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Abstract: Data driven methods are widely used for the development of Landslide Susceptibility
Mapping (LSM). The results of these methods are sensitive to different factors, such as the quality
of input data, choice of algorithm, sampling strategies, and data splitting ratios. In this study, five
different Machine Learning (ML) algorithms are used for LSM for the Wayanad district in Kerala,
India, using two different sampling strategies and nine different train to test ratios in cross validation.
The results show that Random Forest (RF), K Nearest Neighbors (KNN), and Support Vector Machine
(SVM) algorithms provide better results than Naïve Bayes (NB) and Logistic Regression (LR) for the
study area. NB and LR algorithms are less sensitive to the sampling strategy and data splitting, while
the performance of the other three algorithms is considerably influenced by the sampling strategy.
From the results, both the choice of algorithm and sampling strategy are critical in obtaining the best
suited landslide susceptibility map for a region. The accuracies of KNN, RF, and SVM algorithms
have increased by 10.51%, 10.02%, and 4.98% with the use of polygon landslide inventory data, while
for NB and LR algorithms, the performance was slightly reduced with the use of polygon data. Thus,
the sampling strategy and data splitting ratio are less consequential with NB and algorithms, while
more data points provide better results for KNN, RF, and SVM algorithms.

Keywords: landslide; susceptibility; machine learning; GIS; Kerala

1. Introduction

Catastrophic landslides in mountainous terrains interact with human environment
and cause adverse impacts on lives and properties [1]. Aids for managing the risk due
to landslides is a topic of which several decades of research has been devoted [2,3]. Map-
ping the spatial distribution of landslide hazard is one of the most-adopted strategies for
risk management, as the landslide susceptibility maps can be used by the government
for strategic planning and development [4]. With the recent advancements in Machine
Learning (ML) techniques and computational facilities, Landslide Susceptibility Mapping
(LSM) have become much easier.

Data driven methods are extensively used for LSM, and the earlier statistical methods
using Geographical Information System (GIS)-based approaches are now being replaced
by advanced ML algorithms. Different ML algorithms are being widely used for this
purpose [5], and the literature shows that no single ML algorithm can be said to be the best
for LSM. The choice of an ML algorithm for a particular region is subjected to the scientific
goals and objectives of the LSM [5]. Five different algorithms are considered in this study,
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viz., Naïve Bayes (NB), Logistic Regression (LR), K Nearest Neighbors (KNN), Random
Forest (RF), and Support Vector Machines (SVM). All the algorithms are popular in LSM,
but the best suited model for each scenario has to be decided by a quantitative comparison
of the model performances. The data used for training and testing of the ML algorithm
should be prepared with utmost care, as the quality of data is the key parameter which
decides the performance of any ML model. The data includes the landslide inventory
and the Landslide Conditioning Factors (LCF). The LCFs are selected considering the
topographical and meteo-geological conditions of the study area, and most conditioning
factors are often derived from Digital Elevation Models (DEM), satellite data, and existing
regional maps. In most cases, landslide inventories are obtained based on satellite images
and field investigations [6].

Even though the quality of LCFs are found to be satisfactory and with good resolution
DEMs available from satellite-based missions such as TanDEM-X and ALOS, the landslide
inventories are often incomplete [7]. The quality of the landslide inventory is subjected
to the positional accuracy and sampling strategy. In many studies, the inventories are
prepared using points representing landslide crowns. The training and testing data for
LSM are prepared using the data from all LCFs extracted using the landslide points. Hence,
the positional accuracy of the inventory significantly affects the dataset used for testing
and training. When the region is affected by shallow landslides only, the Crown Point
provides a satisfactory representation of the landslide-affected area. However, when a
region is affected by long runout landslide events, such as debris flows and avalanches,
the runout zones cannot be represented using single point information [7], and the events
can cause adverse effects in downslope areas [1,8]. The LCFs of the initiation zones and
runout zones are entirely different, and a model which is trained using only the initiation
zones will ignore the runout zones that may be affected by landslides [9,10]; however,
in most studies, landslides are represented using point data, due to the limitations in
data availability [11]. Hence, in this study, both point data (single point at the crown of
landslide) and polygon data (cluster of points covering the area affected by landslides) are
used for LSM. Each point in the cluster represents a cell in the landslide body and is used
for LSM. The difference between both the approaches is that the point data considers only
the crown area, while the polygon data considers the whole area affected by landslides,
including the crown and the runout zone.

The resampling technique of cross validation is a recent advancement in ML, applied
to test cases with limited data samples [5]. k-fold cross validation techniques are being
widely used for LSM applications, in which the data is split into k parts and are internally
resampled such that k−1 parts are used for training and 1 part of testing at each stage of
sampling. Even though the method is being widely used for the purpose of validation,
there are no guidelines for the number of k to be chosen for an analysis, and, in most
studies, the value is chosen as 5 or 10 arbitrarily [12]. The number of k decides the ratio of
train to test data, which can affect the performance of the ML model. Hence, in this study,
the value of k is also varied from 2 to 10 in order to find the optimum value of k for each
algorithm.

To test the objectives, the Wayanad district in Kerala, India, was selected as the test
site. The district has suffered from a number of landslides after the incessant rains that
occurred during monsoon seasons of 2018, and the landslide inventory data of 2018 was
used for LSM.

2. Study Area

The Wayanad district is in the southern part of India (Figure 1), which belongs to
Western Ghats, the most prominent orographic feature of the peninsular India. This district
is highly prone to landslides [13,14] and has a total area of 2130 km2, of which 40% is
covered by forests. The topography falls mostly in plateau region sloping towards east,
for this hilly district is located at the southern tip of Deccan plateau. A major share of
the district contributes to the east-flowing river Kabani and its tributaries (Figure 1). The
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natural drainage system is constituted by a number of streams, rivulets, and small springs,
and the district landscape with flood plains and ridges is formed by this drainage system.
Many debris flows that have occurred in the district have runout distances of a few hundred
meters, and the longest one ranges up to 3 km. All these slides have contributed to the
process of landscape evolution in the district, and minor order streams are originated along
the debris flow paths. Thus, the development of drainage paths and watersheds are highly
related to the occurrence of landslides, especially debris flows in the region. The flood
plains are formed by alluvial deposits with a thickness of more than 10 m. The northwest,
southwest, and western parts of the region are formed by higher elevation hill ranges,
with steep slopes and a rugged topography. Most of the forest areas are also along these
hilly regions. The continuous erosion, transportation, and deposition of the rocks have
resulted in the formation of valleys in between the hill ranges. The long runout debris
flows that are common in the region also contribute to this process of landscape evolution.
Geologically, the district is composed of a peninsular gneissic complex, charnockite group,
Wayanad group, and the migmatite complex [15]. Bands of the Wayanad group are found
in the northern part of the district, while the rocks of south and southeast are formed by
the charnockite group [15]. The northcentral part is composed of a peninsular gneissic
complex and the southcentral part is of the migmatite complex.
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Figure 1. Location map of Wayanad.

A major share of the district is covered by reddish-brown lateritic soil with higher
fine content. The forest zones are covered by forest soil with rich organic content, and the
riverbanks are formed by thick alluvial deposits. The larger regolith thickness often leads
to the bed erosion and bulking of landslides, which increases the landslide volume and
destruction potential [16].

The district is highly affected by geohazards such as landslides and floods due to its
topographic and geomorphological conditions. The highly dissected hills and valleys along
the west, northwest, and southwest parts of the district are highly prone to landslides.
During August of 2018, the district was affected by a number of landslides due to torrential
rains [17]. A total of 388 landslides (Figure 1) were mapped within the district using
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government reports and pre- and post-event satellite images from Google Earth, and have
been verified using a recently published dataset [18]. The inventory data were prepared
separately for LSM, and are different from the dataset used for previous studies conducted
by the authors [13] in which they derived the rainfall thresholds for the region. For deriving
rainfall thresholds, multiple landslides occurring on the same day were considered to be
a single landslide event, and approximate locations were used, as the focus was on the
day of occurrence of the landslide event. However, the inventory data of LSM needs to
be accurate, and the spatial distribution of landslides is more important than the time of
occurrence of landslides. Hence, the high resolution satellite images available from Google
Earth were utilized to prepare a separate landslide inventory database of 388 landslides
which occurred in 2018 alone. The district faced major setbacks during the disaster and
the catastrophic landslides repeated in the years 2019 and 2020 as well. The increasing
frequency of landslides in the districts calls for an updated landslide susceptibility map
using data-driven approaches.

3. Methodology

This study aims at evaluating the uncertainties in LSM using ML by adopting different
ML algorithms, sampling strategies, and train to test ratios. The first step was the prepara-
tion of the dataset, starting from the landslide inventory. The data has to be preprocessed
before using it for training and testing. Five different ML approaches were used in this
study for comparison.

3.1. Machine Learning Algorithms

Data-based methods are often used to solve real-world problems when the knowledge
of the theoretical part is limited and the data is of a large size [19]. Being a non-linear
problem, ML models are highly suitable for LSM. The algorithms can learn the association
between the occurrence or non-occurrence of landslides and the LCFs using the landslide
and no landslide points used for training. Five different ML algorithms are considered in
this study, which are explained as follows:

3.1.1. Naïve Bayes

The name of the NB algorithm is formed by two words, ‘Naïve’ and ‘Bayes’. While
the latter word stands for the Bayes (named after Thomas Bayes) theorem, which is used
for calculating the conditional probability of the occurrence of landslides, in NB, the first
term stands for the assumption that the algorithm naively considers all parameters to be
independent of each other. The use of simple Bayes’ theorem helps the model to have good
mathematical control and the results can be achieved fast by using an NB algorithm [20].
The equation for calculating conditional probability of occurrence of landslide (L), subject
to the occurrence of conditioning factors C (C1 to Cn) is given in the following equation:

P (L| C1, C2, . . . . . . Cn) =
P(L)× P(C1, C2, . . . Cn|L)

P(C1, C2, . . . Cn)
(1)

The advantage of an NB algorithm is its simplicity and lower calculation time. The
model does not require any hyper parameter tuning and can be easily implemented on any
dataset. The major limitation is its assumption of independent parameters. The assumption
does not hold true for most of the real-world problems and hence the algorithm may not
provide reliable results when the parameters are highly dependent on each other. The
algorithm has been used in LSM for more than a decade [21].

3.1.2. Logistic Regression

An LR algorithm is formed from regression analyses, deriving a linear relationship
amongst the LCFs by using coefficients [22]. This algorithm, which is derived from statistics,
produces a regression output in the form of a mathematical function, and can calculate
the probability of the occurrence of landslides. The sigmoid function or logistic function,
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which is used in this algorithm, is where the name of LR originates. The sigmoid function
in ‘S’ shape is a core part of LR, which sets an asymptote, based on the positive or negative
values of x. For positive values of x, an asymptote is set to y = 1, and for negative values
of x, asymptote is set for y = 0.

The algorithm is easy to implement and does not require any hyper parameter tuning.
The model finds its application in LSM due to this simplicity and its usage of probability to
predict the solution. A non-linear relationship is established with the landslide and non-
landslide points and LCFs and finds a fitting function. The probability of the occurrence of
landslides P(L) is calculated by LR as follows:

P (L) =
ex

1 + ex (2)

where, x is a linear fitting function, using the LCFs, given by:

z = a0 + a1C1 + a2C2 + · · ·+ anCn (3)

where, a0 is the intercept, a1, a2 . . . an are the regression coefficients, and C1, C2, . . . Cn are
the LCFs. For dependent variables in binary form and large input data with minimum
duplicates and minimum multi collinearity, the algorithm can produce satisfactory results
in LSM [23].

3.1.3. K-Nearest Neighbors

The classification of a data point using a KNN algorithm is carried out by using the
properties of the neighboring data points [20]. It is a more efficient form of the ball tree
concept [24], which can be applied to larger dimensions. The algorithm is widely used
in LSM applications [25] and the probability of a data point to be allocated in any class
is determined by the classification of its nearest neighbors [26]. The data point takes the
classification in which the maximum number of its neighbors is classified. The number of
K shall be decided by tuning process for better results.

KNN is classified as a non-parametric model, as the computation process does not
depend upon the distributions of the dataset. This is another advantage while using KNN
for LSM applications where the number of parameters is more and the data seldom fits
to standard distributions. For a set of unclassified points, the algorithm calculates the
distance from each point to find K closest neighbors. The classification of these neighbors
are then used for voting, and the classification with the maximum votes is assigned to the
unclassified data point.

3.1.4. Random Forest

As the name indicates, RF is a combination of many Decision Trees (DT) and the
concept was developed in 1995 [27]. Each DT has nodes and branches. The decisions are
made at nodes and the classification continues on a particular branch based on the decision.
The decisions are continued by considering all LCFs, and each DT assigns a class for the
object. RF then considers the class predicted by all DTs and assigns a class for the object
based on voting. Each DT is a subset of the whole dataset, and is independently sampled
by bootstrapping. The randomness of selection at each node is the major advantage
of RF model, which often results in highly accurate predictions, making it suitable for
LSM [21,28–30].

The use of splitting at nodes, bootstrapping, and several number trees reduces overfit-
ting in RF by increasing randomness. The model can be fine-tuned by varying the depth of
trees, number of trees to be combined, and the number of features considered at each node.

3.1.5. Support Vector Machines

The SVM algorithm classifies a data point using a hyperplane in a multidimensional
space, first proposed by Vapnik and Lerner [31–33]. The hyperplanes are boundaries
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that decide the classification of an object. The number of LCFs used for the analysis
determines the dimensions of the hyperplane. For each dataset, multiple hyperplanes are
possible, which can classify the points into different classes. Hence, the SVM algorithm
should choose a hyperplane which can maximize the distance between the data points of
both classes using statistical learning theory [31,34]. The distance is maximized in order
to accommodate the future data points. The data points which are located near to the
hyperplane determine the orientation and position of the hyperplane, and these data points
are called support vectors.

The SVM algorithm classifies the objects by using different kernel functions, and the
choice of kernel function is critical in the results produced by the algorithm. The algorithm
is widely used for LSM applications [29,35] and has been in practice since the 2000s [34].

3.2. Data Collection and Sampling Strategies

The landslide inventory map for the study was prepared manually after interpreting
satellite images before and after the event. A total of 388 landslides which occurred in
2018 were identified within the boundary of Wayanad. The 2018 disaster was chosen for
the study as the district was widely affected by this particular event. The locations where
historical landslides were reported were affected, and many new landslides were also
reported. Two datasets were prepared from the landslide data collected (Figure 2). In
the first approach, the landslide was represented by a point in the crown area and, in the
second method, the shape of landslide was demarcated using pre- and post-satellite images;
the polygon was marked as inventory data. The district was highly affected by long runout
debris flows, as 309 events out of the total 388 were classified as debris flow events. Among
the remaining events, 68 were shallow landslides and 11 were rock falls or rockslides. The
388 landslides were represented by 388 cells in the first sampling strategy (Figure 2a) and
9431 cells using the second strategy (Figure 2b). The developed landslide susceptibility
map thus provides the probability of occurrence of any of these landslide typologies in the
region, and it is not specific for any single landslide typology. The debris flows have very
long runout distances [16], and even the locations which are a few kilometers away from
the crown points, with entirely different LCFs, were also affected. Hence, using point data
for the training and testing of the model might ignore the probability of the occurrence of
hazards in the runout zones. To avoid this issue, polygon inventory data was also used
in the analysis. The polygon data represents all the cells affected by landslides, unlike
the single point used in the first approach. However, the polygon does not differentiate
between the crown area and the runout zone. The objective is to train the ML model
to predict the probability of the occurrence of a landslide in each cell, and the focus of
this manuscript is to compare the probabilities predicted by different approaches. The
methodology does not differentiate between crown and landslide body, and checks only if
the cell is affected by landslide or not.
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The DEM for the study was collected from an Advanced Land Observing Satellite–
Phased Array type L-band Synthetic Aperture Radar (ALOS PALSAR) [36], with a resolu-
tion of 12.5 m. All the other layers were also prepared in the same resolution as the DEM,
and all GIS operations were carried out using QGIS version 3.10. The LCFs, such as slope,
aspect, Stream Power Index (SPI), and Topographic Wetness Index (TWI) were derived
from the DEM. The first LCF used in this study was elevation, which was directly obtained
from the DEM. Slope angle is another significant factor which is critical in triggering the
landslides. Slope is defined as the ratio of the vertical to horizontal distance between
two points, expressed in terms of the tangent angle in degrees. The value of slope may
vary between 0 and 90 degrees. The orientation of the sloping face is expressed using the
direction and is termed as aspect. From previous studies, it was found that the value of
aspect is critical when landslides occur after the formation of tension cracks in clay [37]
and hence it is considered as an LCF. The value of aspect ranges from 0 to 360 degrees and
it is classified into 9 categories based on the orientation.

The drainage map for the district was also prepared using the DEM. The locations
of the streams were then verified using satellite images and were used for calculating the
distance from the streams’ layer, which is considered as an LCF. The observation from the
inventory data was that many of the long runout debris flows occurred near the streams in
the locality. The DEM was also used to create the flow accumulation map and the SPI and
TWI layers were developed using the values of flow accumulation. Both SPI and TWI are
significant in the process of the initiation of landslides, as SPI represents the power of a
flowing water source to erode the material. As the values of the SPI ranges over multiple
orders, the natural logarithm of SPI was used for calculation. TWI indicates the wetness of
the location, which quantifies the topographic control on different hydrological processes.

The Normalized Difference Vegetation Index (NDVI) is considered to be an important
LCF, as it indicates the amount of greenness of a location [38]. When the NDVI values
are higher, it represents the presence of vegetation [39,40] and can be correlated with the
canopy cover [23]. Thus, the NDVI values are maximum for forest regions and minimum
for water bodies and non-vegetated surfaces. Most landslides have occurred within the
forest region itself, and the long runout debris flows have originated in the forest area.
The net cropped area is 1129.76 km2, and a major share of cropped area is being used for
perennial crops such as coffee, arecanut, and coconut [41]. The cash crops such as coffee
and tea and spices such as cardamom are widely cultivated along the hill slopes, while the
other crops are cultivated in flatter areas. The NDVI value was calculated using two bands
of the electromagnetic spectrum, the Near Infra-Red (NIR) and Red (R) bands [42]. For
Landsat 8 images, Band 5 represents NIR and Band 4 represents R. Hence, for this study,
the NDVI values were calculated from Landsat 8 images captured in December 2017 and
January 2018. As a major share of the cultivated areas is dedicated to perennial crops, the
collected images can also satisfactorily represent the conditions at the time of landslides.
From the collected images, NDVI is derived using the following formula:

NDVI =
(Band 5− Band 4)
Band 5 + Band 4

(4)

The rainfall data for the Wayanad district was collected from the Indian Meteorological
Department (IMD) [43]. The data from four different rain gauge stations from 2010 to
2018 were interpolated using inverse distance weighted method of interpolation to get the
average annual rainfall values across the district.

The geology, geomorphology, road network, and lineaments of the district were
collected from maps published by the Geological Survey of India (GSI). The lineaments
and roads were first rasterized and then used to develop the distance rasters, which were
used as LCFs. The geology and geomorphology layers were classified and rasterized. The
geology was classified into 7 groups, such as migmatite complex, charnockite, younger
intrusive, basic intrusive, wayanad group, acid intrusive and peninsular gneissic complex
(Figure 3). Geomorphologically, the region was classified into four categories: the highly
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dissected hills and valleys, moderately dissected hills and valleys, low dissected hills and
valleys, and pediment complex. The collected layers are shown in Figure 3. The layers
were then further processed to prepare the database for LSM.
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The processing of different LCFs is depicted in detail in Figure 4. The processing
is different for raster and vector layers. The vector layers are first rasterized and then
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converted to XYZ format. For roads, streams, and lineaments, the distance from each
feature is first calculated, and the distance rasters were used as LCF (Figure 3).
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Figure 4. Schematic representation of dataset preparation from different spatial layers collected.

After preparing the landslide inventory data, an equal number of no landslide points
were also prepared for the purpose of training and testing for both the sampling methods
(point and polygon data). The landslide cells are represented using 1 and no landslide cells
using 0 in the dataset. The data from all LCFs were then extracted for the landslide and no
landslide points to develop the training and testing dataset. The derived model was later
applied to the whole dataset to develop the landslide susceptibility map for the study area.

3.3. K-Fold Cross Validation and Data Splitting

Validation techniques are used to evaluate the performance of ML models. When the
dataset is limited, cross validation techniques are often adopted to overcome the limitations
associated with the size of the dataset. For k-fold cross validation, the value of k is the only
input required, and the dataset is then divided into k different subsets or folds (Figure 5).
Among the k-folds, k−1 folds are used for training the model and the last fold is used for
testing. The process is repeated k−1 times so that each subset in the dataset is considered
for testing.
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The number of k decides the ratio of train to test ratio of validation and, in most
studies, the value of k is randomly is chosen as 5 (train to test ratio 80:20) or 10 (train to test
ratio 90:10) [44]. However, detailed studies on performance of cross validation suggest that
repeated cross validation should be carried out to determine the optimum value of k [12].
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3.4. Quantitative Comparison

The Receiver Operating Characteristic (ROC) curve approach is used for the quan-
titative comparison of different models. The curve is a plot between the False Positive
Rate (FPR) on the x axis and the True Positive Rate (TPR) on the y axis. These parameters
are calculated using a conventional confusion matrix where true positives are correctly
predicted landslide points, true negatives are correctly predicted, no landslide points, false
positives are incorrectly predicted, no landslide points and false negatives are landslide
points missed by the model. From these four values, TPR and FPR are calculated as follows:

TPR =
True Positives

True Positives + False Negatives
(5)

FPR =
False Positives

False Positives + True Negatives
(6)

The plot with maximum Area Under the Curve (AUC) had the best performance. The
landslide susceptibility maps were then prepared using the probabilities predicted by the
derived ML models. The model predicts the probability of the occurrence of landslides
in each cell, varying from 0 to 1. Based on the probability, the district is categorized into
five [45–47] (0.0 to 0.2, 0.2 to 0.4, 0.4 to 0.6, 0.6 to 0.8, and 0.8 to 1.0) and the corresponding
susceptibility classes are defined as very low, low, medium, high, and very high. The
classification based on equal interval was chosen over the other approaches such as natural
break and quantiles, as this study focuses on the comparison of probabilities predicted by
different approaches. By using equal interval, the susceptibility classes predicted by each
approach can be compared directly to evaluate the agreement or disagreement between
the predicted probability values. In other approaches, relative values predicted by each
model are used separately for defining the classes and hence the comparison of predicted
probabilities is difficult. The statistical attributes such as accuracy and AUC do not provide
insights into the agreement and disagreement between the different landslide susceptibility
maps prepared. Hence, another parameter, called the Empirical Information Entropy (EIE),
or H index, is used to evaluate the agreement between different maps. H index can be
calculated as:

H = −
n

∑
I=1

P(i) log(P(i)) (7)

where, P(i) is the likelihood of the susceptibility class (very low, low, etc.) i, which is
numbered from 1 to 5 in this study (1 is very low and 5 is very high), and n is the number
of classes (5 in this case). When all the maps agree with each other, the value of H is zero
and as the value increases; the disagreement also increases.

The value of the H-index can be used as an indication to quantify the mutual agreement
between the landslide susceptibility maps considered [4]. When two landslide susceptibility
maps are compared, there are two outcomes. When both the outcomes are same, the
probability of occurrence of one susceptibility class becomes 1 and that of all the other
classes are zero. Hence, the H-index becomes zero. In cases where both the outcomes
are different, the probability of occurrence of two susceptibility classes is 0.5 and that of
remaining classes are zero. The H-index value is the absolute value of twice the product
of 0.5 and log(0.5); i.e., 0.30. When five landslide susceptibility maps are compared, the
possible combinations of outcomes and H index values are given in Table 1 below. The
number of landslide susceptibility maps predicting each class is interchangeable along the
row, and all combinations result in the same value of H index.

From Table 1, it is clear that, as the value of H-index increases, the entropy increases [48],
i.e., the disagreement between landslide susceptibility maps increases [4]. Hence, the value
can be used to quantify the agreement amongst the results. If more landslide susceptibility
maps predict the same class for a cell, the predicted results can be considered to be highly
reliable.
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Table 1. Possible H index values while comparing the landslide susceptibility maps produced using
five algorithms.

Number of Landslide Susceptibility Maps Predicting Each Class
H-Index

Class 1 Class 2 Class 3 Class 4 Class 5

5 0 0 0 0 0.00

4 1 0 0 0 0.22

3 2 0 0 0 0.29

3 1 1 0 0 0.41

2 2 1 0 0 0.46

2 1 1 1 0 0.58

1 1 1 1 1 0.70
The numbers in rows three to nine can be interchanged among the first five columns. The resulting H-index will
remain the same.

4. Results

The performance of the test dataset was first evaluated using the ROC approach to
find out the model with best performance. The analysis was carried out with the values
of k ranging from 2 to 10 for algorithms, using both a point and polygon dataset, and the
ROC curves are plotted in Figure 6.

The minimum and maximum accuracy of the model with NB algorithm and point
data are 82.70% and 83.30%, respectively, and the corresponding AUC values are nearly
the same, i.e., 0.903 and 0.904. The accuracy values remained the same, while the AUC
values reduced when the polygon data is used with the NB algorithm. The trend is nearly
the same for the LR algorithm as well. The AUC values are slightly better than NB, with
the maximum value of 0.920 with point data. The pattern is different for the other three
algorithms, and the performance is significantly improved with polygon data in all the
three cases. With the point data, the maximum accuracy values are 84.71%, 88.12%, and
86.63% for KNN, RF, and SVM, respectively, while the maximum AUC values are 0.911,
0.954, and 0.930. With the use of polygon data, the maximum accuracy of KNN increased
up to 95.22%, while that of RF became 98.14% and the same for SVM became 91.61%. The
AUC values also increased up to 0.981, 0.993, and 0.963 for KNN, RF, and SVM, respectively.
Another important observation is that the performance of SVM is better than KNN while
using point data, with a difference of 1.92% in accuracy, albeit when polygon data is used.
KNN performed better than SVM, with a difference of 3.61% accuracy (Table 2). In both
the cases, the RF model outperforms the other models with the highest values of accuracy
and AUC.

From Figure 6, it can be observed that the AUC values of KNN, RF and SVM have
improved significantly by using polygon inventory data, while the variation is minimum
in the case of NB and LR. Moreover, the effect of varying the value of k in k-fold cross
validation is insignificant while using polygon data for NB, LR, and SVM algorithms, while,
in the case of KNN and RF, variation in the number of folds can result in a variation of
approximately 2% accuracy with polygon data. Even though the variation is not significant,
the best performance of all models was obtained at k = 8, using point data. A summary
of quantitative comparison is provided in Table 2, with the k values corresponding to
minimum and maximum performances in the brackets.
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Table 2. Quantitative comparison of different algorithms, sampling strategies and data splitting
using accuracy and AUC values.

Algorithm NB LR KNN RF SVM

Point Data

Min Accuracy (%) (k) 82.70 (3) 86.67 (3) 83.00 (2) 86.20 (3) 84.80 (2)

Max Accuracy (%) (k) 83.30 (8) 87.41 (8) 84.71 (8) 88.12 (8) 86.63 (8)

Min AUC (k) 0.903 (3) 0.912 (3) 0.896 (2) 0.932 (3) 0.917 (2)

Max AUC (k) 0.904 (8) 0.920 (8) 0.911 (8) 0.954 (8) 0.930 (8)

Polygon Data

Min Accuracy (%) (k) 83.32 (2) 83.44 (2) 93.23 (2) 96.13 (2) 91.00 (2)

Max Accuracy (%) (k) 83.34 (6) 83.45 (5) 95.22 (8) 98.14 (9) 91.61 (9)

Min AUC (k) 0.885 (2) 0.914 (2) 0.977 (2) 0.992 (2) 0.959 (2)

Max AUC (k) 0.885 (6) 0.914 (5) 0.981 (8) 0.993 (9) 0.963 (9)

From the comparison of statistical performance obtained as per Figure 6 and Table 2,
it can be observed that the RF algorithm with polygon inventory data is performing better
than all other models. The performance of KNN and RF are comparable while using
polygon data and the scores of RF and SVM are comparable while using point data. Still,
the best suited model cannot be selected on the basis of statistical scores only. The choice
needs a detailed understanding of the distribution of susceptibility classes and a detailed
evaluation based on practical perspectives. The purpose of landslide susceptibility maps is
to help the planners and authorities in making strategic decisions for future development.
Hence, it is important to provide clear information about the susceptibility classes. Based
on the value of probability of the occurrence of landslides, the district is divided into
five susceptibility classes: very low, low, medium, high, and very high. The statistical
attributes provide the prediction performance on the test data only [49]. From a practical
perspective, a landslide susceptibility map with an acceptable performance should classify
all the landslides correctly within the very high, high, or medium classes. At the same time,
the model cannot be too conservative, which may restrict the developmental activities
within a larger area. The landslide susceptibility maps prepared using both point and
polygon data using each algorithm with the best performing model are evaluated in detail
along with the H-index map for a better understanding of spatial agreement.

The number of pixels in each category and the number of landslides that occurred in
each class are also important concerns. By using a reliable landslide susceptibility map,
the landslides should occur within medium, high, and very high susceptible zones. The
landslides which occur outside these zones are missed events, which should be considered
with utmost care. Any model with an increased number of missed alerts fails to predict the
possible occurrence of landslides.

The landslide susceptibility maps prepared using NB algorithm classifies 15.07% of the
total area in the very high category with point data and 18.29% with polygon data (Figure 7).
It can also be understood from Figure 7 that, among the 388 landslides considered, 72.64%
occurred in very high classified areas, itself with point data, and the percentage increased
to 80.64% using polygon data. Exactly 74.49% of the total area is classified as very low
using point data and 73.27% using polygon data. The performance of the model is slightly
reduced while using polygon data due to the increased number of false alarms within the
increased percentage area covered by very high and high category. Considering the mutual
agreement between the predictions made by both sampling strategies, 86.42% of the total
predictions are in perfect agreement with each other (Figure 7c), while the classification of
susceptibility predicted by both methods are different in the remaining area.

The LR algorithm classifies 6.90% of the total area as very high, 9.04% as high, 10.55%
as medium, 22.21% as low, and 51.30% as very low susceptible classes using point data
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(Figure 8). The number of landslides that occurred in the very high classified locations
are reduced to 58.60% when compared with NB, but, at the same time, the number of
landslides that occurred in the very low category was also reduced to 6.78%, which in
turn slightly improved the performance of LR. While using polygon data, LR algorithm
classifies 8.63% of the total area as very high, 7.82% as high, 9.03% as medium, 14.58% as
low, and 59.95% as very low. Even though the missed alarms are reduced by this case, the
increased number of false alarms resulted in a marginal decrease in accuracy and the AUC
values. For 72% of the total area, the susceptibility class predicted using both point data
and polygon data perfectly agreed with each other, with an H-index of 0.

From the AUC values (Figure 6), it is evident that the performance of KNN is compa-
rable with NB and LR algorithms while using point data, but it has increased significantly
while using polygon data. The reason for this is the drop in the areas classified into very
high, high, and medium classes to 3.48%, 3.27%, and 3.44% while using polygon data when
compared to 7.15%, 7.60%, and 7.82% while using point data (Figure 9). This reduction has
resulted in a considerable reduction of false alarms and in the improvement of accuracy
and AUC values. The variation is also reflected in the H-index map, as only 68.70% of the
total area agrees with the prediction made using different sampling methods.

Similar to KNN, RF also shows a significant improvement in performance while using
polygon data when compared to the point data. The reason is also very similar, as the
percentage of very high, high, and medium classified points are reduced while using the
polygon data. With the use of point data, 7.86% of the total area was classified under the
very high category, which comprises 61.26% of the total landslide occurrences (Figure 10).
However, with polygon data, 97.90% of the total landslides are happening within the
1.06% of the total area, which are classified into the very high category. The number of
missed events is also reduced by using polygon data as only 0.13% and 0.06% of landslides
occurring in the low and very low classified areas, respectively. The mutual agreement
between the landslide susceptibility maps produced by point and polygon data is also the
least in case of RF algorithm, as 71.20% of the total area has been classified into different
categories by using different sampling strategies.

Similar to NB and LR, SVM also shows an increase in percentage of area classified into
the very high category with the use of polygon data when compared with the landslide
susceptibility map prepared using point data (Figure 11). However, the percentage increase
in this category does not result in false alarms, as in the case of NB and LR, as most pixels
classified as high and medium categories using point data were classified as in the very
high category while using polygon data. Thus, the true positives have increased, and false
negatives have been reduced by using polygon data, which in turn resulted in an increase
in performance using polygon data. For 75.28% of the area, the categorization is same
when using both point and polygon data, as depicted by the H-index plot.

While comparing the performance of different models, RF provides better perfor-
mance by using both point and polygon data. Moreover, while using polygon data, the
performance of KNN and RF are comparable and, while using point data, the performance
of SVM and RF are comparable. Apart from statistical comparison, a better understanding
of the pixel-wise distribution of susceptibility classes and mutual agreement between the
landslide susceptibility maps can help in deciding the best suited landslide susceptibility
map for a region.
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polygon data. 
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5. Discussion

From the obtained results (Table 2), it is evident that the choice of algorithm and
sampling strategies can affect the prediction performance of a landslide susceptibility
map significantly. The effect of data splitting is crucial for only RF, KNN, and SVM
algorithms while using the point data for sampling. The landslide susceptibility maps and
H-index plots provide more insights into the effects of different sampling strategies in the
performance of different algorithms. From the H-index maps and AUC values, it is evident
that the sampling strategy is least effective in the case of NB and most effective in the case
of RF.

Figure 12 shows the H-index plots prepared to understand the mutual agreement
between different algorithms using the same sampling strategy. It can be observed that,
in the case of low susceptible area, the different algorithms are in good agreement with
each other, and the LR algorithm classifies the least area in the very low category, which is
51.30% of the total area. While using point data, all algorithms agree in the classification of
47.56% of the total area and all algorithms differ in the case of 0.17% of the total area.
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The percentage distribution of each value of H-index is provided in Table 3 below.
While using polygon data, the mutual agreement between algorithms is improved, with
perfect agreement in 58.06% of the total area. In no pixels, the classification of all algorithms
is entirely different and at least two algorithms agree with the predicted classification. As
can be observed from Figure 12b and Table 3, there are no pixels with a H-index value of
0.70 when polygon data is used.

For NB and LR algorithms, the performance is reduced when a greater number of
data points in the polygon dataset is used. This is a result of increased correlation between
the LCFs with more data points, which violates the basic assumption of independent
variables in both the cases. The use of linear fitting function in the case of LR also results
in a slight decrease in the accuracy and AUC values with the increased number of data
points. However, the advantage of using these algorithms is the reduced computational
time involved, as they do not require any hyper parameter tuning.
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Table 3. Percentage distribution of H-index values in the total area, using different sampling strate-
gies: comparison between all algorithms.

H Index
Point Data Polygon Data

Percentage Pixels (%)

0.00 47.56 58.06

0.22 19.31 13.25

0.29 13.04 7.47

0.41 8.93 6.96

0.46 7.52 11.48

0.58 3.47 2.77

0.70 0.17 0.00

In the case of KNN, SVM, and RF, the ratio of the train to test dataset can also result in
a performance variation while using point data. The performance of these algorithms is
significantly increased with the use of polygon data. The improvement in performance can
be attributed to the improved size of data used for training the model. All three models
demand a long time for the fine-tuning process. The models are highly sensitive to the
parameters, train to test ratio, and the size of the dataset [5]. All the three models are
widely used for LSM and, hence, if computational facilities are available, the train to test
ratio should also be varied to produce the best results from these algorithms.

Even though the performance is comparable with KNN and RF, a higher number of
landslides in the very low category make the landslide susceptibility maps made using
SVM unsuitable for practical applications. This is an important aspect to be considered.
From Figure 11, it is evident that the model using polygon data with an AUC of 0.963 is
classifying 13% of the landslides in the very low susceptible zone. This is visible in the
landslide susceptibility maps in Figure 11b. The performance can be further improved by
using different data sampling approaches and ensemble algorithms and neural networks.
In the case of RF, even though the results are statistically better from a practical perspective,
the very high, high, and medium classes are bounded by the polygon data used for
training and the model is too optimistic, which does not leave room for possible landslides
in the surrounding areas in the future. The same issue is observed with the landslide
susceptibility map prepared with the KNN algorithm using polygon data. Even though
these three algorithms (KNN, SVM, and RF) are having the highest statistical attributes,
they cannot be considered to be the best suited for the landslide susceptibility map, due to
the limited part of the study area classified into very high, high, and medium classes. The
landslide susceptibility map must be conservative, which considers the possible occurrence
of landslides in areas other than the ones used for training and testing, and, at the same
time, should not classify the safe zones as landslide-susceptible regions. The landslide
susceptibility map produced using the RF algorithm with point data is an optimum solution
with good statistical performance (AUC = 0.952 and accuracy = 88.12%) and practical
applications. It classifies 7.87% of the total area into the very high category and 9.79%,
7.09%, 15.17%, and 60.08% into the high, medium, low, and very low categories, while the
best performing model is developed using RF with polygon dataset, with an accuracy of
97.30% and an AUC of 0.993.

From the results, it can be inferred that both the choice of algorithm and sampling
strategy can influence the prediction performance of LSM, but the choice of the landslide
susceptibility map should not be based on the statistical performance only.

6. Conclusions

The influence of the choice of the ML algorithm, sampling strategies, and data splitting
for LSM is evaluated in detail using a case study from the Wayanad district in Kerala.
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12 LCFs were used to develop different models using five different ML algorithms (NB, LR,
KNN, RF, and SVM), two sampling strategies (point data and polygon data), and different
values of k in k-fold cross validation. The results show that data splitting is least effective
among the considered parameters. The performance of NB and LR are unaffected by the
variation of k values, but the performance of KNN, RF, and SVM are slightly varied by k
values, with the best performance at k = 8 in all cases using point data.

The performance of NB and LR did not improve with the use of a large dataset with
polygon inventory. The inter dependency of parameters is a critical factor affecting the
performance of these algorithms while, in the case of KNN, RF, and SVM, the performance
is significantly improved with the use of polygon data. By comparing the H index values,
it was observed that the landslide susceptibility maps perfectly agreed with each other
in the case of 47.56% of the total area while using point data and 58.06% while using
polygon data.

The results produced by KNN and RF using the polygon dataset have a very good
statistical performance with very high values for accuracy and AUC. The best performing
model developed using an RF algorithm and polygon dataset has an accuracy of 97.30%
and an AUC of 0.99.
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