
land

Article

Exploring the Correlation between Block Vitality and Block
Environment Based on Multisource Big Data: Taking Wuhan
City as an Example

Yunzi Yang 1, Yuanyuan Ma 1 and Hongzan Jiao 1,2,*

����������
�������

Citation: Yang, Y.; Ma, Y.; Jiao, H.

Exploring the Correlation between

Block Vitality and Block Environment

Based on Multisource Big Data:

Taking Wuhan City as an Example.

Land 2021, 10, 984. https://doi.org/

10.3390/land10090984

Academic Editor: Fabrizio Battisti

Received: 3 August 2021

Accepted: 16 September 2021

Published: 17 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Urban Planning, School of Urban Design, Wuhan University, Wuhan 430072, China;
yangyunzi@whu.edu.cn (Y.Y.); yuanyuanma@whu.edu.cn (Y.M.)

2 Engineering Research Center of Human Settlements and Environment of Hubei Province,
Wuhan 430072, China

* Correspondence: Jiaohongzan@whu.edu.cn; Tel.: +86-27-6877-3062

Abstract: Block is the basic unit for studying the urban activities of residents, and block vitality is
the concrete expression of urban dynamics at the block level. The quality of the block’s residential
environment is a crucial medium to satisfy the residents’ pursuit of high-quality life; good block
quality is essential for fostering the block vitality and further enhancing the overall vitality of the
city. This study used the distribution density of cellular signaling data to quantify block vitality and
constructed a block environment index system covering four dimensions—block accessibility, block
function, block development degree, and human perception of block environment—innovatively
introducing the elements of block environment from the human perspective. Considering the
variability of block vitality between workdays and weekends, and between downtown and suburban
blocks, this study used a geographically weighted regression model to show the mechanism of
the spatial and temporal influence of indicators on block vitality, as well as to suggest how to
enhance block vitality at different times of the day based on the influence mechanism. This study
was conducted in Wuhan, China. The findings suggest that block vitality exhibited significant
spatial and temporal heterogeneity. A high-vitality block can be created by enhancing the block’s
accessibility, increasing the degree of block construction, and enriching the functional density and
mix of functions in the block. A pleasantly green environment with a moderate degree of openness
exerted a significant impact on promoting human activity and enhancing block vitality. The creation
of high-vitality blocks should also consider the differences in the impact of various elements on
block vitality between weekend and workday. For example, amid the surge in travel demand for
education venues on weekends, enhancing the accessibility of blocks can significantly increase the
vitality of blocks on weekends. We can truly realize the people-oriented approach to build a livable
and high-vitality city by adapting to local conditions and time.

Keywords: block vitality; cellular signaling data; environmental perception; dynamic features;
geographically weighted regression

1. Introduction

Jane Jacobs [1] first proposed the concept of urban vitality and used it to indicate the
intensity of human activities in urban space. Later studies used this concept primarily to
measure the richness of people’s activities in the space and the perception of an excellent
urban spatial environment. Urban vitality plays a vital role in fulfilling people’s needs
for a high-quality life and augmenting the overall spatial quality of cities [2,3]. Typically,
blocks are areas surrounded by roads and are the fundamental building blocks of the urban
fabric. From the standpoint of human behavior, a block is a shared space created by the
spatial interaction of residents’ behavior [4]. Urban activities and their interaction with
spatial entities reflect block vitality, where spatial entities refer to geographic spaces that
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support people’s activities, including stores and parks [5,6]. Block vitality is a part of urban
vitality. Block vitality exerts a positive impact on the health of residents, public safety of
the city, and socioeconomic development [7–9]. The single function and sociality of blocks
have declined people’s willingness to engage in spatial interaction activities in recent years,
contradicting the residents’ gradually increasing demand for livability. Lately, block vitality
has garnered widespread attention as a critical component of urban vitality.

As early as when urban vitality was first proposed, studies discussed the factors
influencing urban vitality. Most traditional studies on urban vitality used questionnaires
and field interviews to qualitatively investigate the factors and mechanisms influencing
vitality and suggest ways to enhance urban vitality [3,10,11]. For example, studies proposed
that the higher the building density, the narrower the neighborhood form, and the more
intricate the urban function, the higher the urban vitality [12–14]. Previous studies laid the
foundation with strong operability; however, these studies had limitations such as the lack
of data support, limited research scope, and that the degree of influence of each element
cannot be measured quantitatively [15]. With the progress of Internet technology, various
open-source big data have been extensively used in academic research. These big data
have the advantages of large data volume and easy access, providing robust data support
to realize quantitative research on urban vitality.

Traditional quantitative studies of urban vitality mostly used small restaurant busi-
ness distribution density [16,17] and nighttime lighting data [18–20] as vitality measures to
measure static vitality, leading to a lack of research on the difference in vitality between
workdays and weekends. However, various aspects of human activity, such as willingness
to go out, activity choices, and places to travel, differ markedly between workdays and
weekends [21,22]. Thus, urban vitality characterized by the intensity of human activities
in the city also exhibits significant differences. Hence, it is necessary and meaningful to
consider the difference in vitality between workdays and weekends in the research system.
From the different attributes of urban vitality, the environmental influencing factors of
urban vitality are primarily divided into two categories—social environment and physical
environment [23,24]. While the social environment denotes economic elements, historical
and cultural elements, and other sociological attributes, the physical environment denotes
the elements of the physical space. In the research of the influence mechanism of urban
vitality, three aspects of urban function, urban accessibility, and the degree of urban con-
struction among the elements of the physical environment are used extensively [5,25–27].
Traditional research on urban function is typically measured using land-use type data,
which is valid but still has disadvantages such as large scope and slow update [5]. No-
tably, people are the source of urban vitality and the subject of perception of the urban
environment, and their perception of the external environment significantly influences
their behavior. However, human perception of the environment has not been included in
the research mechanism of environmental impact on vitality.

In recent years, cellular signaling data have been applied to measure regional vital-
ity [28–30], which can truly and reliably reflect human behavior and better represent the
spatial and temporal dynamics of human activities compared with traditional data of
restaurant enterprises and luminous remote-sensing data. Based on the abovementioned
advantages, the cellular signaling data can contribute to the study of the dynamic change
characteristics of vitality on workdays and weekends and illustrate the overall vitality
intensity more comprehensively [31,32]. With the availability of open-source data, the
measurement of two aspects of urban function—urban function density, which can also
be called land-use intensity, and urban-function-mixing degree meaning the intensity of
mixed land use—has changed. The POI data are used as the most fine-grained data of
urban land use to assess the function density of cities, compensating for the drawbacks of
large scope and slow update of land-use type data [33,34]. In addition, the calculation of
the function-mixing degree has evolved from the traditional calculation of the area and
proportion of each type of land in the region to the calculation of the spatial entropy of POI;
this calculation reflects a more representative degree of mixing [35,36]. People are a vital
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source and component of urban vitality; however, the existing literature lacks research on
how people’s perception of the physical environment affects urban vitality. Some studies
have attempted to explore the impact of street greening on human travel behavior. They
have considered the approach of extracting vegetation indices from remote-sensing image
data, which differ markedly from the greening situation shown by human eyes [37]. With
the rapid advancement of multisource geospatial data, researchers have access to a large
number of publicly available geotagged images [38]. The viewpoint of these streetscape
images can more intuitively reflect residents’ actual perceptions of their surroundings, pro-
viding the feasibility of introducing the perception of human eye vision into the influencing
factors of block vitality on a large scale [39].

Previous research on urban vitality has focused on developed countries in Europe
and the United States, and the exploration of the relationship between urban vitality and
urban environment in China has important implications for developing countries [40].
With the development of open-source data in China, scholars have studied the relationship
between block vitality and block environment in major cities such as Beijing, Shanghai,
and Shenzhen [20,25,41]. The existing inquiry on the relationship between urban vitality
and environment in China suffers from the shortcomings of small research scope (only
some streets are studied) and failure to consider spatial heterogeneity and temporal het-
erogeneity [2,41,42]. This study expanded the scope of the study based on the previous
work and considered the lack of vitality comparison between workdays and weekends
and the lack of human eye perception in vitality research in existing studies. This study
used cellular signaling data distribution density to measure block vitality and constructed
four level indicators—“block development intensity”, which measures the horizontal and
vertical development of block land, “block function”, which indicates the use of block land,
“block accessibility”, which is a measure of how easy it is to get around the block, and
block environment perception—innovatively introducing human perception of the environ-
ment into the discussion of the correlation with block vitality. In addition, geographically
weighted regression models (GWR) were used to analyze the impact of each indicator
element on vitality during workdays versus weekends. The remaining components of this
study are as follows: Section 2 introduces the background of the study area, the source,
and preprocessing of the study data; Section 3 introduces the research methods, including
the construction of the index system, image segmentation method, and the GWR; Section 4
details the research results; Sections 5 and 6 discuss the research results and analyze the
strengths and weaknesses of the study.

2. Study Area and Data
2.1. Study Area

Wuhan (113◦41′–115◦05′ E, 22◦29′–31◦58′ N) is the capital city of Hubei Province and
the central city of Central China. It is located in the eastern part of the Jianghan Plain and
the middle reaches of the Yangtze River where the Yangtze River, the third-largest river in
the world, and its largest tributary, the Han River, converge in the city. Wuhan’s water area
accounts for a quarter of the total area of Wuhan city. With 166 lakes of all sizes, Wuhan is
also known as “the city of a hundred lakes” [43].

We used the main urban area delineated in the Wuhan Master Plan 2010–2020 as the
study area. The main urban area of Wuhan is dominated by the area within the Third Ring
Road, including the local extension of Zhuankou, Miaoshan, and Wugang areas. It is linked
by the Yangtze and Han rivers and the east–west mountain system, creating a relatively
independent and complete urban system of Hankou, Wuchang, and Hanyang, with a total
area of 678 km2 (Figure 1).
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Figure 1. Wuhan city and main urban area location.

2.2. Data Sources and Preprocessing
2.2.1. Basic Data

The basic data included urban block data, urban road network data, urban public
transportation data, and urban building data. Traffic analysis zone (TAZ) is used to define
blocks. TAZs belong to the urban micro-medium level, and each TAZ has as similar
characteristics as possible in terms of population density and land use. Thus, using TAZ
data for block-level research has significant advantages. The TAZ data this study used are
delineated based on the travel volume and road conditions in Wuhan in 2018. Owing to the
northern boundary of the main urban area isolating part of the complete traffic zone, the
study area near Tianxingzhou was marginally adjusted; Figure 2 shows the before-and-after
comparison. We used 2395 TAZs with cellular signaling data within the study area, with
an average area of 0.217 km2, and TAZs without cellular signaling data were not included
in the study area [5].

Figure 2. Comparison of main urban area scope and study area.
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The urban road network data, urban public transport data, and urban building data
of 2018 were obtained from the OpenStreetMap platform [44] (Figure 3). The road network
data included seven levels of urban expressways, highways, national and provincial roads,
county roads, township and village roads, and other roads. The urban public transportation
data included information on the names and distribution locations of public transportation
stations and rail transit stations within the study area. The urban building data contained
basic attributes such as building height and floor area.

1 
 

 

(a) (b) 

(c) (d) 
 
fig3 
  

Figure 3. Basic data. (a) Road network data; (b) building data; (c) public transportation station data; (d) subway station data.

2.2.2. Cellular Signaling Data Preprocessing

It is well established that cellular signaling data can be used effectively to study human
behavior [45–47]. The cellular signaling data used in this study were collected by a large
mobile operator in Wuhan, whose subscribers account for 67% of all cell phone users, and
the cell phone usage data it collects is highly universal and representative, reflecting the
travel behavior of most people [45]. Cellular signaling data were collected by mobile oper-
ators from 5 March 2018 to 11 March 2018 and contained 5 working days and 2 rest days,
which can fully reflect a cycle of human activity. This paper attempts to explore the relation-
ship between block vitality and block environment in daily situations, and thus the time
period chosen for the study is universal in that it does not include holidays and other major
events with extremely variable pedestrian flow. A total of 150,704,053 communication
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records were obtained from 21,995 base stations in the main urban area of Wuhan; Figure 4
shows the locations of the base stations in the main urban area. Only time information and
coordinate information were extracted from each communication record, and no sensitive
information was included.

Figure 4. Base station location distribution.

2.2.3. Extraction and Preprocessing of Streetscape Images

In recent years, an increasing number of street-view images have been used for urban
research applications [48]. Baidu Maps Street View has a higher collection frequency and a
wider collection range in China than other providers. The Baidu Maps software, developed
in 2005 by Baidu.com in Beijing, China, started releasing street maps in 2013 [49], which
are available for users to browse along with an application programming interface (API) to
download. The road network data within the study area were sampled at 300 m intervals,
and point data with latitude and longitude coordinates were generated. We retrieved
street-view images at each point location via the Baidu Maps API and automatically
obtained location-specific street-view images in May 2021 through the following URL:
http://quanjing.baidu.com/apipickup/ (accessed on 12 May 2021).

A total of 95,988 points were identified, of which 5762 points did not have street
pictures; thus, 90,226 sampling points were finally identified. To more accurately reflect the
scenery viewed by human eyes’ vision, four pictures of 0◦, 90◦, 180◦, and 270◦ directions
were used for each sampling point, and the combined results of the four pictures were
used to reflect the street scenery of the same point. Finally, 360,904 images with an
image resolution of 1024 × 512 were collected. Figure 5 shows the street-view images
schematically.

2.2.4. POI Data Preprocessing

The POI data for Wuhan in 2018 were obtained from the Baidu Map by administrative
region and time. We combined similar categories into 13 categories according to the official
categories given, and classification is presented in Table 1. A total of 79,758 POIs within the
scope were retained, and the percentage of POIs in various categories (Figure 6) and the
specific spatial distribution (Figure 7) are as follows.

http://quanjing.baidu.com/apipickup/
http://quanjing.baidu.com/apipickup/
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Figure 5. Example of street-view image.

Table 1. POI reclassification.

POI Classification in This Paper POI Classification in Baidu Map

Accommodation Service Facilities Accommodation Service, Commercial House
Government Agency Governmental Organization and Social Group

Medical Service Facilities Medical Service
Recreational Facilities Recreational Service

Sports Facilities Sports and Recreation
Living Service Facilities Daily Life Service, Auto Service, Auto Repair

Cultural Facilities Science/Culture and Education Service,
Training Institutions

Financial Service Facilities Finance and Insurance Service, Enterprises

Transportation Facilities Transportation Service, Road Furniture, Place
Name and Address, Pass Facilities

Shopping Service Facilities Shopping
Parks and Squares Parks and Squares

Scenic Spots Tourist Attraction
Catering Facilities Food and Beverage

Figure 6. Percentage of POIs in each category.
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Figure 7. Spatial distribution of POIs.

3. Methods
3.1. Block Vitality Quantification

Block vitality can be expressed as the density of people performing activities in a unit
spatial area. Compared with other data, the cellular signaling data can effectively reflect
the real activity of people. Measuring block vitality by the distribution density of cellular
signaling data has been proven to be effective [31,32].

Vi = Xi/Si, (1)

where Vi denotes the vitality of block i (i = 1,2 . . . M, M = 2395); Xi denotes the number of
people using mobile phones in block i during the study time period; and Si represents the
area of block i.

3.2. Indicator System Construction

Most of the existing studies examined its impact on block vitality in terms of a single
aspect. Ying divided the influencing factors of block vitality into external and internal
elements to consider the influencing elements of block vitality more systematically [44].
Environmental elements that influence block vitality were identified according to the
existing research (Table 2) [3,5,50–52].

(1) We used POI data representing the most fine-grained land uses to measure the
function density of blocks and the degree of mixed functional use of blocks [5]. The
spatial entropy of POIs was used to quantify the degree of mixed functional utilization
of the block.

(2) Green-looking ratio denotes the proportion of green plants in the scenery seen by
people’s eyes, which emphasizes the three-dimensional visual effect and represents a
higher-level urban greening. The quantification of both green-looking ratio and sky
view was attained by image segmentation of street-view images by machine learning.
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Table 2. Indicator system.

Primary Indicator Secondary Indicators Unit

Block accessibility
C1 bus station density pcs/km2

C2 distance of nearest subway station Km
C3 road density Km/km2

Block function
C4 function density pcs/km2

C5 function-mixing degree ——

Block development intensity C6 building density ——
C7 floor area ratio ——

Block environment perception C8 green-looking ratio ——
C9 sky view ——

3.3. PSPNet Model Calculates the Percentage of Greenery and Sky in Street-View Images

PSPNet is a novel deep convolutional neural network model that classifies each pixel of
an image and divides the image into several visually meaningful regions. Reportedly, it can
be used to precisely and efficiently segment street-view images and identify the percentage
of greenery, sky, and other elements [53–55]. The model schematic is shown in Figure 8.
Based on a previous model, the model was trained using 1000 labeled images as the training
set for machine learning to make the model more suitable for the research needs.

Figure 8. Schematic diagram of PSPNet model.

The image was segmented into five parts—building, sky, greenery, water, and road
(Figure 9). The ratio of sky pixels to the total number of pixels in the image was calculated to
represent the percentage of the sky in the image, and the green-looking ratio was calculated
in the same way [55].

Pi,sky enclosure = Pi,sky ÷ N, (2)

Pi,greenery enclosure = Pi,greenery ÷ N, (3)

where Pi,sky, Pi,greenery denote the number of pixels of sky and greenery; N denotes the total
number of pixels of the image; and Pi,sky enclosure, Pi,greenery enclosure denote the percentage
of sky and greenery, respectively.

3.4. Spatial Entropy Calculation

Entropy is originally a physical concept used to measure the complexity and equilib-
rium of a system. The numerical magnitude of spatial entropy can reflect the degree of
mixing of urban functions. The higher the entropy value, the more the functional types
there are, the smaller the difference in the number of each functional type, and the higher
the functional mix in this area.

Pi = Ti/Ai, (4)

Ss = −∑M
i Pi × log Pi, (5)

where Ti denotes the number of a certain type of POI in the i-th block; Ai denotes the total
number of POIs in the i-th block (i = 1, 2, 3 . . . M); and Ss denotes the spatial entropy.
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3.5. Geographically Weighted Regression

GWRs were used to explore the spatial heterogeneity of the impact of each indicator
on block vitality. GWR was first presented in Brunsdon et al. [56]. In recent years, the
model has been used widely in the field of urban planning to examine various elements
of urban space. Compared with the ordinary linear regression model, GWR considers
the existence of spatial heterogeneity. In addition, the model adds spatial coordinates as
independent variables and imports spatial weight matrix to transform the regression region
from global to local so that the model can reflect the spatial structural heterogeneity more
realistically [57]. The GWR can be written as follows:

yi = β0ui, vi + ∑T
t=1 xi,sβs(ui, vi) + εi, (6)

where i denotes the number of blocks (i = 1, 2 . . . M); t is the number of features in the
set t = 1, 2 . . . T; yi is the vibrancy value of the i-th block; xi,t denotes the value of the t-th
feature (explanatory variable) of the i-th observation; ui, vi are the geographic coordinates
of the sampling points; βt(ui, vi) is the influence coefficient of the feature for a given
geographic coordinate (GWR coefficient); εi is the error term.

4. Experiment and Result Analysis
4.1. Visualization of Environmental Elements and Spatial Distribution Patterns
4.1.1. Block Accessibility

Block accessibility comprises three elements—density of block road, density of block
bus stations, and distance from the nearest subway station. The red color in Figure 10
represents high density and proximity, whereas the blue color denotes the opposite. As
shown in Figure 10, the overall accessibility of the block exhibits a decreasing trend from
the center to the outside. There were no evident high-value clusters of road density and
bus station density. The distance to the subway station was distributed in strips along
the rail line, and the Hankou district performed better in terms of distance to the subway
station. Owing to the rapid growth and wide distribution of rail transit within the main
urban area of Wuhan, most blocks are within 3 km of the subway station, except for a small
number of blocks in the north and south of the study area.

4.1.2. Block Function

Block function comprises two components—block function density and block-function-
mixing degree (Figure 11). The red color in Figure 11 represents high value. Both the
function density and the functional mixing degree display the characteristics of high center
and low surrounding; however, there is no apparent correlation between them. The north
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side where the two rivers (Yangtze and Han) meet is the area with the highest density of
POIs and the densest distribution of block functions, but this part of the block has single-
type points of interest, implying a low-level block mixing and a single block function.

 

2 

 

(a) (b) (c) 
 
Fig10 
  

Figure 10. Neighborhood accessibility. (a) Road network density; (b) bus station density; (c) distance to the nearest
subway station.
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Figure 11. Block function. (a) Block function density; (b) block-function-mixing degree.

4.1.3. Block Development Intensity

Block construction intensity comprises floor area ratio and building density. Building
density is a two-dimensional perspective that uses the building coverage of a parcel
to quantify the development and utilization of flat land, whereas the floor area ratio
considers the vertical development level of a block from a three-dimensional perspective
(Figure 12). The graphs in Figure 12 are colored from red to blue to represent gradually
decreasing values.
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Figure 12. Block development intensity. (a) Building density; (b) floor area ratio.
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The high values of building density and floor area ratio show a dotted distribution
in Figure 12. The building density of the blocks west of the Yangtze River is marginally
higher than that of the blocks east of the Yangtze River. The lack of control over building
density during the construction of the old city of Hankou results in a high level of flat land
development and utilization. Comparatively, the flat land development and utilization in
Wuchang district are more balanced. The floor area ratio of buildings within the Third Ring
Road is usually high, but that of blocks along the lake is low, especially around the East
Lake; this correlates with the regulations associated with the skyline control around the
lake issued by Wuhan in recent years. The building density of Zhuankou and Wugang area
is high, but the plot ratio is very low, which closely correlates with the restricted height
and low vertical construction of industrial park plants.

4.1.4. Block Environment Perception

In this study, the greenery and sky viewed from the human perspective were obtained
and quantified using the PSPNet program to segment the Baidu Street View images. The
mean value of the green-looking ratio of the sampled points within each block was used
as the value of the block green-looking ratio index, and the sky visibility was obtained
similarly (Figure 13). The color changes from red to blue in Figure 13 to represent a gradual
decline in green-looking ratio and sky view.

 

5 

 

  
(a) (b) 

Fig13 
  

Figure 13. Block environment perception. (a) Green-looking ratio; (b) sky view.

From the color distribution of the two graphs, it is clear that a block with a high
green-looking ratio has a lower sky view, which aligns with the general perception. A high
green-looking ratio implies dense greenery, which can block people’s view and decrease
the percentage of visible sky. A small number of blocks have neither good greenery nor a
wide view of the sky, which is caused by too little building spacing and too much building
density. The block within the Third Ring Road of Wuhan city has good performance in
green-looking ratio. Owing to the poor construction and the lack of attention to greening,
the green-looking ratio of the blocks in the Zhuankou and Wugang areas is relatively poor.
The blocks with a high sky view are concentrated in the vicinity of the Third Ring Road
and the industrial parks outside the Third Ring Road. The visibility of the sky is low in the
Luojia Mountain, Turtle Mountain, and East Lake Greenway areas where the greenery is
excellent and in the old city of Hankou where the construction intensity is high.

4.2. Block Vitality Features
4.2.1. Distribution of Cellular Signaling Data

The collected cellular signaling data were organized by days and time periods (Figures 14–16).
Figure 14 shows the total cellular signaling data for each day of the study period. Figure 15
shows the cellular signaling data for a week averaged in 1h units as a reflection of the
prevailing situation for each hour of the week. The number of cell phone users is lowest
from 3:00 to 5:00 throughout the day. From 7:00 onward, the number of cell phone users
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starts snowballing. The number of people using cell phones reaches two peak values in a
day during the dining hours of 11:00–12:00 and 17:00–18:00 but gradually decreases after
18:00. Figure 16 shows the distribution of cellular signaling data on average for workdays
and weekends. Numerically, the number of people using cell phones from 23:00 to 5:00 on
weekend nights is higher than that on workdays, reflecting that the city is more active on
weekend nights.
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and weekends.

4.2.2. Block Vitality Distribution

Figure 17 shows the spatial visualization of vitality. Block vitality forms a high-
value agglomeration in southeastern Hankou and decays with increasing distance. The
Wuchang area has created a major vibrant belt dominated by Yellow Crane Tower—Wuhan
University–Huazhong University of Science and Technology. The Hanyang area forms a
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vibrant belt distributed along the Hanshui. Both Zhuankou and Wugang are large industrial
parks in Wuhan; however, the vitality value of Zhuankou area is marginally higher than
that of Wugang area, which was built later and has better development momentum. The
vitality of the residential area west of Wugang Avenue is significantly higher than that of
the factory area on the east side.

Figure 17. Block week vitality spatial distribution.

We visualized the average vitality of workdays versus weekends (Figure 18). The
distribution of block vitality on workdays and weekends is closer. Compared with work-
days, the distribution of block vitality on weekends is more balanced. The high-value
aggregation area of Hankou’s vitality weakened significantly, and the vitality value of
science, education, culture, and government office areas in Wuchang District decreased
marginally over the weekends.

The vitality of workdays and weekends was categorized according to 4 h intervals
(Figure 19). Consistent with the daily rhythm of human life, block vitality decreases
significantly during nighttime, both workdays and weekends, and increases significantly
from the morning peak at 8:00 until 20:00 when the vitality decreases significantly. The
nighttime vitality is higher on weekends than on workdays, especially from 0:00 to 4:00.
In addition, block vitality is higher during the daytime on workdays, especially in the
Hankou business district and Wuchang Science Education Center.

 

6 

 

  
(a) (b) 

Fig18 Figure 18. Comparison of the spatial distribution of block vitality. (a) Workday block vitality distribution; (b) weekend
block vitality distribution.
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Figure 19. Comparison of block vitality by time period. (a1) Vitality distribution from 0:00 to 4:00
on workdays; (a2) vitality distribution from 0:00 to 4:00 on weekends; (b1) vitality distribution
from 4:00 to 8:00 on workdays; (b2) vitality distribution from 4:00 to 8:00 on weekends; (c1) vitality
distribution from 8:00 to 12:00 on workdays; (c2) vitality distribution from 8:00 to 12:00 on weekends;
(d1) vitality distribution from 12:00 to 16:00 on workdays; (d2) vitality distribution from 12:00 to 16:00
on weekends; (e1) vitality distribution from 16:00 to 20:00 on workdays; (e2) vitality distribution from
16:00 to 20:00 on weekends; (f1) vitality distribution from 20:00 to 24:00 on workdays; (f2) vitality
distribution from 20:00 to 24:00 on weekends.
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4.3. Analysis of GWR Results
4.3.1. The Impact of Each Indicator on Block Vitality and Spatial Differentiation

We used the distribution density of the total value of cellular signaling data for a week
as the dependent variable, and GWR was performed with the independent variable. To
evade the problem of large differences in coefficients owing to the large differences in the
indicators themselves, which are detrimental to the subsequent analysis, the independent
variables were standardized so that the range of independent variables was uniformly
controlled at [0, 1]. Tables 3 and 4 show the results. The adjusted R2 value of 0.4328
indicates that the model’s independent variables explain the dependent variable at a high
level of 43.28% and the model fits well.

Table 3. GWR parameter table.

Varname Variable

ResidualSquares 135.339448
EffectiveNumber 171.30417

Sigma 0.745226
AICc 1108.82647

R2 0.666128
R2Adjusted 0.432804

Table 4. Regression coefficients of independent variables.

Independent Variable Coefficient Standard Deviation VIF

C1 bus station density 0.717431 0.150015 1.128058
C2 distance of nearest subway station −0.491072 0.080011 1.148059

C3 road density 1.282304 0.207124 1.103493
C4 function density 3.594345 0.155446 1.341426

C5 function-mixing degree 0.076683 0.077442 1.496915
C6 building density 0.239677 0.040434 1.939019
C7 floor area ratio 0.181675 0.062733 2.315423

C8 green-looking ratio 0.045766 0.082143 1.251804
C9 sky view −0.108025 0.071294 1.147594

The VIF of each independent variable is <7.5, which identifies the absence of multi-
collinearity between the indicators in Table 3. The coefficients effectively reflect the positive
and negative impact of each indicator on block vitality and the magnitude of the impact.
According to Table 3, the distance from the nearest subway station and sky view negatively
correlated with block vitality, that is, the further the distance from the subway station and
the higher the sky view, the lower the block vitality value. In addition, block function den-
sity and road density exert a high degree of influence on block vitality and the influence of
block-function-mixing degree and green-looking ratio on block vitality is relatively small.

One of the differences between GWR and other regression methods is that GWR can
calculate impact coefficients for each indicator in each region. We visualized the coefficients
of each indicator for each block (Figure 20). The blue area in Figure 20 represents high-
intensity negative impact, the red area represents high-intensity positive impact, and
the yellow area is low impact; the effect of each indicator on block vitality is spatially
nonhomogeneous and varies extensively.

At the block accessibility level, bus station density exerts a significant positive impact
on the vitality of the predominantly industrial-attributed blocks around Wuhan’s Third
Ring Road. Negative impact areas for the bus station density occur around the Second Ring
Road and the Beijing–Guangzhou Railway. The blocks in these negative impact areas have
higher bus station densities; therefore, the negative impacts, such as traffic congestion due
to bus stations, outweigh the positive impacts on the vitality of these blocks. The impact of
distance to the nearest subway station on the vitality of most blocks is negative, with only
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a few blocks having a very low positive effect. The impact of this indicator on block vitality
did not exhibit significant polarization. The distribution of the effect of road density on
block vitality is relatively homogeneous, with few blocks having both strong positive and
negative correlations. In addition, block accessibility has a strong positive correlation with
the vitality of science, education, and culture places, such as university cities and high-tech
parks, which is effectively verified at three levels—bus station density, distance to the
nearest subway station, and road network density. This finding suggests that enhancing
block vitality with a predominantly cultural and educational land-use nature could start
with enhancing the block accessibility.

Figure 20. Distribution of regression coefficients of each indicator. (a–i) represent the influence coefficients of each indicator.

The block function density exerts a greater impact on block vitality than the degree
of function mixing in a block. In addition, the block function density exerts a positive
impact on the vitality, that is, the higher the function density, the stronger the ability to
attract residents’ activities and the greater the intensity of block vitality. The function-
mixing degree of a block can effectively reflect the degree of diversity of land use. For
the residential-oriented blocks in central Hankou and the blocks in the university area of
Wuchang District, the block-function-mixing degree exerts a significant positive impact on
block vitality. However, in the case of the old city of Hankou, where the block functions
are already highly compounded, this indicator no longer exerts a significant positive effect.
Of note, blocks with a single land-use function can be quickly enhanced by increasing the
functional mix of the blocks.

The two indicators of building density and floor area ratio are combined to reflect
the impact of the degree of block construction on block vitality, and the combined impact
value of both indicators is positive. Combining Figure 20f,g shows that the vitality of the
peripheral blocks in the main urban area of Wuhan is positively affected by the building
density and floor area ratio. In addition, the mechanism of the effect of building density
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and building volume ratio in some blocks in the center of the main urban area is completely
opposite. The blocks in the Turtle Mountain Scenic Area and the University City area
of Wuchang District can be effectively improved by decreasing the building density and
increasing the plot ratio to enhance the vitality.

Beautiful greenery and suitable sky openness regulate the block climate and encourage
people to travel. The vitality of industrial areas in different zones inside and outside the
Third Ring Road responds to the opposite degree of the green-looking ratio. Zhuankou
and Wugang are located outside the Third Ring Road of the city, which is derailed from the
city center. The low local emphasis on block greening leads to a more attractive block with
a high green-looking ratio; thus, increasing the green-looking ratio of the two industrial
parks can effectively encourage people’s travel behavior and enhance block vitality. Turtle
Mountain Scenic Area and the southern part of East Lake have reached saturation with
the positive effect of the green-looking ratio on people’s travel owing to the government’s
attention and excellent native natural conditions. By appropriately pruning street trees,
decreasing building heights, and improving building spacing, the spatial openness can be
enhanced to promote human stay activities.

4.3.2. The Impact of Each Indicator on Block Vitality Based on Workdays and Weekends

To compare the variability of the impact of each indicator on block vitality between
weekends and workdays, the cellular signaling data from Monday to Friday were averaged
to evaluate the distribution density as the block vitality of workdays and the vitality of
weekends were calculated similarly. To circumvent the differences in the impact coefficients
of the indicators owing to the differences in vitality on workdays and weekends, the block
vitality on workdays and weekends was normalized and then subjected to GWR with the
indicators. Tables 5 and 6 show the results.

Table 5. Comparison of the degree of explanation.

Workday Weekend

R2 0.665935 0.662769
R2Adjusted 0.432477 0.427099

Table 6. Comparison of regression coefficients.

Independent Variable
Workday Weekend

Coefficient VIF Coefficient VIF

C1 bus station density 0.095924 1.128058 0.0857 1.128058
C2 distance of nearest subway station −0.067445 1.148059 −0.05419 1.148059

C3 road density 0.172378 1.103493 0.150854 1.103493
C4 function density 0.474224 1.341426 0.445276 1.341426

C5 function-mixing degree 0.011078 1.496915 0.007094 1.496915
C6 building density 0.031165 1.939019 0.030836 1.939019
C7 floor area ratio 0.027007 2.315423 0.014903 2.315423

C8 green-looking ratio 0.006381 1.251804 0.004810 1.251804
C9 sky view −0.013195 1.147594 −0.016030 1.147594

No covariance occurred among all indicators of the two models. The degree of
explanation of the independent variables on the changes of the dependent variable in the
two models was 43.25% and 42.71%. Only one indicator, sky visibility, exerted a greater
impact on block vitality on weekends than on workdays.

To visually compare the differences of each indicator on block vitality enhancement
on workdays and weekends, let Ri1 represent the coefficient of the R indicator of block i on
workdays and Ri2 denote the coefficient of the R indicator of block i on weekends. There
are six cases to calculate the Ri1 − Ri2 difference (Table 7).
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Table 7. Situation and meaning.

Ri1 Ri2 Ri1−Ri2 Meaning

+ + + The increase in vitality on weekends for this
indicator is higher than on workdays.

+ + − The increase in vitality on weekends for this
indicator is lower than on workdays.

− − + The increase in vitality on weekends for this
indicator is higher than on workdays.

− − − The increase in vitality on weekends for this
indicator is lower than on workdays.

+ − + The increase in vitality on weekends for this
indicator is higher than on workdays.

− + − The increase in vitality on weekends for this
indicator is lower than on workdays.

Figure 21 shows the spatial visualization of the differences in the impact coefficients of
each indicator; red denotes a positive difference, implying that the block has a greater boost
to vitality on weekends than on workdays for this indicator, and vice versa in blue, while
yellow represents the extent to which this indicator affects block vitality independently of
workdays or weekends.

Figure 21. Spatial distribution of regression coefficient differences. (a–i) represent the regression coefficient differences of
each indicator.

Comparing the three indicators of accessibility, the effect of bus station density is
higher than the other two indicators by time period. The positive impact of accessibility in
the south of the East Lake is higher on weekends than on workdays. The southern part of
East Lake is the center of education in Wuhan, where numerous college students gather.
College students have a higher demand for going out on weekends, and the enhancement



Land 2021, 10, 984 20 of 23

of block accessibility on weekends exerts a significant impact on enhancing block vitality.
Comparing the two indicators of block function, the function density and function-mixing
degree exert a significant effect on enhancing the vitality in Zhuankou on weekends. In
addition, Zhuankou Industrial Park is characterized by short construction time, low degree
of perfection of supporting facilities, and single nature of land use. With workers seeking a
higher quality of recreational life on their days off, high-density and high-mix blocks exert
a more pronounced effect on attracting foot traffic. Compared with other indicators, the
impact of human perception of block environment is less influenced by the time of day,
especially the indicator of sky view.

Generally, the enhancement of block vitality by each indicator closely correlates with
whether elements such as the main functions, current conditions, and needs of the block
are influenced by weekdays versus weekends.

5. Conclusions and Discussion

Now is an era of rapid development of big data; cellular signaling data as a type of big
data can effectively reflect the spatial and temporal characteristics of human behavior. This
study used the distribution density of cellular signaling data to quantify block vitality and
constructed an index system for the block environment. In addition, human perception of
the environment was introduced into the index system. Streetscape image segmentation
was used to attain the perception of greenery and sky to better fit the human perspective.
Finally, GWR was used to reflect the temporal and spatial impact mechanism of the
indicator on the vitality of the block, and according to the impact mechanism, it contributed
to making reasonable suggestions for improving block vitality. The following conclusions
were drawn from this study:

First, block vitality has significant spatial and temporal heterogeneity. Overall, vitality
is stronger and more concentrated in downtowns than in distant urban areas. Block vitality
is at its lowest in the early hours of the day and peaks during lunch and dinnertime. Block
vitality on weekends is more balanced with a decrease in the peak. Nighttime vitality on
weekends is higher than on workdays.

Second, indicators of block environment have large variability in their impact on block
vitality. The most influential indicators are the function density of the block and the road
density, whereas the less influential indicators are the function-mixing degree and the
sky view. Enhancing the accessibility of blocks can be done by increasing the density of
bus stations, rationalizing subway lines to decrease the distance from the nearest subway
station, and implementing a “small block and dense road network.” Facilitating people’s
travel behavior is a necessary condition for the growth of block vitality. Increasing building
density and floor area ratio in poorly built-up areas can accommodate more social behavior
to attain block vitality growth. Increasing the function density and mix of functions in
a block can attract more people to work, live, relax, and play. By increasing the block
attractiveness, the vitality can be increased. Finally, beautiful greenery, shade, and open
views will attract people to go out and promote block vitality, especially in blocks with
poorly constructed existing greenery.

Finally, a gap exists between the impact of each indicator on workdays and weekends.
Owing to the differences in the behavioral characteristics of people on workdays and week-
ends, the degree of influence of each indicator on block vitality also varies. For example,
for blocks with a high demand for weekend outings, such as universities, improving block
accessibility can effectively enhance block vitality. Blocks with a single function, such
as industrial parks, can be made more vibrant by increasing the functional density and
functional mix of the block.

6. Contributions and Limitations

People are paying increasing attention to the human living environment in recent
years. As a crucial index to measure the degree of urban development and enhance
the human living environment, the study of its quantification and influencing factors is
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essential to improve block vitality. This study intended to enrich the quantitative form of
block vitality and improve the index system of block vitality by examining the influencing
factors and mechanisms of block vitality in Wuhan and, meanwhile, hopes that the findings
will provide reference suggestions for the enhancement of block vitality in other cities.

From a theoretical perspective, the innovation points of this study are primarily
reflected in the following two points. First, this study used cellular signaling data that
reflect the spatial and temporal characteristics of human behavior. Cellular signaling data
have the advantages of a large sample size and reliable information, which can completely
reflect the real condition of workdays and weekends compared with traditional data.
Second, this study added human perception of the environment to the index system of
block vitality evaluation. Using streetscape image segmentation to quantify the green-
looking ratio and openness of the block from a human perspective fills the gap of human
perception of the environment in block vitality research and reflects the human-centered
planning idea. From a practical perspective, this study focused on dynamic block vitality
and examined ways to enhance block vitality by dividing it into workdays and weekends,
as opposed to previous studies of static vitality.

Although this study has many advantages, some limitations need to be addressed
subsequently. First, with respect to the dependent variable, the activities of some people
who do not engage in mobile communication behaviors were overlooked when quantifying
block vitality. Subsequent studies can combine other indicators to jointly enhance the quan-
tification of block vitality. Second, in terms of environmental elements, the environmental
elements in this study considered more physical environmental elements, while social envi-
ronmental elements such as population size and economic development were not included
in the consideration [58]. Green-looking ratio and openness as human perception of the
environment were included in this study, but human perception of emotion is diverse, and
other elements such as human emotions in different environments should also be included
in the index system in subsequent studies to more comprehensively consider the impact of
human perception on block vitality.
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