tend to create these opportunities and their potential for acting
as early warnings of highly anomalous soil moisture conditions.

The timescale of predictability found here when using only direct, in-ground measure-
ments of soil temperature and moisture align well with previous predictability studies. [13],
using a soil water balance model and observed forcings (i.e., precipitation, evapotranspira-
tion, etc.), found that soil moisture could be skillfully forecast to a one-week lead time in
Switzerland. They also note that incorporating additional information, such as snow melt
or seasonal forecasts of relevant moisture forcing, could double that predictability time
scale. Incorporating additional environmental variables in this manner may thus improve
the predictability estimated by LIM, but we have chosen to focus here on establishing a
baseline for the internal predictability of the system without including atmospheric forcing
as a predictor.

There are additional opportunities to refine and improve the model introduced here,
as well. In the course of assessing the underlying soil temperature and moisture data
used to build this LIM, it was found that while soil temperature residuals are roughly
Gaussian, soil moisture as a whole is in fact strongly non-Gaussian (not shown). The model
created here may thus benefit from accounting for the non-Gaussian nature of moisture
itself, potentially through considering combinations of additive and multiplicative noise.
This does, however, complicate the model and its implementation and is thus reserved for
future analysis.

The results presented above thus represent only the first step in improving our pre-
dictions of soil moisture evolution in California. There are a number of features in this
model that deserve to be explored more fully. Why do certain stations play a larger role
than others in determining the growth of the field? Why do some grow more strongly than
others after τpeak days? Which environmental factors are the driving forces behind the slow
and fast growth components of the model? Additional considerations expand beyond just
this region and model—does this type of analysis perform similarly well in other California
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regions, such as the Sierra Nevada range? Can we expand to different states, and what
are the scale limitations on data inclusion in a single application of LIM? Additionally,
perhaps most importantly, how can these forecasts be most usefully employed to benefit
stakeholders in the region?

As in any modeling study, the above results are limited by a number of factors.
The length of each station’s soil record has regrettably hampered some of our efforts to
understand soil moisture in the region, and in particular limits model validation efforts.
Quality can also be an issue. For this reason, we have been selective (at least to the extent
possible in the face of limited data) in which observations are used and rely only on well
quality-controlled data. Future studies may benefit by assessing the sensitivity of results
when incorporating remotely sensed or modeled data.

By construction, LIM also simplifies the driving forces behind soil moisture growth
and decay into two single matrices, L and Q; there is not a quick and easy way to determine
when rainfall, soil properties, or plant function are the primary culprit for altering soil
conditions. That said, there does exist the potential to diagnose the stochastic forcing, Q,
through temporally higher resolution observations and/or model output [45]. Though
these are all critical things to consider and a number of tasks remain to be accomplished,
we reserve such for future work in the interest of first introducing an innovative method
for producing realistic estimates of soil conditions on multi-week timescales.

We suggest that the performance of LIM shown here is a strong argument for further
exploring its use in the context of soil moisture predictability. One particularly interesting
avenue for future exploration pertains to the ability of numerical models to capture similar
features of predictability as those shown here. We hope these initial observational results
will inspire researchers to assess soil moisture evolution in numerical models, including
NOAA’s National Water Model [46]. By applying the same LIM approach to model output
as we did to observations, one has the opportunity to investigate how well the model
captures realistic soil moisture growth, at least at a series of point-based measurements.
Because of the increased spatial coverage and length of model-derived data, one can also
investigate the effects of increasing spatiotemporal resolution on soil moisture predictability
in this manner.

Soil moisture forecasting, particularly in the western United States, is a topic likely
to continue growing in importance as climate variability increases and the threat of more
frequent/intense hydrometeorological extremes looms larger in the coming decades [47,48].
In the face of these changes, LIM is uniquely situated to aid the development of simple and
adaptable approaches to understanding soil moisture anomaly growth using observations
and/or model output in these critical regions.
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Appendix A

Review of Linear Inverse Modeling
When applying Linear Inverse Modeling (LIM), we first assume that the dynamics of

a zero-mean state vector x(t) is governed by a linear Markov process:

dxi
dt

= ∑
j

Lijxj + ∑
α

Siαξα, (A1)

where L is the linear operator that describes the slow evolution of the field (the “predictable”
part), and S is the matrix of coefficients for the vector of Gaussian white noise forcing,
ξ. Here, both L and S are constant matrices. The second term on the right-hand side of
Equation (A1) is described in terms of the noise covariance matrix, Q:

Qij = ∑
α

SiαSjα. (A2)

Using the Fokker-Planck equation (Equation (3) in the text), we find that for some
time interval τ

exp(L τ ) = < x(t + τ)x(t)T >< x(t)x(t)T >
−1

, (A3)

with Equation (A3) equivalent to Equation (4) in the text. Since the solution to Equation (3)
for any lead τ is Gaussian centered on exp(Lτ)x(0), the mean of this forecast probability
is also the most likely forecast given initial condition x(0). We therefore identify exp(Lτ)
with the Green function, labeling it G(τ).

We estimate the Green function at any lead τ by choosing a particular τ0 and estimat-
ing G(τ0) from Equation (A3). The set of eigenvectors, or modes, {uα} of G(τ0) correspond
to eigenvalues {gα}. The exponential relationship between G(τ0) and L requires that G(τ0)
and L have the same set of modes. GT(τ0) and LT also have the same set of eigenvectors,
called adjoints, {vα}. If a mode uα corresponds to eigenvalue gα, then adjoint vα corre-
sponds to that same eigenvalue. With proper normalization, the modes and adjoints form
a biorthogonal set:

∑
i

uiαviβ= δαβ (A4a)

∑
α

uiαvjα= δij, (A4b)

where uiα is the ith component of uα and where viβ is the ith component of vβ. Each
eigenvalue gα is a function of τ0 and is related to an eigenvalue βα of L in the same way
that G(τ0) and L are related:

gα(τ0)= exp(βατ0). (A5)

Equations (4) and (5) allow us to write G(τ0) and L in terms of their modal decomposition:

G(τ0) = ∑
α

uα · gα
(

τ0)vT
α (A6a)

L = ∑
α

uα · βαvT
α (A6b)

Since gα(τ0) is a scalar, we may use Equations (A5) and (A6a) to estimate the Green
function G(τ, τ0) at any lag τ from G(τ0) as

G(τ, τ0) = ∑
α

uα · [gα(τ0)]
τ/τ0 · vT

α . (A7)
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Because G(τ0) and L are real, the modes {uα} along with their corresponding adjoints
and eigenvalues are either real or occur in complex conjugate pairs. The implications of
this are discussed in the text and in Appendix B.

If Equation (A1) is valid, then G(τ, τ0) should be independent of τ0. In practical
applications, this “tau test” is sometimes failed even when Equation (A1) is valid. Spurious
failure may be due to insufficient data, Nyquist issues (not discussed here; see [39]), or
observation errors.

We note that LIM can be partially extended to account for systems like Equation (A1),
but where S is a linear function of x rather than a constant matrix. That is,

dxi
dt

= ∑
j

Lijxj + ∑
α

((Ex)iα + aiα)ηα + ∑
α

biαξα , (A8)

where ηα and ξα are independent Gaussian white noises. Without going into details (but
see [49,50]), the matrix L in Equation (A3) is replaced by a matrix M, where M = L + 1/2E2.
If E = 0, then Equation (A8) is equivalent to Equation (A1). If E 6= 0, the forecast probability
is no longer Gaussian. Nevertheless, if we identify G(τ) with exp(Mτ), the best forecast in
the mean square sense is still G(τ)x(0) and the tau test is still passed.

It remains to use our empirical estimations to diagnose the nature of the stochastic forc-
ing. In fact, we cannot uniquely identify S, we can only identify Q (Equation (A2)). Taking
moments of the stationary FPE when S is constant yields the “fluctuation-dissipation relation”:

0 = L C(0)+C(0)LT + Q. (A9)

If S is a linear function of x as in Equation (A8), then an equation similar to Equation (A9)
is obeyed, but with L replaced with M, and with Q having terms involving C(0). In this
study, since we do not have enough data to identify the additive and multiplicative noises
even if E were diagonal, [51], we shall use L and M interchangeably in the results section
and confine our attention to the matrix Q when considering the stochastic forcing.

Appendix B

Non-Normal Growth and the Optimal Structure
As stated in the text, forecasts of opportunity are often associated with non-normal

growth associated with an optimal initial condition. Identification of this “optimal struc-
ture” is made by maximizing the size of the forecast field relative to the size of the initial
condition. Since the best forecast at lead using initial condition x(0) is G(τ)x(0), we maxi-
mize (G(τ)x(0))T(G(τ)x(0)) relative to x(0)Tx(0) with respect to a component xm of the
initial condition. Thus,

∂γ

∂xm
≡ ∂

∂xm

(
∑ijk GijxjGikxk

∑j xjxj

)
= 0 . (A10)

In Equation (A10) we have defined the quantity as the amplification of the squared
magnitude of the forecast field over the squared magnitude of the initial condition x,
dropping the arguments of x(0) and G(τ) in Equation (A10) for brevity. Evaluating
Equation (A10), we find that

∑
ik

Gim(τ)Gik(τ)xk(0) = γxm(0) (A11a)

which is equivalent to the eigenvalue problem

G(τ)TG(τ)Ψ = Ψγ, (A11b)

where Ψ is the initial condition x(0) satisfying the Equation (A11) and γ is the corresponding
amplification. The leading eigenvector Ψ1, associated with the largest eigenvalue γ1 and
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normalized to unity, is the optimal initial structure for growth of field variance by a factor
of γ1 over a time interval τ.

It is often the case that we wish to see what initial condition maximizes the growth
of a subset of the entire state vector. For example, if x consists of components of both
temperature and moisture, we may wish to see what combination of temperature and
moisture in the initial condition maximizes the predictable growth of moisture, regardless
of what happens to the temperature. In this case, we proceed as before, but this time the
summation over i in Equation (A10) is performed only over those indices corresponding to
moisture variables. This is equivalent to inserting a matrix norm N into Equation (A11)
that projects out the forecast of the moisture variables:

G(τ)TNG(τ)ΨM = ΨMγM (A12)

We have labeled the eigenvectors and eigenvalues in Equation (A12) with the subscript
M to indicated that these quantities are evaluated in the “moisture norm.” Thus, γM
indicates the factor by which the moisture variables grow relative to the entire initial
condition ΨM. As shown above, Ψ1 is the initial condition leading to the maximum
amplification of the entire field. We thus identify the “field norm” with the case where N is
equal to the identity matrix.

The leading eigenvalues obtained either with Equations (A11) or (A12) typically
increase with lead time τ up to some maximum τpeak, after which they decrease again.
While secondary peaks in a graph of γ1 or γM vs. τ (the Maximum Amplification Curve)
are generally possible, that is not the case in our study. In the text, it is shown that the
ICs projecting strongly onto optimal structures for growth over the interval τpeak are ICs
leading to forecasts that are particularly skillful, called “forecasts of opportunity”.
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