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Abstract: Temporal and spatial changes in vegetation and their influencing factors are of great signif-
icance for the assessment of climate change and sustainable development of ecosystems. This study
applied the Asymmetric Gaussians (AG) fitting method, Mann-Kendall test, and correlation analysis
to the Global Inventory Monitoring and Modeling System (GIMMS) third-generation Normalized
Difference Vegetation Index and gridded climate and drought data for 1982–2015. The temporal
and spatial changes to NDVI for natural grassland and forest during the growing season were
analyzed. Relationships among NDVI, climate change, and droughts were also analyzed to reveal the
influence of vegetation change. The results showed that: (1) Land use/cover change (LUCC) in China
was mainly represented by increases in agricultural land (Agrl) and urban and rural land (Uril),
and decreases in unutilized land (Bald), grassland, forest, and permanent glacier and snow (Snga).
The increase in agricultural land was mainly distributed in the western northwest arid area (WNW)
and northern North China (NNC), whereas regions with severe human activities such as southern
South China (SNC), western South China (WSC), and eastern South China (ESC) showed significant
decreases in agricultural land due to conversion to urban and rural land. (2) The start of the growing
season (SOS) was advanced in WNW, SNC, WSC, and ESC, and the end of growing season (EOS)
was delayed in WNW, NNC, and SNC. The growing season length (GSL) of natural vegetation
in China has been extended by eight days over the last 34 years. However, the phenology of the
Qinghai-Tibet Plateau (TP) was opposite to that of the other regions and the GSL showed an insignif-
icant decreasing trend. (3) The NDVI increased significantly, particularly in the SNC, WSC, ESC,
and the grassland of the WNW. Precipitation was found to mainly control the growth of vegetation
in the arid and semi-arid regions of northwest China (WNW and ENW), and precipitation had a
much greater impact on grassland than on forests. Temperature had an impact on the growth of
vegetation throughout China, particularly in SNC, ESC, and WSC. (4) The Standardized Precipitation
Evapotranspiration Index (SPEI) showed a downward trend, indicating an aridification trend in
China, particularly in ENW, NNC, and WNW. Similar to precipitation, the main areas affected by
drought were WNW and ENW and grassland was found to be more sensitive to drought than forest.
The results of this study are of great significance for predicting the response of ecosystem productivity
to climate change under future climate change scenarios.

Keywords: natural vegetation; NDVI; growing season; China

1. Introduction

As an important component of the terrestrial ecosystem, vegetation is a natural link
connecting soil, atmosphere, and water. Vegetation plays a pivotal role in the ecosystem
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and can act as an “indicator” within the study of global change. The growth status
of vegetation is closely related to environmental factors, such as climate, water quality,
and topography [1]. Climate change has altered the growth environment of plants, thereby
affecting the growth of vegetation. Global changes have had a significant impact on
the structure and function of terrestrial ecosystems [2–4]. Understanding the inherent
relationship between vegetation and climate can illuminate the role of climate in changes
to the terrestrial ecosystem.

The Normalized Difference Vegetation Index (NDVI) is the preferred indicator for
analyzing vegetation changes and is widely used in the study of vegetation changes and
the responses of vegetation to climate change [5,6]. Song et al. [7] found an increase and
decrease in global forest vegetation cover and bare land, respectively, primarily due to
human activities, with natural factors, including climate change, playing a secondary role.
Chen et al. [8] found a global increase in vegetation of ~518 M ha over the past 20 years,
equivalent to the area of the Amazon rainforest. Of this increase, around 33% is due to
afforestation projects in China and intensive agricultural management in India. Changes to
global vegetation cover from 1982 to 2011 also indicate an increasing trend in vegetation
over the past 30 years, with annual changes to vegetation coverage showing an obvious
seasonality [9]. Changes to vegetation in Eurasia changed from an increasing to decreasing
trend around 1997, with the abrupt change in the NDVI varying from region to region [10].
There have been significant increasing trends in both the NDVI and leaf area index (LAI)
in China. However, there have been downward trends in these two indices in the eastern
development areas such as the Beijing-Tianjin-Hebei region and the Yangtze River Delta
due accelerated urbanization. In addition, afforestation programs implemented in China
over the past few decades have played an important role in promoting the greening of
vegetation throughout the country [11].

Temperature and precipitation are key climate factors affecting plant growth and
development. Previous studies have shown that drought resulting from rising temperatures
in the Northern Hemisphere was an important driver of the decline in vegetation cover in
some high-latitude regions in the 1980s [12]. Lamchin et al. [13] analyzed the correlation
between the seasonal changes to the NDVI and factors such as temperature, precipitation,
and evapotranspiration, thereby illustrating that temperature is the most important factor
responsible for changes to the NDVI in Asia during 1982–2014. Climate warming over
the past 30 years has promoted the restoration of vegetation in the central and southeast
regions of the Loess Plateau, whereas it has had an inhibitory effect on the restoration of
vegetation in the northwestern region [14]. Around 80% of the area in northeast China is
experiencing an increase in the NDVI during the plant growing season, with temperature
identified as the primary factor affecting vegetation coverage [15]. Climate factors have
been identified as the primary drivers of changes in the NDVI in 46.2% of the area [16].
The NDVI in the Loess Plateau is negatively correlated with atmospheric pressure, whereas
it is positively correlated with precipitation, humidity, air temperature, and sunshine
hours [17]. Pang et al. [18] found that temperature over different seasons and months is
positively correlated with the NDVI. In contrast, no consistent effect of rainfall on the NDVI
in the Qinghai-Tibet Plateau from 1982 to 2012 has been identified.

Drought is a natural phenomenon resulting in an imbalance between water supply
and water demand due to abnormally little or no precipitation over a long period of time.
Drought is a common natural disaster and can occur over a wide spatial range and a
long duration. Global warming has been linked with an increasing frequency and degree
of drought. Therefore, studying the relationship between drought and vegetation can
provide an effective theoretical basis for the management of vegetation as a climate change
mitigation measure. Drought is generally quantified using drought indices such as the
Palmer Drought Severity Index (PDSI), the Standardized Precipitation Index (SPI), and the
Standardized Precipitation Evapotranspiration Index (SPEI) [19]. Among the many drought
indices developed, the SPEI not only considers the impact of precipitation on drought,
but also combines the sensitivity of the PDSI to potential evapotranspiration changes with
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the multiple time scales of the SPI. Consequently, the SPEI is widely used to analyze the
response of vegetation to drought [20]. Different vegetation types also respond differently
to drought, and the SPEI value is not necessarily positively correlated to vegetation growth.
For example, the drought in southwest China from 2009 to 2010 resulted in a significant
decline in vegetation productivity in this area, and the period of vegetation restoration
in some areas exceeded six months [21]. Northern China, and particularly central Inner
Mongolia, has been shown to have undergone vegetation decline of between 28.1–68.8%
greater than that in the mainland given drought conditions (quantified as SPEI ≤ −1) [22].
Differences in ecosystem resilience to water stress have been attributed to diversities in
drought survival traits and strategies, with forests found to have the highest drought
resilience, followed by croplands, grasslands, and deserts [23]. Vicente-Serrano et al. [24]
found that although semiarid and sub-humid biomes respond to drought at long time-
scales due to the ability of plants to withstand water deficits, they lack the rapid response
of arid biomes to drought.

Climate change in China is characterized by considerable spatial heterogeneity. Al-
though there has been a significant increase in regional average temperature, there has
been no significant change in precipitation [25]. The spatial differences in water and heat
conditions and vegetation types have resulted in large spatial differences in vegetation
changes and the responses of vegetation to climate change [26]. In addition, human activi-
ties have had a great impact on vegetation. In particular, changes in land use have increased
uncertainty in the assessment of the impact of climate change. Most previous studies have
not distinguished between the effects of human activities and climate change on vegetation,
and few studies have explored the contribution of climate independent of meso-scale
and large-scale landcover changes [27]. Human disturbance or the heterogeneity of the
landscape environment has resulted in differences in the composition of vegetation types
among different spatial scales. These different vegetation types show diverse species com-
position, community structure, and root distribution, resulting in differences in responses
to changes in the external environment [28]. Therefore, understanding the differences in
the response of the NDVI of different natural vegetation types to climate change is of great
significance for the correct understanding of the relationship between regional vegetation
cover and climate change. The current study used grid temperature, precipitation, drought,
and the GIMMS NDVI3g data from 1982 to 2015 to explore the spatiotemporal changes in
growth season of the NDVI for different natural vegetation types in China. The current
study also analyzed the correlation between the NDVI and temperature, precipitation,
and drought during the vegetation growing season to reveal the response of the NDVI to
changes in climate and drought. The result of the current study can provide a theoretical
basis for the construction and protection of the terrestrial ecological environment in China.

2. Study Area, Data, and Method
2.1. Study Area and Data

China can be divided into three major geographic regions based on geographic
location, natural geography, and human geography: (1) the eastern monsoon region;
(2) the northwest arid and semi-arid region, and; (3) the Qinghai-Tibet alpine region (TP).
The 400 mm iso-precipitation line constitutes the boundary between the eastern monsoon
region and the arid and semi-arid region of northwest China. The 3000-m contour line acts
as the boundary between the eastern monsoon region and the Qinghai-Tibet alpine region.
The northwest arid and semi-arid region and the Qinghai-Tibet alpine region are separated
by Kunlun-Altun-Qilian mountains. The eastern monsoon region is roughly divided into
north China and south China by the Qinling-Huaihe line, which roughly coincides with
the 0 ◦C isotherm in January and the 800 mm annual precipitation line. On this basis,
the northwest arid and semi-arid regions are divided into the western arid and semi-arid
region (WNW) and eastern arid and semi-arid region (ENW). North China is divided into
northern north China (NNC) and southern north China (SNC). South China is divided into
western south China (WSC) and eastern south China (ESC).
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The NDVI dataset used in the current study originated from the Global Inventory Mon-
itoring and Modeling System (GIMMS) third generation NDVI (NDVI3g)
(https://ecocast.arc.nasa.gov/data/pub/gimms/, accessed on 20 May 2020) released
by the Global Monitoring and Simulation Research Group of the United States National
Aeronautics and Space Administration (NASA). The GIMMS NDVI3g data extended from
1982 to 2015 with a spatial resolution of 8 km. This dataset eliminates the effects of volcanic
eruptions, angles of solar altitude, and changes to sensor sensitivity over time, and has
been widely used in the detection of global vegetation changes. The land use/land cover
(LUCC) dataset originated from the Resource and Environment Science and Data Center
(https://www.resdc.cn/Default.aspx, accessed on 5 April 2020) and included the years
1980, 1990, 1995, 2000, 2005, 2010, 2015, and 2020. The LUCC dataset was produced based
on the Landsat Thematic Mapper/Enhanced Thematic Mapper (TM/ETM) remote sensing
image of each phase as the main data source and was generated through manual visual
interpretation. The spatial resolution of the LUCC dataset was 1 km, and was resampled to
8 km. Land use types included seven primary types: (1) agricultural land (Agrl); (2) forest
land; (3) grassland; (4) water (Watr); (5) urban and rural land (Uril); (6) unutilized land
(Bald); and (7) permanent glacier and snow (Snga). These seven primary land use types
were further divided into 25 secondary types. The current study mainly focused on natu-
ral forest and grassland. Forest land was divided into forested land (Forestl), shrubland
(Shrubl), and sparse forest land (Sparsel). Grassland included high-coverage grassland
(Hgra), medium-coverage grassland (Mgra), and low-coverage grassland (Lgra). The focus
of the current study was on the impact of climate and drought on natural vegetation.
The impacts of land use change were excluded by only analyzing vegetation with un-
changed forest and grassland types from 1980 to 2015. Under this approach, natural vegeta-
tion was identified as vegetation types (Forestl, Shrubl, Sparsel, Hgra, Mgra, and Lgra) that
experienced no change in 1980 and 2015 (Figure 1). Figure 1 shows the monthly changes to
temperature, precipitation, and the NDVI of natural vegetation in various regions.

Precipitation and temperature data used in the current study originated from a 1-km
monthly mean temperature and precipitation dataset for China (https://data.tpdc.ac.cn/
zh-hans/, accessed on 22 June 2020). The data are monthly average temperature and
precipitation with a spatial resolution of 0.0083333◦ (~1 km) and a period of January 1901
to December 2017. This dataset is based on the global 0.5◦ climate dataset released by the
Climate Research Unit (CRU) and the global high-resolution climate dataset released by
WorldClim. The dataset was downscaled in China through the Delta spatial downscaling
scheme and evaluated using observations collected in 1951–2016 by 496 weather stations
across China. Compared with the evaluations of the CRU dataset, the mean absolute error
of this dataset decreased by 35.4–48.7% for temperature and by 25.7% for precipitation.
The root-mean-square error decreased by 32.4–44.9% for temperature and by 25.8% for
precipitation. The Nash–Sutcliffe efficiency coefficients increased by 9.6–13.8% for tem-
perature and by 31.6% for precipitation, and correlation coefficients increased by 0.2–0.4%
for temperature and by 5.0% for precipitation. The new dataset was reliable, as the down-
scaling procedure further improved the quality and spatial resolution of the CRU dataset
and was concluded to be useful for investigations related to climate change across China.
More detailed information about this dataset can be found in [29]. The SPEI grid drought
dataset with a spatial resolution of 0.5◦ and a monthly time resolution originated from
the Global SPEI database (https://spei.csic.es/database.html, accessed on 18 May 2020).
The SPEI dataset was based on monthly precipitation and potential evapotranspiration
from the CRU. The present study used version 4.03 of the CRU timeseries (TS) dataset. We
used the precipitation, temperature, and SPEI data reprojected and resampled, using bilin-
ear interpolation, into the GIMMS NDVI projection and resampled to an 8 km resolution.
Although this approach created a large number of replicate pixels for the SPEI, with no
gain in the dataset spatial resolution, it enabled their comparison by retaining the NDVI
resolution. Since the current study focused on the effects of drought on vegetation during
the growing season, the SPEI data at a 6-month time scale (SPEI6) was used for analysis.

https://ecocast.arc.nasa.gov/data/pub/gimms/
https://www.resdc.cn/Default.aspx
https://data.tpdc.ac.cn/zh-hans/
https://data.tpdc.ac.cn/zh-hans/
https://spei.csic.es/database.html
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Since the vegetation growing season in China extends roughly from April to September,
SPEI6 data for September indicated a drought during the growing season, whereas the
data for March indicated a drought during the non-growing season.
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Figure 1. The distributions of natural vegetation (a), monthly temperature (b), precipitation (c), and Normalized Difference
Vegetation Index (NDVI) (d) across China. Abbreviations: TP—Qinghai-Tibet alpine region; WNW—Western arid and
semi-arid region; ENW—Eastern arid and semi-arid region; SNC—Southern North China; WSC—Western South China;
ESC—Eastern South China; NNC—Northern North China; NDVI—Normalized Difference Vegetation Index.

2.2. Method

The present study adopted the change in area, rate of change in area, and transfer
matrix to analyze the changes among different land uses in different regions of China.
The asymmetric Gaussian function fitting method (AG) within the Timesat software was
used to reconstruct the NDVI time series and to extract the vegetation phenology index [30].
The three extracted phenological parameters were the start of the growing season (SOS),
the end of growing season (EOS), and the growing season length (GSL). The relative im-
portance of SOS and EOS to GSL was analyzed using the Hierarchical Partitioning (HP)
algorithm [31]. HP reduces multicollinearity by determining the independent contribu-
tion of each explanatory variable to the response variable, thereby allowing the relative
importance values of covariates to be ranked when interpreting response variables. In this
way, the contribution rates of SOS and EOS to GSL can be obtained. The trend magnitudes
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of temperature, precipitation, NDVI, and drought during the growing and non-growing
seasons were analyzed by Sen’s slope [32] and significance was determined by the Mann-
Kendall (M-K) method [33].

The test statistic S of Mann-Kendall test, is calculated by Equation (1):

S =
n−1

∑
i=1

n

∑
k=i+1

sgn(xk − xi) (1)

where xk and xi are the sequential data values, and

sgn(θ) =


1, θ > 0
0, θ = 0
−1, θ < 0

(2)

The variance in S is computed by Equation (3):

var(S) = [n(n− 1)(2n + 5)−∑
t

t(t− 1)(2t + 5)]/18 (3)

where t is the extent of any given time, and n is the number of values.
Then, the test statistic Z is as follows:

Z =


S−1√
Var(S)

, S > 0

0, S = 0
S+1√
Var(S)

, S < 0

(4)

If Z > 1.96 (Z < −1.96), it means that the significant upward (downward) trend is
significant at the 0.05 level.

The Sen’s method was used to estimate the trend:

β = Median(
xi − xj

i− j
), ∀j < i (5)

where 1 < j < i < n. Since the results of the M-K are heavily affected by time series correlation,
the Yue and Pilon method [34], derived from R package “ZYP” [35], was used to remove
lag-1 autocorrelation. In addition, the impact of climate change and drought on vegetation
was mainly characterized by Pearson correlation analysis [36]:

R =

n
∑

i=1
(xi − x)(yi − y)√

n
∑

i=1
(xi − x)2 n

∑
i=1

(yi − y)2
(6)

where R is correlation coefficient, n is the time series, xi is the NDVI for each grid
cell/regional study area, yi is the climate variable (temperature, precipitation, SPEI) for each
grid cell/regional study area, x is the average NDVI and y is the average of climate variables.
The correlations calculated were tested for statistical validity at 0.05 significance level.

3. Results
3.1. Changes to LUCC from 1980 to 2015

The area of urban and rural land increased by 49% from 1980 to 2015, with the ma-
jority due to conversion of other land to farmland (51,085 km2). There were significantly
increasing trends in the areas of urban and rural land (Uril.) in all regions of China, with
the smallest and largest rates of increase of 17% and 104% in NNC and TP, respectively
(Figure 2, Table 1). Agricultural land (Agrl) and water increased by 33% and 20% in
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WNW, respectively, mainly due to the conversion of unutilized land (Bald) and grassland.
This also led to a sharp decline in unutilized land and grassland. There were signifi-
cant reductions in unutilized land and grassland in ENW, while forested land (Forestl)
and sparse forest land (Sparsel) increased by 20% and 17%, respectively. The area of glaciers
and permanent snow (Snga) dropped sharply in TP, with most of the decline attributed
to conversion to unutilized land (14,222 km2) (Table S1). The major change in land use in
NNC was due to an increase of agriculture land through the conversion of unutilized land,
forest, and grassland. The area of unutilized land in SNC was reduced by 16,031 km2, with
most of this area converted to urban and rural land. Both WSC and ESC showed sharp
decreases in agriculture land, with most of this area transformed into urban and rural land.
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Table 1. The areas and relative changes to different land use/land cover (LUCC) in China from 1980 to 2015.

Agrl Watr Uril Bald Forestl Shrubl Sparsel Hgra Mgra Lgra Snga

China
1980 1,762,034 202,729 148,945 1,996,499 1,372,015 486,377 398,411 1,020,430 1,096,193 931,243 84,952
2015 1,786,003 211,092 221,863 1,984,536 1,353,990 486,920 399,242 995,106 1,081,483 913,987 69,009

% 1.36 4.13 48.96 −0.60 −1.31 0.11 0.21 −2.48 −1.34 −1.85 −18.77

WNW
1980 69,257 9819 4396 1,167,635 22,248 11,125 8445 103,707 99,511 239,765 17,319
2015 92,118 11,761 8317 1,159,588 21,521 11,119 8608 101,949 95,808 225,118 17,316

% 33.01 19.78 89.20 −0.69 −3.27 −0.05 1.93 −1.70 −3.72 −6.11 −0.02

ENW
1980 78,574 12,321 7202 90,230 4728 6558 3527 147,240 176,404 97,131 0
2015 78,412 11,693 11,657 88,793 5661 6485 4118 143,826 174,026 99,243 0

% −0.21 −5.10 61.86 −1.59 19.73 −1.11 16.76 −2.32 −1.35 2.17 0.00

TP
1980 18,628 58,517 1132 653,283 154,991 95,677 24,977 422,809 562,793 522,590 67,206
2015 18,852 60,565 2312 665,480 154,325 95,403 25,278 424,553 563,509 521,025 51,299

% 1.20 3.50 104.24 1.87 −0.43 −0.29 1.21 0.41 0.13 −0.30 −23.67

NNC
1980 320,340 27,992 26,100 74,683 420,310 44,057 52,876 141,428 53,231 11,944 0
2015 373,669 26,676 30,545 62,293 405,574 45,927 46,562 119,515 50,927 11,311 2

% 16.65 −4.70 17.03 −16.59 −3.51 4.25 −11.94 −15.49 −4.33 −5.30 0

SNC
1980 490,439 22,417 62,113 5289 75,574 54,972 26,604 58,500 85,793 48,876 9
2015 474,408 21,555 81,278 3871 74,977 55,060 28,250 59,222 84,222 47,755 9

% −3.27 −3.85 30.86 −26.81 −0.79 0.16 6.19 1.23 −1.83 −2.29 0

WSC
1980 345,232 9956 8874 679 235,450 206,443 143,865 97,473 99,798 6830 9
2015 337,742 11,509 16,723 821 233,329 206,197 145,435 98,442 98,068 6375 12

% −2.17 15.60 88.45 20.91 −0.90 −0.12 1.09 0.99 −1.73 −6.66 33.33

ESC
1980 436,067 51,663 37,979 2846 456,253 66,864 137,180 47,601 18,111 3695 0
2015 407,203 56,981 66,766 2257 456,116 66,051 140,091 45,806 14,351 2733 0

% −6.62 10.29 75.80 −20.70 −0.03 −1.22 2.12 −3.77 −20.76 −26.04 0

Abbreviations: Agrl—Agricultural land; Watr—Water bodies; Uril—Urban and rural land; Bald—Unutilized land; Forestl—Forest land;
Shrubl—Shrubland; Sparsel—Sparse forest land; Hgra—High coverage grassland; Mgra—Medium coverage grassland; Lgra—Low
coverage grassland; Snga—Permanent snow and glacier; WNW—Western arid and semi-arid region; ENW—Eastern arid and semi-arid
region; TP—Qinghai-Tibet alpine region; NNC—Northern North China; SNC—Southern North China; WSC—Western South China;
ESC—Eastern South China.

In China, Forestl decreased by−1.31%, whereas Shrubl and Sparsel increased by 0.11%
and 0.21%, respectively. The area of grassland showed a decreasing trend, with grassland
area in Hgra, Mgra, and Lgra decreasing by −2.48%, −1.34%, and −1.85%, respectively.
An analysis of the grids in which vegetation type did not change from 1980 to 2015 (Figure 3)
showed that WNW, ENW, and TP were dominated by grassland, with the three grassland
types displaying a wide distribution. Forest accounted for 74% of total natural vegetation
in NNC, with forested land the most widely distributed, reaching 62%. Grassland and
forest were distributed over large areas in SNC, accounting for 45% and 55% of the total
area, respectively. Natural vegetation in WSC and ESC consisted mainly of forest, although
the former also contained a large area of grassland.

3.2. Spatial and Temporal Distribution of Growing Season Indices

The growing season in China starts in April (day of year (DOY) 114) and ends in
September (DOY 263) (Figure 4, Table 2). Therefore, throughout China, the approximate
growing season (GS) period is April to September. The SOS of forest arrives earlier than
that of grassland, whereas the EOS of forest extends later than that of grassland. As a result,
the GSL of forest exceeded 159 days, whereas that of grassland was less than 140 days.
The SOS of forest showed a significantly advancing trend, and the SOSs of Foredl, Shrubl,
and Sparsel advanced by 6 d, 10 d, and 14 d over the past 34 years, respectively. In contrast,
the EOS of forest showed a trend of delay, leading to extensions of the GSL of Foredl,
Shrubl, and Sparsel by 12 d, 7 d, and 13 d, respectively. Although the phenological trend
of grassland was consistent with that of forest, only Hgra realized a significant change.
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The EOS of forest had a relatively large influence on the GSL, whereas the SOS was
relatively important for the GSL of grassland (Table 2).
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(h) ESC—Eastern South China.

SOS and EOS decreased and increased significantly, in WNW, respectively, leading
to a significant extension of the GLS (Figure 4, Table 2). The GSLs of forest and grassland
were both extended by more than 15 d, and the advancement of the SOS and the delay
of the EOS were equally important to the extension of the GLS. The significant delay in
the EOS of forest led to a significant increase in GSL, whereas 96% of regions showed no
significant changes in SOS, EOS, and GSL of grassland. This result could be attributed
to spatial and regional differences. Taking SOS as an example, the eastern part of ENW
showed a decreasing trend in SOS, whereas many grids in the west showed increasing
trends (Figure 4d). SOS was particularly important for GLS in ENW, with its contribution
rate exceeding 80% in all vegetation types.

The phonological change that occurred in TP was unique, with SOS and EOS delayed
and advanced, respectively, although not significantly. The same changes were also evident
at the grid scale (Figure 5). The proportion of SOS showing a significant delay (21%) far
exceeded that showing a significant advance (10%), particularly for grassland. The EOS
of grassland advanced, although this change was not significant. Regional GLS similarly
showed no significant changes. The proportion of forest that showed a significant increase
in GLS exceeded that showing a significant decrease at the grid scale. However, since
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grassland accounted for 85% of all natural vegetation, the proportion of the grid with a
significant decrease in GLS far exceeded that showing an increase in GLS. Zhang et al. [37]
similarly showed delayed, advancing, and shortening trends in SOS, EOS, and GSL for
alpine grassland, respectively. The EOS had the greatest influence on the length of forest
GLS (60%), whereas the SOS was relatively important for the length of GSL of grassland.

Land 2021, 10, x FOR PEER REVIEW 11 of 26 

 

 
Figure 4. The temporal and spatial changes to the start of the growing season (SOS; (a,d)), end of the growing season (EOS; 
(b,e)), and growing season length (GSL; (c,f)) in China (SD—Significant decrease trend; ISD—Insignificant decrease trend; 
ISI—Insignificant increase trend; SI—Significant increase trend). 

Table 2. The mean and trends in the start of growing season (SOS), end of growing season (EOS), and growing season 
length (GSL) in China (significant trends at 0.05 significance level are indicated in bold). 

  Growing Season (Day of Year) Trend (Days/34 Years) Contribution Rate for GSL (%) 
  SOS EOS GSL SOS EOS GSL SOS EOS 

China 

Naturalv 114 263 149 −5 2 8 53 46.8 
Forestl 108 267 159 −6 5 12 45 55.1 
Shrubl 112 274 162 −10 0 7 48 51.7 
Sparsel 107 281 173 −14 −1 13 40 60.2 
Hgra 119 257 139 −5 3 6 55 44.9 
Mgra 122 258 136 −4 2 7 60 40.5 
Lgra 126 256 130 −1 1 2 55 45.2 

WNW 

Naturalv 108 255 147 −12 9 21 51 48.9 
Forestl 109 254 145 −12 11 23 51 49.1 
Shrubl 105 258 152 −12 10 23 51 49.1 
Sparsel 109 254 145 −5 11 15 46 54.1 
Hgra 112 253 141 −12 9 21 56 44.5 
Mgra 105 255 150 −12 9 19 50 49.8 
Lgra 105 255 150 −12 9 19 50 49.8 

ENW 

Naturalv 120 255 135 −8 1 10 94 6.3 
Forestl 119 252 133 −4 5 10 64 36.3 
Shrubl 119 254 136 −5 3 10 88 11.8 
Sparsel 119 253 134 −7 5 12 64 36 
Hgra 121 254 133 −9 0 10 93 7.5 
Mgra 120 255 135 −7 2 9 84 16.3 
Lgra 120 255 136 0 3 4 89 11.5 

TP Naturalv 135 260 125 2 −4 −9 61 39.2 

Figure 4. The temporal and spatial changes to the start of the growing season (SOS; (a,d)), end of the growing season (EOS;
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Table 2. The mean and trends in the start of growing season (SOS), end of growing season (EOS), and growing season
length (GSL) in China (significant trends at 0.05 significance level are indicated in bold).

Growing Season (Day of Year) Trend (Days/34 Years) Contribution Rate for GSL (%)

SOS EOS GSL SOS EOS GSL SOS EOS

China

Naturalv 114 263 149 −5 2 8 53 46.8
Forestl 108 267 159 −6 5 12 45 55.1
Shrubl 112 274 162 −10 0 7 48 51.7
Sparsel 107 281 173 −14 −1 13 40 60.2
Hgra 119 257 139 −5 3 6 55 44.9
Mgra 122 258 136 −4 2 7 60 40.5
Lgra 126 256 130 −1 1 2 55 45.2

WNW

Naturalv 108 255 147 −12 9 21 51 48.9
Forestl 109 254 145 −12 11 23 51 49.1
Shrubl 105 258 152 −12 10 23 51 49.1
Sparsel 109 254 145 −5 11 15 46 54.1
Hgra 112 253 141 −12 9 21 56 44.5
Mgra 105 255 150 −12 9 19 50 49.8
Lgra 105 255 150 −12 9 19 50 49.8

ENW

Naturalv 120 255 135 −8 1 10 94 6.3
Forestl 119 252 133 −4 5 10 64 36.3
Shrubl 119 254 136 −5 3 10 88 11.8
Sparsel 119 253 134 −7 5 12 64 36
Hgra 121 254 133 −9 0 10 93 7.5
Mgra 120 255 135 −7 2 9 84 16.3
Lgra 120 255 136 0 3 4 89 11.5
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Table 2. Cont.

Growing Season (Day of Year) Trend (Days/34 Years) Contribution Rate for GSL (%)

SOS EOS GSL SOS EOS GSL SOS EOS

TP

Naturalv 135 260 125 2 −4 −9 61 39.2
Forestl 132 352 219 17 5 −12 34 66.3
Shrubl 131 266 135 2 −5 −7 55 45.5
Sparsel 131 301 170 7 8 3 35 64.6
Hgra 133 259 127 2 −3 −6 62 38.3
Mgra 133 257 123 1 −1 −2 67 33.3
Lgra 136 254 117 1 −2 −4 65 34.6

NNC

Naturalv 111 253 142 −1 6 8 71 29
Forestl 109 254 145 −2 7 9 68 32.1
Shrubl 112 252 141 −1 6 8 67 32.9
Sparsel 111 253 142 −3 7 11 63 37.2
Hgra 115 250 135 −3 4 7 73 27
Mgra 121 252 131 0 3 1 80 19.7
Lgra 126 251 126 2 1 −3 88 11.6

SNC

Naturalv 102 263 161 −9 8 16 54 45.6
Forestl 99 265 166 −10 8 18 54 45.9
Shrubl 103 262 159 −9 7 16 55 44.8
Sparsel 101 263 162 −10 9 19 56 44.2
Hgra 103 261 159 −9 8 18 57 43
Mgra 103 262 159 −7 8 15 54 45.6
Lgra 108 260 152 −7 9 18 53 47.3

WSC

Naturalv 111 311 200 −23 −3 16 56 43.6
Forestl 109 326 218 −23 −5 16 63 37.4
Shrubl 112 310 197 −22 −7 16 57 42.9
Sparsel 112 307 195 −23 −2 21 56 44.4
Hgra 123 319 196 −18 −1 11 64 35.8
Mgra 103 287 184 −26 9 37 52 47.8
Lgra 115 283 168 −23 5 28 54 46.4

ESC

Naturalv 95 312 216 −26 3 24 45 54.9
Forestl 96 318 221 −20 7 21 50 50.2
Shrubl 88 298 210 −23 1 27 32 67.6
Sparsel 95 303 207 −25 4 28 36 63.6
Hgra 94 306 213 −24 4 25 34 65.8
Mgra 97 304 207 −31 3 37 46 54.1
Lgra 107 338 231 −18 −4 15 38 62.3

Abbreviations: Agrl—Agricultural land; Watr—Water bodies; Uril—Urban and rural land; Bald—Unutilized land; Forestl—Forest land;
Shrubl—Shrubland; Sparsel—Sparse forest land; Hgra—High coverage grassland; Mgra—Medium coverage grassland; Lgra—Low
coverage grassland; Snga—Permanent snow and glacier; WNW—Western arid and semi-arid region; ENW—Eastern arid and semi-arid
region; TP—Qinghai-Tibet alpine region; NNC—Northern North China; SNC—Southern North China; WSC—Western South China;
ESC—Eastern South China.

The NNC mainly contained forests and grasslands and showed advances and delays
in regional SOS and regional EOS, respectively (Figure 4, Table 2). The same trend was
observed at the grid scale, with 35% and 61% the grids showing significantly advanced
SOS and significantly delayed EOS, respectively, which resulted in a significant increase
in GSL of 60% (Figure 4). Although the EOS was significantly extended for forests and
high-coverage grasslands, the start date of the EOS had a greater impact on the GLS (63%).

The phonological parameters of SNC show significant changes, regardless of the region
or the grid scale (Table 2, Figure 5). SOS was significantly advanced in the SNC, with 55% of
the grids showing a significant advancing trend. EOS and GLS were significantly increased
in 37% and 54% of the grids, respectively. The regional EOS values of WSC and ESC
showed significant advancing trends, whereas regional EOS did not change significantly.
This trend was mirrored at the grid scale. SOS showed a significantly advancing trend
in over 30% of the grids, while EOS was delayed in only 10% of the grids. Both SOS and
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EOS were important to GLS in SNC, WSC, and ESC, with their contributions both between
40–60%.
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decrease trend; ISI—insignificant increase trend; SI—significant increase trend. Abbreviations: Agrl—Agricultural land;
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Sparse forest land; Hgra—High coverage grassland; Mgra—Medium coverage grassland; Lgra—Low coverage grassland;
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TP—Qinghai-Tibet alpine region; NNC—Northern North China; SNC—Southern North China; WSC—Western South China;
ESC—Eastern South China).

3.3. Climate Change and Its Relationship with the NDVI

Average precipitation, temperature, and NDVI decreased from southeast to northwest.
Precipitation showed no significant change (Table 3). The grids with significant increases
in precipitation were mainly located in TP. Among all the grids, 25% showed significant
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increasing trends in precipitation and mainly contained grassland. The areas with signifi-
cant decreases in precipitation were mainly located in eastern ENW and NNC. Among the
grids in ENW and NNC, 28% and 38% showed significant decreasing trends in precipita-
tion, respectively (Figure 6). Most areas showed significant increasing temperatures, with
insignificant changes mostly found in eastern WSC and western ESC. Although there was
a significant increasing trend in the NDVI, there were clear regional differences. The grids
in ESC and WSC showed significant increases of 70% and 63% in the NDVI, respectively,
whereas only 30% of grids in both TP and NNC showed a significant increase. Approxi-
mately 10% of the grids in each of TP, NNC, and WNW showed significant decreases in the
NDVI, with this area mainly located in the alpine region.

Table 3. Regional changes to the Normalized Difference Vegetation Index (NDVI) in China and the correlations between
the NDVI and precipitation and between the NDVI and temperature during the growing season (significant trends and
correlations at the 0.05 significant level are indicated in bold).

Region Vegetation Trend Correlation Coefficients
Temperature (°C/a) Precipitation (mm/a) NDVI P T SPEI

China

Naturalv 0.030 0.187 0.001 0.12 0.65 −0.24
Forestl 0.023 0.329 0.001 −0.07 0.42 −0.19
Shrubl 0.022 0.275 0.001 −0.04 0.58 −0.23
Sparsel 0.022 0.587 0.001 −0.05 0.61 −0.23
Hgra 0.030 −0.060 0.000 0.40 0.49 0.21
Mgra 0.031 0.078 0.001 0.29 0.60 −0.03
Lgra 0.035 0.418 0.001 0.34 0.62 −0.13

WNW

Naturalv 0.042 0.184 0.000 0.47 0.57 −0.09
Forestl 0.039 0.422 0.000 0.35 0.56 0.04
Shrubl 0.040 0.383 0.000 0.45 0.26 0.11
Sparsel 0.038 0.378 0.001 0.36 0.62 −0.15
Hgra 0.040 0.355 0.000 0.43 0.53 0.13
Mgra 0.039 0.429 0.001 0.61 0.37 0.22
Lgra 0.042 0.171 0.000 0.43 0.48 −0.05

ENW

Naturalv 0.047 −0.438 0.000 0.66 0.09 0.46
Forestl 0.043 −0.114 0.001 0.58 0.12 0.42
Shrubl 0.047 −0.273 0.000 0.58 0.05 0.45
Sparsel 0.041 −0.020 0.001 0.48 0.23 0.33
Hgra 0.047 −0.830 0.000 0.71 −0.07 0.59
Mgra 0.047 −0.452 0.001 0.62 0.14 0.40
Lgra 0.046 −0.011 0.001 0.54 0.25 0.28

TP

Naturalv 0.025 0.365 0.000 0.06 0.48 −0.17
Forestl 0.016 −0.164 0.000 0.04 0.01 0.00
Shrubl 0.019 0.130 0.000 0.02 0.28 −0.10
Sparsel 0.018 0.175 0.000 0.04 0.12 −0.08
Hgra 0.022 0.425 0.000 0.22 0.32 0.19
Mgra 0.024 0.439 0.000 0.06 0.45 −0.04
Lgra 0.027 0.668 0.000 0.12 0.55 −0.09

NNC

Naturalv 0.031 −1.420 0.000 −0.18 0.23 −0.16
Forestl 0.030 −1.229 0.000 −0.33 0.28 −0.33
Shrubl 0.032 −1.128 0.000 −0.04 0.14 −0.02
Sparsel 0.033 −0.970 0.001 −0.13 0.32 −0.16
Hgra 0.036 −1.340 0.000 0.20 0.06 0.20
Mgra 0.033 −1.224 0.001 0.32 0.05 0.32
Lgra 0.034 −1.010 0.001 0.39 0.04 0.35

SNC

Naturalv 0.032 0.657 0.002 0.22 0.39 0.06
Forestl 0.034 0.067 0.002 0.06 0.43 −0.09
Shrubl 0.034 0.223 0.002 0.18 0.36 0.01
Sparsel 0.033 0.592 0.002 0.18 0.44 −0.01
Hgra 0.033 0.081 0.002 0.17 0.40 0.00
Mgra 0.036 0.578 0.002 0.23 0.40 0.05
Lgra 0.036 0.776 0.003 0.29 0.37 0.09
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Table 3. Cont.

Region Vegetation Trend Correlation Coefficients
Temperature (°C/a) Precipitation (mm/a) NDVI P T SPEI

WSC

Naturalv 0.013 0.493 0.001 −0.06 0.48 −0.17
Forestl 0.011 0.626 0.001 −0.04 0.38 −0.13
Shrubl 0.012 0.568 0.001 −0.05 0.42 −0.14
Sparsel 0.012 0.454 0.001 −0.03 0.49 −0.13
Hgra 0.014 0.143 0.001 0.02 0.41 −0.08
Mgra 0.017 −0.773 0.001 −0.11 0.60 −0.25
Lgra 0.014 −0.161 0.001 −0.03 0.46 −0.16

WSC

Naturalv 0.021 1.303 0.001 −0.14 0.59 −0.27
Forestl 0.020 1.649 0.001 −0.18 0.56 −0.29
Shrubl 0.022 0.914 0.002 −0.12 0.64 −0.27
Sparsel 0.019 0.893 0.002 −0.06 0.59 −0.18
Hgra 0.022 1.200 0.002 −0.10 0.56 −0.23
Mgra 0.023 1.424 0.002 −0.02 0.62 −0.16
Lgra 0.020 3.553 0.001 −0.15 0.55 −0.22

Abbreviations: Agrl—Agricultural land; Watr—Water bodies; Uril—Urban and rural land; Bald—Unutilized land; Forestl—Forest land;
Shrubl—Shrubland; Sparsel—Sparse forest land; Hgra—High coverage grassland; Mgra—Medium coverage grassland; Lgra—Low
coverage grassland; Snga—Permanent snow and glacier; WNW—Western arid and semi-arid region; ENW—Eastern arid and semi-arid
region; TP—Qinghai-Tibet alpine region; NNC—Northern North China; SNC—Southern North China; WSC—Western South China;
ESC—Eastern South China.
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Figure 6. The mean and trends of precipitation (a,d), temperature (b,e), and the Normalized Difference Vegetation Index
(NDVI; (c,f)) during the growing season in China (SD—Significant decrease trend; ISD—Insignificant decrease trend;
ISI—Insignificant increase trend; SI—Significant increase trend)).

Approximately 17% of gridded NDVI showed a significant positive correlation with
precipitation (Figure 7, Table S2), mainly in areas with insufficient precipitation (WNW
and ENW). It should be noted that the correlation between the NDVI and forest was much
smaller than that between the NDVI and grassland (Table 3). Approximately 28%, 27%,
and 23% of grids for high-coverage grasslands, medium-coverage grasslands, and low-
coverage grasslands were significantly correlated with rainfall, respectively, whereas 3%,
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9%, and 5% of forests, shrub, and sparse forests were significantly correlated with rainfall
(Table S2).
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China. (a,c): Correlation between the growing season (GS) and the NDVI; (b,d): correlation between the GS NDVI and
the previous non-growing season (NGS); SNC—Significant negative correlation; ISNC—Insignificant negative correlation;
ISPC—Insignificant positive correlation; SPC—Significant positive correlation.

The grids in WNW and ENW showed significant positive correlations of 32% and
75% between the NDVI and precipitation, respectively (Figure 7, Table S2). Similarly,
the proportion of grassland showing a significant positive correlation between the NDVI
and grassland far exceeded that of forest. This result could be attributed to the fact that
forests grow in areas with relatively abundant water resources in arid and semi-arid
regions. Precipitation during the non-growing season can also have an impact on the
NDVI during the growing season. A total of 11% and 17% of grids showed significant
positive correlations between precipitation and NDVI in WNW and ENW, respectively.
This area falls within an arid and semi-arid zone characterized by low precipitation with
an uneven spatiotemporal distribution. Therefore, precipitation remains a control factor
that restricts vegetation growth, thereby illustrating that vegetation growth is sensitive
to changes in precipitation [24,38]. A total of 31% and 14% of grids showed significant
positive correlations between temperature and the NDVI, respectively in WNW and ENW.
The increase in temperature was conducive to increasing the NDVI during the growing
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season. The positive correlation between regional temperature and the NDVI in WNW
showed a correlation coefficient of 0.56, mainly since these regions are located in the
mid-high latitudes of the Northern Hemisphere and since temperature is a primary factor
limiting photosynthesis. At the same time, 18% of the grids in WNW showed significant
correlations between temperature of the previous non-growing season and the NDVI.
Grassland was the primary natural vegetation type in ENW. The increase in temperature
promoted the growth of vegetation and resulted in a water deficit in vegetation to a certain
extent, thereby generating an insignificant correlation between regional temperature and
the NDVI [39].

A total of 11% of the grids in TP showed a positive correlation between the NDVI and
precipitation, whereas 27% of the grids showed a significantly positively correlated between
the NDVI and temperature (Figure 7, Table S2). This result indicated that temperature is a
key factor controlling the growth of vegetation in TP rather than precipitation. The increase
in temperature resulted in plants entering the growth period earlier, thereby extending
the growth window. At the same time, the accelerated melting of seasonal snow provided
water needed for early growth of plants. The precipitation and temperature of the previous
non-growing season also affected the growth of the NDVI. Approximately 12% and 23%
of grids showed significantly positive correlations between the NDVI and precipitation
and between the NDVI and temperature, respectively. In addition, temperature and
precipitation had a greater impact on the growth of the NDVI in grasslands compared to
that for forest.

A total of 11% of the grids in NNC showed a significant positive correlation between
the NDVI and precipitation, with most of the grids containing grassland (Figure 7, Table S2).
Approximately 18% of forested land (accounting for 62% of natural vegetation) showed
a significant negative correlation between the NDVI and precipitation, indicating that
precipitation is not the main factor controlling forested land. Approximately 24% of grids
showed significant positive correlations with temperature, with this proportion in forest far
exceeding that in grassland. Precipitation during the previous non-growing season mainly
affected medium- and low-coverage grasslands, whereas temperature mainly affected
forests. Both precipitation and temperature in the SNC affected vegetation growth, with
significant positive correlation ratios of 25% and 34%, respectively. The regional correlation
coefficient showed that temperature had a great influence on vegetation in SNC, and all
vegetation types showed a significant positive correlation. Precipitation during the non-
growing season had little effect on vegetation growth, whereas temperature had a very
large impact, with a positive correlation ratio exceeding 49%.

The response of the NDVI to temperature and precipitation was relatively consistent
across WSC and ESC (Figure 7, Table S2). The impact of precipitation on the NDVI
was minimal, whereas regional temperature was significantly correlated with the NDVI.
The study area of the present study is mainly located in the monsoon climate area, with
abundant precipitation. A total of 27% and 63% of grids in WSC and ESC showed a
significant correlation between the NDVI and temperature, respectively. The temperature
of the previous non-growing season also impacted the NDVI, with significant correlations
in WSC and EWC evident in 25% and 37% of grids, respectively.

3.4. Effects of Drought on NDVI

There was a significant downward trend in the SPEI, evident in over 20% of the
grids (Figure 8, Table 4 and S3). There was a significant downward trend in the SPEI
in WNW (especially Mgrs and Lgra), evident in 36% of grids, whereas the significant
declining trend fell to 76% in ENW, indicating trends of aridity in the northwest arid and
semi-arid regions. There was no significant change in the SPEI in TP, although 14% of
the grids (mainly in grassland) showed significant increases, indicating that humidity
is increasing in some areas of TP. There was a significant downward trend in the SPEI
in NNC, evident in 44% of the grids. There were no significant changes in SNC, WSC,
and ESC at the regional scale and the grid scale.
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Table 4. Regional trends in the Standardized Precipitation Evapotranspiration Index (SPEI) during
the growing season in China (significant trends at the 0.05 significant level are indicated in bold).

Vegetation China WNW ENW TP NNC SNC WSC ESC

Naturalv −0.01585 −0.0304 −0.03668 −0.0016 −0.03574 −0.00572 −0.00714 −0.00314
Forestl −0.01563 −0.02704 −0.02631 −0.01151 −0.03644 −0.02102 −0.00164 0.000203
Shrubl −0.00944 −0.0249 −0.03157 −0.01286 −0.03624 −0.01717 −0.00451 −0.0048
Sparsel −0.00883 −0.02735 −0.02394 −0.00891 −0.03733 −0.01235 −0.00467 −0.00383
Hgra −0.01499 −0.02528 −0.04876 0.007516 −0.04078 −0.01909 −0.01033 −0.00099
Mgra −0.01219 −0.0248 −0.04127 0.001576 −0.04229 −0.01201 −0.01124 −0.00301
Lgra −0.00978 −0.02977 −0.03182 0.003461 −0.04378 −0.00959 −0.0105 0.009922

Abbreviations: Agrl—Agricultural land; Watr—Water bodies; Uril—Urban and rural land; Bald—Unutilized
land; Forestl—Forest land; Shrubl—Shrubland; Sparsel—Sparse forest land; Hgra—High coverage grassland;
Mgra—Medium coverage grassland; Lgra—Low coverage grassland; Snga—Permanent snow and glacier; WNW—
Western arid and semi-arid region; ENW—Eastern arid and semi-arid region; TP—Qinghai-Tibet alpine re-
gion; NNC—Northern North China; SNC—Southern North China; WSC—Western South China; ESC—Eastern
South China.

A total of 13% of grids across entire China showed a significant positive correlation
between the NDVI and the SPEI, with most of these grids containing grassland (Figure 8,
Table 5). The areas showing the most sensitive the SPEI responses were WNW and ENW,
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with 21% and 56% of grids in these areas showing a significantly positive correlation
between the NDVI and the SPEI, respectively. At the same time, the proportion of grids
showing a significant positive correlation between the NDVI and the SPEI was higher
for grids containing grassland than for grids containing forest, particularly for Mgra in
ENW in which 71% of grids showed a positive correlation with the SPEI. Approximately
9% of grids in TP showed a significant positive correlation between the NDVI and the
SPEI, mainly distributed in grassland. This significantly positive correlation was evident
in 13%, 9%, and 8% of grids containing Hgra, Mgra, and Lgra, respectively. A total of
12% and 11% of grids showed this significantly positive correlation in NNC and SNC,
respectively. Similarly, a higher proportion of grids in grassland showed this correlation
compared to grids containing forest. Drought had a high impact on vegetation growth of
grassland, which could be attributed to the shallow root system of grassland. In contrast,
the impact of drought on forest was relatively stable [40]. Xu et al. [41] similarly showed
that increasing aridity resulting from drought induced more rapid and significant declines
in vegetation photosynthesis. WSC and ESC showed very weak responses to drought, with
the proportions of grids showing a significant positive correlation between the NDVI and
the SPEI both less than 3% (Table S4). It should be noted that 16% and 14% of grids in NNC
and ESC (particularly for forests) showed a significant negative correlation between the
NDVI and the SPEI, indicating that drought is not a limiting factor in these areas. This
result can mainly be attributed to the roots of forest trees extending to deep soil as a drought
mechanism [42]. Therefore, water deficits are less restrictive on the growth of vegetation in
this area, with temperature becoming the main factor affecting forest growth [43]. There
was a lower number of grids in which the NDVI was significantly correlated with the
SPEI during the previous non-growing season (Figure 8, Table S4), which indicates that
vegetation responds relatively weakly to droughts on a scale of approximately six months.
Zhou et al. [44] similarly showed an absence of a lag effect induced by agriculture on
vegetation drought on a monthly scale in most parts of China; they found a significant lag
in forests, whereas there tended to be no lag or a lag of less than a month in grassland and
agriculture. Zhao et al. [45] highlighted the importance of the role of atmospheric aridity to
vegetation activities in grasslands, and the drought scale of six months used in the present
study also increased uncertainty in the results.

Table 5. Percentage of different correlation types between the Normalized Difference Vegetation Index (NDVI) and the
Standardized Precipitation Evapotranspiration Index (SPEI) during the growing season (GS) in China (SNC—Significant
negative correlation; ISNC—Insignificant negative correlation; ISPC—Insignificant positive correlation; SPC—Significant
positive correlation).

China WNW ENW NNC
SPC ISPC SNC ISNC SPC ISPC SNC ISNC SPC ISPC SNC ISNC SPC ISPC SNC ISNC

Naturalv0.13 0.38 0.06 0.43 0.21 0.41 0.05 0.33 0.56 0.37 0.00 0.07 0.11 0.26 0.16 0.47
Forestl 0.02 0.24 0.13 0.61 0.18 0.45 0.04 0.33 0.34 0.47 0.00 0.19 0.02 0.21 0.19 0.58
Shrubl 0.06 0.39 0.05 0.50 0.24 0.33 0.03 0.40 0.41 0.50 0.00 0.09 0.20 0.23 0.21 0.36
Sparsel 0.03 0.34 0.06 0.56 0.09 0.43 0.06 0.42 0.44 0.44 0.00 0.12 0.08 0.35 0.15 0.42
Hgra 0.24 0.42 0.04 0.31 0.22 0.45 0.02 0.31 0.71 0.27 0.00 0.02 0.29 0.31 0.11 0.28
Mgra 0.19 0.47 0.02 0.32 0.30 0.43 0.02 0.24 0.54 0.39 0.00 0.07 0.31 0.45 0.04 0.21
Lgra 0.14 0.46 0.04 0.35 0.18 0.38 0.07 0.38 0.39 0.47 0.00 0.14 0.32 0.52 0.01 0.14

Abbreviations: Agrl—Agricultural land; Watr—Water bodies; Uril—Urban and rural land; Bald—Unutilized land; Forestl—Forest land;
Shrubl—Shrubland; Sparsel—Sparse forest land; Hgra—High coverage grassland; Mgra—Medium coverage grassland; Lgra—Low
coverage grassland; Snga—Permanent snow and glacier; WNW—Western arid and semi-arid region; ENW—Eastern arid and semi-arid
region; TP—Qinghai-Tibet alpine region; NNC—Northern North China; SNC—Southern North China; WSC—Western South China;
ESC—Eastern South China.

4. Discussion

The results of the present study showed that the spring phenology of China was sig-
nificantly advanced by five days during 1982–2015 and the growing season was extended
by eight days, basically consistent with the results of previous studies [46]. Past studies
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have shown that the seasonal spatial distribution of vegetation on a global scale is mainly
affected by latitudinal climate, vegetation types, and topographical elements. The mid- and
high-latitude regions of the Northern Hemisphere are more strongly affected by heat and
light [47]. The length of the vegetation growth season has been increasing in recent years in
China, with the phenology of spring and autumn showing an advance and delayed trend,
respectively [48]. The increase in temperature during spring will increase the temperature
of vegetation germination and leaf expansion, which will advance the vegetation SOS [49].
A rise in temperature will increase the rate of decomposition of soil organic matter. This
will more easily mineralize nutrients in the soil, thereby promoting the growth of vegeta-
tion [50]. At the same time, the water demand of vegetation will decrease during autumn,
and the increase in temperature will increase and decrease the activity of photosynthetic
enzymes and the degradation of chlorophyll, respectively, thereby delaying the growing sea-
son [51]. The phenology of the Qinghai-Tibet Plateau is affected by its unique environment,
and phenological changes show spatial differences to those in other regions. In addition to
the effects of temperature and precipitation on the Qinghai-Tibet Plateau, snow affects the
phenological changes of alpine grasslands. Snowmelt can result in changes in moisture and
temperature, thereby affecting the phenological period of plant species and the dynamics
of plant populations. A deep and thick snow cover will delay plant growth and shorten the
growth period [52]. The increase in winter temperature can lead to a sub-optimal reduced
temperature of plant dormancy, the degradation of grassland, the melting of frozen soil,
and an increase in aerosol concentration in the atmosphere, thereby delaying the rejuve-
nation period [53,54]. After correcting for adverse factors such as spring snow and ice,
Zhang et al. [55] found no significant change in the SOS, consistent with the conclusion of
the present study.

Vegetation coverage in China has shown a fluctuating upward trend, indicating
increasing vegetation activities. The eastern part of China is affected by a monsoon climate
and sufficient water and heat conditions for vegetation growth, where the northwestern
region of China lacks sufficient water and heat. Therefore, the spatial coverage of vegetation
in China is generally high in the southeast and low in the northwest. At the same time, areas
with high vegetation coverage are mostly distributed along mountain ranges, with most
of these areas containing forest vegetation. Under natural conditions, the physiological
processes of plants are affected by changes in temperature. Zhang et al. [56] showed that
temperature is the dominant factor affecting vegetation growth in humid temperate and
cold temperate regions. The results of the present study showed general upward trends in
temperature and vegetation in SNC, WSC, ESC, TP, and WNW. These results indicate that
the increase in temperature in these mid-high latitudes is an important factor promoting
the increase in vegetation. The results of the present study also showed that rainfall is the
dominant driver of changes in vegetation in the arid and semi-arid regions of northwest
China (WNW, ENW), consistent with the results of Spano et al. [57]. Although the present
study did not consider the impact of human activities, it is undeniable that anthropogenic
measures such as ecological engineering are important for promoting improvement in
vegetation. Statistical records for China show that 42% and 32% of improved vegetated area
is due to afforestation and agriculture, respectively [8]. Climate change not only directly
affects the growth rate of vegetation, but also changes the physical and chemical properties
of the soil (such as moisture, nutrient element content, etc.), thereby affecting the growth of
vegetation. The results of the present study showed that temperature and precipitation
during the non-growing season will also have an impact on the vegetation during the
growing season.

The impacts of climate change can be observed by the correlation between the NDVI
and the SPEI. The areas showing the highest vegetation response to drought were concen-
trated in WNW and ENW. This result confirms that vegetation growth in these areas is
mainly affected by drought and that water is the main factor regulating vegetation growth.
The correlation between the SPEI and vegetation was weak in ESC and WSC, characterized
by abundant rainfall, and vegetation growth in these areas was weakly affected by drought.
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Water was found to not be the main factor affecting vegetation growth. Rather, vegetation
growth was found to be mainly affected by temperature and sunshine hours. Different
vegetation types have different responses to drought. In general, grassland is more sensi-
tive to drought than forest due to the shallow root system of grassland. There is a delay
in replenishment of soil moisture after drought, which affects the growth of vegetation.
However, the present study did not observe a lagged response of vegetation growth to
drought. This discrepancy could possibly be attributed to the current study only analyzing
average drought events. In addition, the spatial resolution of the SPEI dataset used in the
present study was relatively coarse, and some uncertainty in the results may have been
introduced by resampling the SPEI to the same resolution as the NDVI.

In regions of abundant precipitation, such as the monsoon region of China, the rela-
tionship between the NDVI and precipitation was alien with that of the NDVI and the SPEI.
Regardless of regional or grid scale, the relationship was insignificant, indicating that water
deficit is not an environmental factor that restrict vegetation growth in these areas. In areas
with abundant precipitation, the results of the SPI calculated on the basis of precipitation,
and the SPEI calculated on the basis of precipitation and potential evapotranspiration show
that the changes were consistent, which demonstrated that precipitation was the major
limiting factor trigger changes in drought index [25]. In the northwestern region (SNC and
NNC) where precipitation was scarce, precipitation was significantly correlated with the
NDVI both at the regional and grid scale, indicating that precipitation was the main factor
limit vegetation growth. The correlation with the SPEI displayed that the basic correlation
pattern did not changed compare with precipitation, but the proportion of grids with sig-
nificant positive correlation decreased significantly. For example, in WNW, the proportion
of significant positive correlation with precipitation was 32%, while the SPEI was reduced
to 21%; in WNW, the proportion of significant positive correlation between precipitation
and the NDVI was 75%, and the proportion of significant positive correlation with the
SPEI was 56%. In the WNW and ENW regions, the temperature showed a significant
increase trend. The increase in temperature led to increase in potential evapotranspiration
and aggravated drought in the region, which would limit the growth of vegetation. With
the temperature rising, the melting of accumulated snow and frozen soil contributed to
high water availability and slow drought responses. However, the SPEI reflects meteo-
rological drought, and hydrological drought does not respond well. In the arid area of
the northwest, the vegetation on the whole shows an increasing trend, which leads to a
decrease in the significant correlation ratio compared with precipitation. When used across
multiple time scales, the SPEI is an effective drought index that contains information on
evapotranspiration in drought monitoring, thereby making it possible to reflect the changes
in water demands in arid and semiarid regions, especially under the background of global
warming [58,59]. The study focuses on calculations using precipitation and potential evap-
otranspiration, which reflect the average state of drought, but climate model predictions
show that the vegetation impact caused by severe drought is greater [60]. For example,
extreme drought decreased the forest biomass by 1.2–1.6 Pg in the Amazon region [61].
The drought that occurred in southwest China from 2009 to 2010 resulted in a significant
decline in vegetation productivity, and the restoration period of vegetation in some areas
exceeded half a year [21].

It should be noted that the present study only analyzed the impacts of temperature,
precipitation, and drought on vegetation, whereas other environmental changes, such as
solar radiation [62], soil nutrients [63], topographical factors [64], land use [65], and human
activity [66] were not discussed. Future research should consider the impacts of these
additional environmental factors.

5. Conclusions

The present study analyzed the spatiotemporal characteristics of temperature, precipi-
tation, drought, and the NDVI during the growing and non-growing seasons of natural
vegetation in China as well as the response of the NDVI to temperature, precipitation,
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and drought during the growing season. The main conclusions of the present study were
as follows:

(1) The area of urban and rural land in China increased by 49% from 1980 to 2015, with
most of this increase attributed to conversion from agriculture land. Agriculture
land and water increased by 33% and 20% in WNW, respectively, mainly through
conversion from unutilized land and grassland. The increase in urban and rural
land in ENW was mainly manifested as a massive reduction in unutilized land and
grassland. Much of the decrease in glaciers and permanent snow on the Qinghai-
Tibet Plateau could be attributed to conversion to unutilized land. The conversion of
unutilized land, forests, and grasslands to farmland in NNC resulted in a significant
increase in agriculture land. There were large reductions in agricultural land in SNC,
WSC, and WSC due to conversion to urban and rural land.

(2) SOS and EOS of natural vegetation in China showed trends of advancing and delay,
respectively, during 1982–2015, resulting in GSL being prolonged by approximately
eight days. SOS was advanced and EOS was delayed in WNW and ENW, leading to
a 21 d and 10 d prolongation of GLS, respectively. Particularly in WNW, there were
significant changes in the regional trends of the EOS and SOS. SOS was particularly
important to GLS in ENW, with its contribution rate exceeding 80% in almost all
vegetation types. Since NNC was dominated by forests and high-coverage grasslands,
SOS and EOS were significantly advanced and delayed, respectively. The SOS had a
greater impact on GLS than the EOS, with a contribution rate exceeding 71%. SOS was
significantly advanced in SNC at both the regional and grid scales, whereas EOS and
GLS also showed significant increasing trends. SOS showed a significant advancing
trend in WSC and ESC, whereas EOS did not change significantly. TP showed a
unique phenological change that was opposite to that in other regions. Although
the phenological change in TP was not significant, SOS was delayed and EOS was
advanced, resulting in a shortened GSL.

(3) Temperature in China showed a significant increasing trend, whereas there was no sig-
nificant change in precipitation. Although the NDVI showed a significant increasing
trend, there were clear regional differences. The NDVI was positively correlated with
precipitation in WNW and ENW, and the proportion of grids showing this correlation
was higher for grassland than for forest. Rising air temperature was conducive to
increasing the NDVI in WNW. Temperature was shown to be the key factor to control-
ling the growth of vegetation in TP rather than precipitation. In addition, the NDVI
was affected by the temperature of the previous non-growing season. Precipitation
is not the main factor affecting forested land in NNC. Rather, temperature had the
greatest effect on vegetation, particularly in forests. Precipitation and temperature
were both important for vegetation growth in SNC. However, temperature had a
greater impact on vegetation in SNC. Temperature was the main environmental factor
affecting vegetation dynamics in WSC and ESC, whereas the impact of precipitation
was minimal.

(4) In general, the SPEI showed a significant downward trend, particularly in WNW,
ENW, and NNC. Drought had the greatest impact on the NDVI in WNW and ENW,
with 21% and 56% of grids in this area showing a significantly positive correlation
between the NDVI and the SPEI, with a higher proportion of grids showing this
relationship for grassland than for forest. Approximately 10% of grids in TP, NNC,
and SNC showed this significantly positive correlation, with this positive correlation
much higher in grassland than in forest. The correlation between the NDVI and
drought was weak in WSC and ESC, indicating that drought is not the main factor
limiting vegetation growth.
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