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Abstract: Soil moisture is a key state variable in land surface processes. Since field measurements
of soil moisture are generally sparse and remote sensing is limited in terms of observation depth,
land surface model simulations are usually used to continuously obtain soil moisture data in time
and space. Therefore, it is crucial to evaluate the performance of models that simulate soil moisture
under various land surface conditions. In this work, we evaluated and compared two land surface
models, the Common Land Model version 2014 (CoLM2014) and the Community Land Model
Version 5 (CLM5), using in situ soil moisture observations from the Soil Climate Analysis Network
(SCAN). The meteorological and soil attribute data used to drive the models were obtained from
SCAN station observations, as were the soil moisture data used to validate the simulation results.
The validation results revealed that the correlation coefficients between the simulations by CLM5
(0.38) and observations are generally higher than those by CoLM2014 (0.11), especially in shallow soil
(0–0.1016 m). The simulation results by CoLM2014

(
−0.0188 mm3·mm−3) have smaller bias than

those by CLM5
(
0.0868 mm3·mm−3). Both models could simulate diurnal and seasonal variations

of soil moisture at seven sites, but we found a large bias, which may be due to the two models’
representation of infiltration and lateral flow processes. The bias of the simulated infiltration rate
can affect the soil moisture simulation, and the lack of a lateral flow scheme can affect the models’
division of saturated and unsaturated areas within the soil column. The parameterization schemes in
land surface models still need to be improved, especially for soil simulations at small scales.

Keywords: soil moisture simulation; parameterization schemes; land surface processes

1. Introduction

Soil moisture is an important physical variable that expresses land surface states. It
plays a crucial role in the balance of energy and water budgets at the land surface, and it is
the medium used for energy and material exchange in land–atmosphere interactions [1].
Soil moisture directly affects the partition of sensible and latent heat fluxes on the land
surface, impacts the growth of vegetation, indirectly influences the albedo of the land sur-
face, and further alters the regional land surface heat balance. The capacity for infiltration
into soil changes in response to variations in the soil moisture; as such, soil moisture also
controls surface runoff and groundwater, and further affects the land surface water cycle.

Changes in soil moisture have important weather and climatological implications.
Rind’s numerical experiments in 1982 with the Goddard Institute for Space Studies General
Circulation Model (GISS-GCM) showed that soil moisture is strongly correlated with
local climate anomalies [2]. Manabe (1969), who first coupled land surface hydrological
processes in a General Circulation Model (GCM) and conducted controlled experiments
on the hydrological cycle, illustrated that spatial and temporal variations in atmospheric
circulation are influenced by soil moisture [3]. Yeh et al. (1984) studied the effect of
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irrigation on climate through the Geophysical Fluid Dynamics Laboratory GCM with
simplified topography. They found that soil moisture is positively correlated to evaporation
and precipitation. As a result, temperature is influenced by changing heat flux, and the
effect can last 3–5 months [4]. Simone et al. (2015) developed an approach to separate biotic
and abiotic controls of the temporal dynamics of the soil moisture’s spatial coefficient of
variation. They found abiotic controls largely exceed biotic controls in wet climates, while
biotic controls, in terms of the coefficient of variation, were found to be more significant
in Mediterranean climates [5]. Ankur et al. (2020) used a simple hydrological model, the
Bucket Grassland Model, to systematically analyze the effect of each contributing factor on
soil moisture variability. The modeling results showed that fluvial-dominated landscapes
promote higher spatial soil moisture variability than the diffusive-dominated ones [6].
Vinnikov et al. (1996) found multiple spatial and temporal scale correlations between soil
moisture variability and precipitation at middle latitudes. Soil moisture, as a relatively
delayed variable in the climate system and one of the predictors of precipitation, plays
a significant role in predicting climate change. Soil moisture monitoring and forecasting
contributed to the improvement in the seasonal forecasting of summer rainfall [7].

The three main sources of soil moisture data are: satellite remote sensing, in situ obser-
vations, and land surface model simulations. In recent years, observations of soil moisture
obtained by satellite remote sensing have significantly developed. However, observations
of soil moisture by remote sensing are indirect and the inversion algorithms have large
bias; therefore, the accuracy of the soil moisture data obtained is dependent. Furthermore,
remote sensing observations can only reflect soil moisture in shallow (0–0.05 m) soil. In situ
observations are a better-quality source of soil moisture data compared to remote sensing.
However, the number of stations globally is limited, and most observations are at a 0 to 1 m
soil depth. Land surface models are important tools for understanding and studying land
surface processes [8–10]. In contrast to in situ and remote sensing observations, model
simulations are based on the physical processes and dynamical mechanisms of the land
surface and temporally and spatially reflect the continuous changes in state variables.
Nowadays, popular land surface models include water and energy balance, vegetation
dynamics, carbon cycling processes, biochemical processes and interactions between these
processes, as well as complex flux exchange between soil, vegetation, and atmosphere [11].

The Common Land Model (CoLM) is one of the most popular land surface models.
It is based on the National Center for Atmospheric Research land surface model [12], the
Biosphere Atmosphere Transfer Scheme [13], and the Institute of Atmospheric Physics,
Chinese Academy of Sciences land model [14]. It provides more accurate prediction of soil
moisture, soil temperature, and boundary layer variables [15]. The CoLM has been widely
used in previous studies. Xin et al. (2006) used the CoLM to simulate diurnal and annual
variations in vertical soil temperature profiles and compared the results with observations
at three irrigated agricultural stations [16]. Ma et al. (2006) used the CoLM to simulate
evapotranspiration variation in China and compared the results with remote sensing
data [17]. Zheng et al. (2009) coupled the CoLM with the third version of the Chinese
regional climate model and obtained reasonable simulation results for precipitation, near-
surface temperature, and atmospheric circulation [18]. The CoLM has also been coupled as
a land component to several earth system models, such as the Community Climate Model
of the National Center for Atmosphere Research (NCAR) [19].

The Community Land Model (CLM) was developed by NCAR in 2002 from the initial
version of the CoLM. CLM has been well-tested as the land component of the Community
Earth System Model (CESM), also developed by NCAR. Li et al. (2011) used CLM version
3.5 to simulate the soil moisture changes in China from 1951 to 2008. The simulation results
reasonably reproduced the temporal and spatial characteristics and long-term trends in soil
moisture in China [20]. Zhu and Shi (2013) used remote sensing products and reanalysis
data in China to drive CLM version 3.0 [21]. The simulated daily averaged soil moisture
showed good spatial distribution and temporal variability agreement with observations at
a 0 to 0.2 m soil depth. Yuan et al. (2019) used the CRUNCEP reanalysis data from 1981 to
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2016 as atmospheric forcing data to run CLM version 4.5 in the Tibetan Plateau region. They
simulated the spatial and temporal variation in soil moisture and found that, although the
simulations were systematically biased compared to in situ observations, the model could
reasonably reproduce the spatial distribution and long-term trends of soil moisture [22]. Li
et al. (2017) compared soil moisture simulated by CoLM version 2014 and CLM version
4.5 with reanalysis data from the European Centre for Medium-Range Weather Forecasts
(ECMWF), indicating that the temporal and spatial variations in the simulated values
and reanalysis were consistent, but a large deviation still existed in the values [23]. The
simulated soil moisture described above, although having variations consistent with in situ
observations, does not fully reproduce the characteristics of soil moisture due to bias in
the surface data, soil texture, and meteorological data used in the model. Therefore, more
precise atmospheric forcing and land surface data are needed to evaluate the latest version
of the land surface models (CoLM version 2014; CLM version 5).

Hydrological processes, in most current land surface models, are divided into the
following four steps: (1) part of precipitation is intercepted by canopy and the rest falls onto
the ground surface in the form of rain or snow; (2) the liquid water that falls onto the soil
surface flows into rivers as runoff, enters the soil as infiltration, or returns to the atmosphere
as evaporation; (3) the soil water moves in soil layers under a combination of gravity and
capillary forces; and (4) part of soil water is removed as subsurface runoff induced by
topography. However, as the spatial and temporal resolutions of land surface models
improve, the current land surface models are lacking descriptions of hydrological processes.
For example, lateral flow processes are parameterized in oversimplified approaches in
most models. The relationship between soil moisture and groundwater levels is not
accurately represented when only gravity flow boundary conditions are assumed [24]. With
the advances of in situ observation technologies, remote sensing, and high-performance
computing, land surface models have developed accordingly, and their simulation results
have become more reliable.

In the latest versions of CoLM (CoLM2014) and CLM (CLM5), land surface data
(such as land cover type and soil properties) are included by default. The atmospheric
forcing data (including precipitation, air pressure, air temperature, specific humidity, wind
speed, downward longwave radiation, and downward shortwave radiation) are either
reanalysis data or in situ collected data. Simulation results from land surface models
often differ due to differences in atmospheric data or land surface data used in numerical
experiments [25]. Previous studies showed that model performance varies by location,
so intermodal comparisons are useful for evaluating and improving model performance.
However, direct comparisons have not been performed of CoLM2014 and CLM5 with the
same meteorological and soil attribute data based on the same location, atmospheric forcing,
and soil property data. The differences between the numerical experiments and simulation
results of the two models are expected to be only due to the parameterization schemes.

In this study, we used Soil Climate Analysis Network (SCAN) data to validate the
soil moisture simulation of the land surface models. The SCAN site datasets include soil
property data measured by the National Soil Data Survey Program, hourly meteorological
observations, and soil moisture observations. The models and data are introduced in
Section 2. Section 3 presents the evaluation results, and Section 4 describes the conclusions
and provides some final remarks.

2. Models and Data
2.1. Models
2.1.1. CLM Version 5

The Community Land Model (CLM) is the land component of the Community Earth
System Model (CESM). It is widely used in global and regional models to provide descrip-
tions of land surface processes, including biogeophysical, biogeochemical, hydrological
processes, and human activities. In its latest version (version 5), its parameterization
schemes for hydrological processes were update in terms of (1) dry land surface evapora-
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tion impedance parameters [26] and improving the canopy interception parameterization
scheme, (2) improving the discretization of soil column between 0.4 and 0.8 m [27], and
(3) replacing the boundary condition at the bottom of the soil column.

2.1.2. CoLM Version 2014

There are two versions of the Common Land Model: CoLM2005 and CoLM2014.
CoLM2014 is a fundamental improvement over CoLM2005, particularly in terms of global
land surface datasets, methods for converting soil thermal parameters, the numerical
solutions to the Richards equation for soil water movement, and groundwater models. The
Catchment-based Macro-scale Floodplain (CaMa-Flood) model is coupled to CoLM2014,
allowing the simulation of the hydrodynamics in global rivers.

The hydraulic and thermal parameters of CoLM2014 comprise seven variables: soil
porosity, solid soil specific heat capacity, saturated hydraulic conductivity, saturated soil
thermal conductivity, dry soil thermal conductivity, saturated soil matrix potential, and
exponent B, as defined by Clapp and Hornberger [28]. With new global soil texture
datasets [29], CoLM2014 provides soil property parameters from the surface to a 2.8 m
soil depth based on an ensemble prediction algorithm that considers the influence of soil
organic matter on hydraulic and thermal parameters.

2.2. Data
2.2.1. Forcing Data

The atmospheric forcing dataset for the CoLM2014 and CLM5 offline simulations
includes seven variables: downward longwave radiation (W·m−2), downward shortwave
radiatio (W·m−2), near-surface temperature (K), specific humidity (kg·kg−1), near-surface
wind speed (m·s−1), surface pressure (Pa), and precipitation (mm·s−1). We used hourly
station-observed meteorological data provided by SCAN as atmospheric forcing data for
CoLM2014 and CLM5 in this study.

2.2.2. Validation Data

We obtained the validation data used for evaluating the models from soil moisture
observations recorded at SCAN stations with sensors at depths of 0.0508, 0.1016, 0.2032,
0.5080, and 1.016 m. The in-site soil moisture observations were processed with strict
quality control, including manual checking, filtering anomalous values, and removing
suspected problematic observations (e.g., observations with soil moisture values outside
the normal range, discrete observations related to errors in the soil moisture detector, and
data recorded when the soil was frozen). SCAN datasets, with strict quality control, have
been used in many studies as the soil moisture observations to evaluate the performance
of land surface models’ soil moisture simulations. Here, we selected the following sites:
Glacial Ridge, Little River, Nunn#1, Phillipsburg, Powder Mill, Prairie View, and Tnc Fort
Bayou, all of which obtained complete meteorological observations in period from 2010 to
2014. The selected sites covered three land cover types (cropland, grassland, and shrubs)
and four climate types (humid subtropical (Cfa), hot and humid continental summer (Dfa),
warm and humid continental summer (Dfb), and cold semi-arid (Bsk)). Site location, land
cover type, and climate information are shown in Table 1 and Figure 1.
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Table 1. Selected SCAN sites’ information and climatology. Climate class and climate group are
defined according to Köppen climate classification [30]. Land cover types are defined by USGS
classification [31].

ID Site Climate
Class Climate Group Latitude Longitude Period Land-Cover

Category (USGS)

1 Glacial Ridge Dfb
Temperate

continental with
warm summers

47◦43′ 96◦16′ 2010–2014 Cropland

2 Little River Cfa Subtropical-
Mediterranean 39◦47′ 99◦20′ 2010–2014 Grassland

3 Nunn#1 Bsk Dry (arid and
semi-arid) 40◦52′ 104◦44′ 2010–2014 Grassland

4 Phillipsburg Dfa
Temperate

continental with
hot summers

30◦5′ 95◦59′ 2010–2014 Grassland

5 Powder Mill Cfa Subtropical-
Mediterranean 30◦28′ 88◦28′ 2010–2014 Grassland

6 Prairie View Cfa Subtropical-
Mediterranean 39◦1′ 76◦51′ 2010–2014 Grassland

7 Tnc Fort Bayou Cfa Subtropical-
Mediterranean 31◦30′ 83◦33′ 2010–2014 Shrub
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2.3. Experimental Design and Variables Evaluated

The performances of CLM5 and CoLM2014 in simulating soil moisture were evaluated
using observations from seven SCAN sites located in different parts of North America.
The period of the model simulations was 2010 to 2014, and the spin-up time was set to
20 years. Although both CLM5 and CoLM2014 update their own default surface datasets to
the latest version, in order to focus on the parameterization of hydrological processes, the
same atmospheric forcing data, surface data, and soil texture data were used in this work.
Both CLM5 and CoLM2014 use the Clapp–Hornberger empirical equations to calculate
each soil layer’s hydraulic properties (soil hydraulic conductivity, soil water potential,
etc.). Since SCAN in situ soil moisture measurements are observed at soil depths that
are inconsistent with the model settings, it was necessary to interpolate the soil property
observation (weight percentage content of sand, clay, etc.) from the SCAN site depths
to the model setting depths, then the soil hydraulic parameters were calculated in each
layer of the model (saturated soil moisture, saturated water potential, saturated hydraulic
conductivity, etc.). Each CLM5 grid cell is a collection of terrestrial units containing various
numbers of soil columns, and each soil column may contain several patches with different
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Plant Functional Types (PFTs). In CoLM2014, each surface grid cell is subdivided into a
number of tiles, where each tile corresponds to one land cover type. In this work, the same
land cover type and Leaf Area Index (LAI) were used on each site to evaluate the two
models’ simulations of soil moisture variation under the same soil column conditions. Soil
hydraulic parameters are calculated using the formulas proposed by Cosby et al. [32]:

θs = 0.489− 0.00126·(sand%), (1)

ψs = −10[1.88−0.013·(sand%)] (2)

λ = 1/[2.91 + 0.159·(clay%)] (3)

ks = 60.96·10[−0.884+0.0153·(sand%)] (4)

where θs is the saturated soil moisture in the layer, ψs is the saturated soil water potential,
ks is the saturated hydraulic conductivity, and λ is the pore size distribution index in the
Clapp–Hornberger relation.

2.4. Data Processing and Evaluation Metrics

In situ soil observations were obtained at the depths of 0.0508, 0.1016, 0.2032, 0.5080,
and 1.016 m, which are different from the model settings. Therefore, the simulations in
the first eight layers (0–1.038 m) in CoLM2014 and the first nine layers (0–1.063 m) in
CLM5 were selected and linearly interpolated to the site observation depths using the soil
thicknesses as the weighting factor.

The interpolation was performed using Equation (5), where SMi is the soil moisture
after linearly interpolating the simulation results to the ith observation layer; Modelj is
the soil moisture simulation in the jth model layer; thicknessj,i is the soil thickness of the
intersection of model soil layer j; and the observation layers i, b, and a are the starting and
end number of the model soil layers that intersect observation layer i.

SMi =
a

∑
j=b

(
Modelj·thicknessj,i

)
/

a

∑
j=b

(
thicknessj,i

)
, (5)

The correlation between soil moisture simulations and observations is defined as

R =

1
N−1 ·∑

N
n=1

(
modeln −model

)
·
(

obn − ob
)

σmodel · σob
, (6)

where R is the correlation coefficient, N is the number of observations, modeln is the time
series of the simulation, obn is the time series of observations, the overline indicates the
mean values, σmodel is the standard deviation of the model results, and σob is the standard
deviation of the in situ observations.

The root mean square error (RMSE) and bias are defined as:

Bias =
1
N
·

N

∑
n=1

(modeln − obn), (7)

RMSE =

√
∑N

n=1(obn −modeln)
2

N
(8)

Cv(θ) =

√
∑N

n=1(θ−θ)
2

N−1

θ
(9)

where N is the number of observations, modeln is the time series of the simulations, and
obn is the time series of observations. A smaller RMSE indicates better agreement between
simulated and observed results. In Equation (9), N is the number of simulations, θ is the
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vertically integrated soil moisture content, and θ is the mean value of θ. The value of Cv(θ)
represents the temporal stability of soil moisture.

3. Results

In this section, we describe the results of our evaluation of the soil moisture simulations
of CLM5 and CoLM2014 using observations at seven stations from SCAN.

3.1. Soil Moisture Time Series Comparison

Figures 2–6 show a comparison of the daily soil moisture observations and models’
soil moisture simulations at five soil depths (0.0508, 0.1016, 0.2032, 0.5080, and 1.016 m)
from 2010 to 2014. Table 2 lists the correlation between the daily simulation results and the
observed soil moisture at the seven sites.
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Figure 2. Simulation and observation temporal soil moisture variations at the SCAN sites for
2010–2014 at a soil depth of 0.0508 m. The blue line is the CLM5 simulation, the red line is the
CoLM2014 simulation, the dashed line is the observations, and the yellow bars are the daily cumula-
tive precipitation. (a–g) are Glacial Ridge, Little River, Nunn#1, Phillipsburg, Powder Mill, Prairie
View, and Tnc Fort Bayou, respectively.

In both CLM5 and CoLM2014, the correlation coefficient at the Little River station was
the highest of all the considered stations. The land cover at Little River is grassland and the
climate is temperate, with hot summers. The precipitation throughout the year is relatively
uniform, and there is no freezing period. Therefore, in the shallow soil layers (0–0.1016 m),
both models responded quickly to precipitation, demonstrating increased soil moisture.
After precipitation, soil water infiltrates into deep soil layers and the shallow soil layer
becomes drier, which is consistent with the observations (Figures 2, 3, 4, 5 and 6b). The
maximum R in the CLM5 results (0.70) occurred in the first observation layer (0–0.0508 m).
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The physical processes affecting shallow soil water movement, such as rainfall and surface
evaporation, are reasonably described by CLM5 at Little River, but the R decreased with
increased soil depth. However, the R of the CoLM2014 results in the three shallow layers of
observation (0–0.2032 m) varied little (0.40, 0.44, and 0.43), and R for the 0.2032–1.016 m
layers decreased with increasing soil depth. Therefore, compared to observations, CLM5
and CoLM2014 at all observation depths (0–1.016 m) generally represented the interannual
and annual variation in soil moisture. In terms of bias, the soil moisture simulated at the
top four soil depths was overestimated by CoLM2014 and CLM5 (Table 3), but both models
underestimated the soil moisture in the fifth soil layer. The RMSE values of the results
by CoLM2014 are smaller than those of the CLM5 results (Table 4), indicating that soil
moisture simulated by CoLM2014 was closer to the observations than that simulated by
CLM5. CoLM2014 simulated lower soil moisture during almost all the simulation periods
than CLM5. During summer, the response of the CoLM2014 simulation to precipitation
was weaker than that of the CLM5 simulation in the shallow layer, although the CoLM2014
simulation values were still numerically larger than the observed values. During autumn
and winter when precipitation was low, the CoLM2014 simulation of soil moisture was
drier than the observation values.
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Figure 3. Simulated and observed temporal soil moisture variations at the SCAN sites for 2010–2014 at
a soil depth of 0.1016 m. The blue line is the CLM5 simulation, the red line is the CoLM2014 simulation,
the dashed line is the observations, and the yellow bars are the daily cumulative precipitation.
(a–g) Glacial Ridge, Little River, Nunn#1, Phillipsburg, Powder Mill, Prairie View, and Tnc Fort
Bayou, respectively.

The climate type and land cover at Prairie View station are the same as those at Little
River, whereas Prairie View receives less daily precipitation than Little River throughout
the year. The models’ simulated results significantly differed from the actual observations
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(Figures 2, 3, 4, 5 and 6f), particularly after persistent summer rainfall when the soil water
flowed rapidly through the shallow soil layers and soil moisture increased. In terms of R,
the CoLM2014 simulation agreed with the observations only in the second layer and weakly
correlated with the observations in the other soil layers. The CLM5 simulation result agreed
better with the observations in the top four layers (0.37, 0.48, 0.60, and 0.48) than that of
CoLM2014 and had a slightly lower R in the fifth layer (0.27). The RMSE for the top layer
indicated that both the CLM5 and CoLM2014 simulations significantly deviated from the
observations. The maximum RMSE for CoLM2014 (0.1542 mm3·mm−3) occurred in the top
layer. However, as the soil depth increased, the simulated values were gradually closer to
the observations. The minimum RMSE in the CoLM2014 simulation (0.0631 mm3·mm−3)
occurred in the second layer, and simulations deviated further from observations as soil
depth increased. In terms of bias, the CLM5 simulation overestimated the observations
in all the soil layers. The maximum bias (0.1369 mm3·mm−3) in the CLM5 simulations
occurred in the top layer, and bias decreased as soil depth increased. The minimum bias
in the CoLM2014 simulations (−0.0182 mm3·mm−3) occurred in the second layer, and the
simulations indicated drier conditions than the observed values as soil depth increased.

Land 2022, 11, x FOR PEER REVIEW 8 of 24 
 

 

Figure 3. Simulated and observed temporal soil moisture variations at the SCAN sites for 2010–2014 

at a soil depth of 0.1016 m. The blue line is the CLM5 simulation, the red line is the CoLM2014 

simulation, the dashed line is the observations, and the yellow bars are the daily cumulative precip-

itation. (a–g) Glacial Ridge, Little River, Nunn#1, Phillipsburg, Powder Mill, Prairie View, and Tnc 

Fort Bayou, respectively. 

 

Figure 4. Simulated and observed temporal soil moisture variations at the SCAN sites for 2010–2014 

at a soil depth of 0.2032 m. The blue line is the CLM5 simulation, the red line is the CoLM2014 

simulation, the dashed line is the observations, and the yellow bars are the daily cumulative 

Figure 4. Simulated and observed temporal soil moisture variations at the SCAN sites for 2010–2014 at
a soil depth of 0.2032 m. The blue line is the CLM5 simulation, the red line is the CoLM2014 simulation,
the dashed line is the observations, and the yellow bars are the daily cumulative precipitation.
(a–g) Glacial Ridge, Little River, Nunn#1, Phillipsburg, Powder Mill, Prairie View, and Tnc Fort
Bayou, respectively.

The climate type at Tnc Fort Bayou station is also the same as that at Little River station.
The land cover is shrubby, and precipitation is frequent and heavy throughout the year. The
rainy period in each year starts in January and ends in August. During the rainy season, the
soil moisture in the top layer is mainly influenced by precipitation; the soil is wetter here
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than at the Little River and Prairie View stations. Generally, the CLM5 simulation correlated
with the observations in all the soil layers. R increased with soil depth, with the maximum
R (0.52) occurring in the fifth soil layer. The CoLM2014 simulation had a slightly lower R
between the simulation and observed values than the CLM5 simulation in the top two layers.
R decreased as soil depth increased, with the smallest value (0.28) occurring in the fifth layer.
This indicated that the variation in soil moisture in the deeper soil layer was better simulated
by CLM5 than by CoLM2014. Although CLM5 and CoLM2014 were able to simulate the
variation in the soil moisture in the top layer, the largest RMSE between the simulation
and observation occurred in this layer, at 0.1181 mm3·mm−3 for the CLM5 simulation
and 0.1738 mm3·mm−3 for the CoLM2014 simulation. As the soil depth increased, the
simulation value became closer to the observation. Due to the increased precipitation
at this site compared to the other sites, both models underestimated the observations in
the top soil layer (Figure 2c). As the soil depth increased (Figures 3, 4, 5 and 6c), the CLM5
simulation increasingly overestimated the soil moisture, especially in July, during which
the soil moisture reached saturation. The CoLM2014 simulation underestimated the soil
moisture in all the layers, with negative deviations.
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Figure 5. Simulated and observed temporal soil moisture variation values at the SCAN sites for
2010–2014 at a soil depth of 0.5080 m. The blue line is the CLM5 simulation, the red line is the
CoLM2014 simulation, the dashed line is the observations, and the yellow bars are the daily cumula-
tive precipitation. (a–g) Glacial Ridge, Little River, Nunn#1, Phillipsburg, Powder Mill, Prairie View,
and Tnc Fort Bayou, respectively.
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Figure 6. Simulated and observed temporal soil moisture variation at the SCAN sites for 2010–2014 at
a soil depth of 1.0160 m. The blue line is the CLM5 simulation, the red line is the CoLM2014 simulation,
the dashed line is the observation, and the yellow bars are the daily cumulative precipitation.
(a–g) Glacial Ridge, Little River, Nunn#1, Phillipsburg, Powder Mill, Prairie View, and Tnc Fort
Bayou, respectively.

Table 2. Correlation coefficients between simulated and observed soil moisture at selected
SCAN sites.

Site Model
Soil Depth

0.0508 m 0.1016 m 0.2032 m 0.5080 m 1.016 m

Glacial
Ridge

CLM5 0.24 0.17 0.40 0.50 0.27
CoLM2014 0.10 −0.10 0.16 0.16 −0.04

Little River
CLM5 0.70 0.66 0.63 0.50 0.55

CoLM2014 0.40 0.44 0.43 0.34 0.36

Nunn#1
CLM5 0.49 0.50 0.46 0.35 0.04

CoLM2014 0.00 0.03 0.10 0.06 0.11

Phillipsburg CLM5 0.32 0.41 0.40 0.55 0.42
CoLM2014 −0.04 0.08 0.17 0.43 0.55

Powder
Mill

CLM5 −0.06 −0.07 −0.02 0.01 −0.01
CoLM2014 −0.20 −0.35 −0.40 −0.42 −0.25

Prairie
View

CLM5 0.37 0.48 0.60 0.48 0.27
CoLM2014 0.06 0.27 −0.04 −0.26 −0.25

Tnc Fort
Bayou

CLM5 0.44 0.44 0.43 0.45 0.52
CoLM2014 0.45 0.45 0.44 0.31 0.28



Land 2022, 11, 126 12 of 25

Table 3. Bias of simulated soil moisture at the selected SCAN sites.

Site Model
Soil Depth

0.0508 m 0.1016 m 0.2032 m 0.0508 m 1.016 m

Glacial
Ridge

CLM5 0.0749 0.1005 0.0924 0.1264 0.0126
CoLM2014 −0.0003 0.0196 −0.0047 0.0519 −0.0757

Little River
CLM5 0.0654 0.0547 0.0293 0.0183 −0.0419

CoLM2014 0.0244 0.0217 0.0083 0.0057 −0.1476

Nunn#1
CLM5 0.0348 0.0112 0.0307 0.0386 0.0910

CoLM2014 −0.0850 −0.1138 −0.0833 −0.0713 −0.0450

Phillipsburg CLM5 0.1963 0.1559 0.1521 0.1608 0.1969
CoLM2014 0.1119 0.0767 0.0602 0.0844 0.1533

Powder
Mill

CLM5 0.2020 0.2091 0.2271 0.2487 0.2716
CoLM2014 −0.0008 −0.0039 −0.0117 −0.0047 0.0230

Prairie
View

CLM5 0.1369 0.0557 0.0407 0.0192 −0.0127
CoLM2014 0.0602 −0.0182 −0.0655 −0.0728 −0.0970

Tnc Fort
Bayou

CLM5 −0.0577 −0.0018 0.0222 0.0273 0.0502
CoLM2014 −0.1447 −0.0898 −0.0920 −0.0737 −0.0584

Table 4. RMSE of the simulated soil moisture at selected SCAN sites.

Site Model
Soil Depth

0.0508 m 0.1016 m 0.2032 m 0.0508 m 1.016 m

Glacial
Ridge

CLM5 0.1044 0.1264 0.1102 0.1471 0.0841
CoLM2014 0.0779 0.0911 0.0692 0.0992 0.1185

Little River
CLM5 0.0782 0.0682 0.0488 0.0429 0.0534

CoLM2014 0.0462 0.0418 0.0394 0.0397 0.1519

Nunn#1
CLM5 0.0612 0.0502 0.0511 0.0577 0.1004

CoLM2014 0.1090 0.1310 0.0988 0.0894 0.0634

Phillipsburg CLM5 0.2086 0.1665 0.1730 0.1666 0.1983
CoLM2014 0.1472 0.1112 0.1128 0.0990 0.1561

Powder
Mill

CLM5 0.2256 0.2305 0.2386 0.2524 0.2817
CoLM2014 0.0834 0.0902 0.0837 0.0749 0.0966

Prairie
View

CLM5 0.1542 0.0794 0.0620 0.0728 0.0737
CoLM2014 0.1002 0.0631 0.0937 0.1169 0.1304

Tnc Fort
Bayou

CLM5 0.1181 0.0793 0.0753 0.0825 0.0812
CoLM2014 0.1738 0.1082 0.1046 0.1005 0.0746

Powder Mill, Phillipsburg, and Nunn#1 stations are located at middle latitudes and
are covered by grass, but their climate types differ by longitude (Table 1). Overall, the soil
moisture variations simulated by CoLM2014 and CLM5 were generally consistent with
the observations (Figures 2–6). The CLM5 simulation had a stronger correlation (R) than
CoLM2014 at two sites (Nunn#1 and Phillipsburg), which are located in semi-arid areas
(Table 2). The CLM5 simulation at Phillipsburg performed the best among these three
sites, with a mean R of 0.42. In terms of RMSE, both the CLM5 and CoLM2014 simulations
were close to the observations (Table 3). The CLM5 simulation indicated wetter soil than
was observed at all soil depths, whereas CoLM2014 simulated drier soil (Table 4). The
bias of the CLM5 simulation was generally greater than that of the CoLM2014 simulation
(Table 4). At Powder Mill, which receives more precipitation, neither model simulation
was reasonably consistent with the observations, especially during precipitation processes
when the soil in the top layer quickly reached saturation in the CLM5 simulation. The
large bias at Powder Mill station may be related to its topography, which is ignored in
the models.

Glacial Ridge station is located at a high latitude. The landcover type is cropland and
the climate is boreal. The precipitation at this station is concentrated in summer but low.
In terms of R, the CLM5 simulation was more consistent with the observed values than
the CoLM2014 simulation, with the maximum R between the simulation and observation
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values for both models occurring in the third and fourth soil layer. The lowest R occurred
in the second soil layer (Table 2). The soil moisture variations in the top three layers at
Glacial Ridge are impacted mainly by precipitation, with a significant increase occurring in
the top layer when rain falls on the surface. Moreover, since the second layer receives water
infiltrated from the top layer, we noted that the variation in this layer was lower compared
to that in the top layer. The same variation was found in the third layer (Figures 2–4). In the
deepest two layers, the main reason for the variation in the soil moisture was the infiltration
of soil moisture from the upper layer to the lower layer (Figures 5 and 6a). For CoLM2014
and CLM5, the soil moisture simulations for the top three layers were responsive to the
precipitation on the surface, but, in terms of RMSE (Table 3), both the CoLM2014 and CLM5
simulated values deviated significantly from the observed values. In terms of bias, both
models simulated wetter soil than was observed in the top four layers, and the bias of
CLM5 was twice that of CoLM2014. In the deepest layer, the CLM5 simulation was closer
to the observations and had a smaller bias than the CoLM2014 simulation.

3.2. Soil Moisture Simulation Variance Analysis

Soil moisture is heterogeneous and is closely related to small-scale hydrological pro-
cesses, soil properties, and land cover [7,33,34]. At the sites selected in this study, both
models produced variations similar to the observations at most of the sites. In terms of
R and RMSE, the CLM simulation’s performance at selected sites from highest to lowest
was: Little River, Tnc Fort Bayou, Prairie View, Nunn#1, Glacial Ridge, Phillipsburg, and
Powder Mill. The CoLM simulation’s performance from highest to lowest was: Little
River, Tnc Fort Bayou, Prairie View, Glacial Ridge, Nunn #1, Phillipsburg, and Powder
Mill. Considering the temporal completeness of the observation data, three sites, Little
River, Tnc Fort Bayou, and Powder Mill, were selected to evaluate the simulated diurnal
variations in soil moisture. Possible reasons for the differences in the model performances
were analyzed.

Both CLM5 and CoLM2014 perform best at Little River station. The diurnal variations
in soil moisture anomalies in four seasons at Little River station are shown in Figure 7, and
their shallowest layer’s temporal stability of soil moisture values are shown in Figure 8
The seasonal variation in soil moisture is consistent with the interannual variation in soil
moisture (Figures 2, 3, 4, 5 and 6b), with a reasonable match between the simulation and
observation in all the soil layers at this site. The observed soil is wettest in spring (MAM) in
the top layer, with a mean soil moisture of 0.1232 mm3·mm−3. Both CLM5 and CoLM2014
simulated the most stable soil moisture (Figure 8c) in summer (JJA), and the most unstable
soil moisture in winter (DJF) (Figure 8a). However, CoLM2014 simulated the soil moisture
in the top layer as being highest in the summer (JJA), and the values were closer to the
observations than those produced by the CLM5 simulation. CLM5 simulated the daily
maximum in soil moisture earlier than the observations recorded in spring and winter. As
the soil depth increased, the time when soil moisture simulation attained the maximum by
CLM5 simulation became closer to the observed time. The time when CoLM2014 simulation
in the top two layers reached the maximum was around 18:00 in all seasons, which is close
to the observations. The bias of the CoLM2014 simulation is smaller than that of the CLM5
simulation, and the variation curve of the CoLM2014 simulation is more consistent with
that of the observations.
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Figure 7. Diurnal variations in soil moisture anomalies for the four seasons at the Little River site, with CLM5 in blue, CoLM2014 in red, and observations in black.
The seasonal mean values of soil moisture are in brackets. Soil moisture anomalies in (a,e,i,m,q) winter in layers 1 to 5, respectively; (b,f,j,n,r) spring in layers 1 to 5,
respectively; (c,g,k,o,s) summer in layers 1 to 5, respectively; and (d,h,l,p,t) autumn in layers 1 to 5, respectively.
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Figure 8. The shallowest layer’s coefficient of variation of diurnal simulations at the Little River site,
with CLM5 simulations in blue bars and CoLM2014 simulations in red bars, for (a–d) winter, spring,
summer, and autumn, respectively.

Tnc Fort Bayou and Little River are similar in geographic location and climatic charac-
teristics, except for land cover type (shrub and grassland, respectively). However, the hourly
mean soil moisture differs considerably at the two sites. At Tnc Fort Bayou, the wettest
soil was observed in the top layer in spring (MAM), with a value of 0.4052 mm3·mm−3

(Figure 9), which may relate to the high precipitation (Figures 2, 3, 4, 5 and 6g). In spring
and winter, the variation curves of the CLM5 and CoLM2014 simulations agreed with the
observations; additionally, the CoLM2014 simulation was less stable than the CLM5 in
winter and spring (Figure 10a,b). The CLM5 simulation’s daily maximum value occurred
earlier than that of the CoLM2014 simulation in winter. Both the CoLM2014 and CLM5
simulations reached their daily maximum soil moisture value at around 18:00 in spring,
which is later than the observed time. The soil moisture simulated in summer significantly
differed from the observation. In summer, both models stimulated that the soil in the top
three layers became progressively wetter from 0:00 to 16:00 and then progressively drier
from 16:00 to 24:00. In summer and autumn, rainfall events contributed to the increase
in the Cv(θ), where the CLM5 simulation’s Cv(θ) was higher than that of CoLM2014.
This difference between the simulations and observations is probably due to hydrological
processes ignored in models. In autumn, the observed soil was progressively drier during
daytime and the rate of change decreased as soil depth increased. The CLM5-simulated
variation was more consistent with the observations but disagreed with that simulated by
CoLM2014. The CLM5 simulation captured the re-wetting processes in shallow soil layers
between 16:00 and 20:00 in autumn. The CoLM2014 simulation was barely able to represent
the diurnal variation in soil moisture in autumn.
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Figure 9. Anomalies in diurnal soil moisture variations in four seasons at Tnc Fort Bayou site, with CLM5 in blue, CoLM2014 in red, and observation in black. The
seasonal mean values of soil moisture are in brackets. (a,e,i,m,q) Soil moisture anomalies in winter in layers 1 to 5, respectively. (b,f,j,n,r) Soil moisture anomalies in
spring in layers 1 to 5, respectively. (c,g,k,o,s) Soil moisture anomalies in summer in layers 1 to 5, respectively. (d,h,l,p,t) Soil moisture anomalies in autumn in layers
1 to 5, respectively.
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Figure 10. The shallowest layer’s coefficient of variation of diurnal simulations at the Tnc Fort Bayou
site, with CLM5 simulations in blue bars and CoLM2014 simulations in red bars, for (a–d) winter,
spring, summer, and autumn, respectively.

At the Powder Mill site, both models produced less accurate results in the daily mean
soil moisture than at the Little River and Tnc Fort Bayou sites (Tables 2–4). At Little River,
with grassland as its land cover type, that soil has a high sand percentage and lower
contents of other components, such as silt and clay, which leads to rapid drainage and poor
water retention capability. By contrast, the predominant soil type at Tnc Fort Bayou and
Powder Mill is well-drained and water-retentive sandy loam, with shrubs covering the
ground surface at the Tnc Fort Bayou site and grass at the Powder Mill site. Precipitation at
Powder Mill is concentrated in summer (Figures 2, 3, 4, 5 and 6e), whereas the observed soil
is wettest in winter, with evenly distributed moisture across all depths (Figure 11). Except
for summer, the CoLM2014-simulated diurnal variation was generally consistent with the
CLM5 simulation in the top two layers (Figure 11). However, beginning with the third
layer, CLM5 simulated almost saturated soil (Figure 11-blue line) and overestimated the
soil moisture all year round. Therefore, the RMSE and bias were larger between the CLM5
simulation and the observations, whereas the CoLM2014 simulation only overestimated
the soil moisture in summer and autumn. CoLM2014 simulated a drier soil than observed
in winter and spring (Figure 11, red line) and had a smaller RMSE and bias than the CLM5
simulation. Since Powder Mill is a site with a moderate slope (4%), and both models lack
soil water movement parameterization considering lateral flow in slope areas, they could
not capture the characteristics of soil moisture variation. Compared to the CLM5 simulation,
the CoLM2014-simulated soil moisture was numerically closer to the observations.



Land 2022, 11, 126 18 of 25

Land 2022, 11, x FOR PEER REVIEW 18 of 24 
 

 

Figure 11. Diurnal variations in soil moisture anomalies for the four seasons at Powder Mill, with CLM5 in blue, CoLM2014 in red, and observations in black. The 

seasonal mean values of soil moisture are in brackets. (a,e,i,m,q) Soil moisture anomalies in winter in layers 1 to 5, respectively. (b,f,j,n,r) Soil moisture anomalies 

in spring in layers 1 to 5, respectively. (c,g,k,o,s) Soil moisture anomalies in summer in layers 1 to 5, respectively. (d,h,l,p,t) Soil moisture anomalies in autumn in 

layers 1 to 5, respectively. 

Figure 11. Diurnal variations in soil moisture anomalies for the four seasons at Powder Mill, with CLM5 in blue, CoLM2014 in red, and observations in black. The
seasonal mean values of soil moisture are in brackets. (a,e,i,m,q) Soil moisture anomalies in winter in layers 1 to 5, respectively. (b,f,j,n,r) Soil moisture anomalies in
spring in layers 1 to 5, respectively. (c,g,k,o,s) Soil moisture anomalies in summer in layers 1 to 5, respectively. (d,h,l,p,t) Soil moisture anomalies in autumn in
layers 1 to 5, respectively.
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The differences in the soil moisture simulation capabilities of the two models are
mainly due to the models’ numerical soil water movement schemes. The variations in
hourly soil moisture in the shallow layers are influenced by the combination of soil texture
and precipitation. In the land surface water balance equation, precipitation is divided into
infiltration, plant canopy interception, and surface runoff. Infiltration is a crucial process
for redistributing precipitation and is mainly influenced by the soil texture and the soil
water content near surface. Soil texture determines the saturated hydraulic conductivity,
saturated water content, and soil water potential. Little River and Tnc Fort Bayou are
similar in latitude and climate type. However, the predominant soil type is sandy at Little
River, whereas it is sandy loam at Tnc Fort Bayou; thus, the soil at the Little River site has
higher hydraulic conductivity than that at Tnc Fort Bayou. Soil hydraulic properties could
be well-represented by both models and impacted the calculations of infiltration rates. The
simulated infiltration rate at Little River was generally lower than that at Tnc Fort Bayou
throughout the year (Figures 12 and 13). Due to the low water retention capability of sandy
soil, the soil at Little River was drier than that at Tnc Fort Bayou. Soil moisture in shallow
layers responds rapidly to the variations in infiltration rates. At Little River, both CLM5
and CoLM2014 simulated the maximum infiltration rate in the shallow layers in summer
(Figure 12c), with differences in infiltration rates mainly occurring at times after 16:00.
This is one of the reasons why CLM5 and CoLM2014 have similar simulation accuracies
at Little River, but the CLM5 simulation overestimated the soil moisture more than the
CoLM2014 simulation.

A key aspect of the parameterization scheme for the infiltration rates in the land
surface model is the calculation of its maximum infiltration capacity qinfl,max. In CLM5,
qinfl,max is calculated with hydraulic conductivity, which considers the ice impedance Θice
in the unsaturated regions [26],

qinfl,max = (1− fsat)·Θice·ksat, (10)

Θice = 10−6· θice
θsat , (11)

However, in CoLM2014, an empirical formula is used to calculate the ice impedance
Θice, and the maximum infiltration capacity is calculated as the minimum value of the
infiltration rates in the top three layers:

qinfl,max = min
i=1,2,3

{
ksat,i · 10(−6·fice,i)

}
. (12)

The calculations of qinfl,max affect the simulations of the runoff that is generated from
excess infiltration and storage excess. Underestimation of infiltration rates reduces the wa-
ter infiltrating into the soil’s top layers and further leads to a biased redistribution between
terms in the surface energy balance. As shown in Figure 13, CoLM2014 simulated a gener-
ally lower infiltration rate than CLM5 at Tnc Fort Bayou. CoLM2014 simulated warmer soil
temperatures during the same period than CLM5 (Figure 14b,c), especially during winter
and spring when infiltration rates differ considerably. At Little River, CoLM2014 also
simulated significantly warmer soil during spring and winter than CLM5 (Figure 15b,c).
The overestimation of soil temperature increases the evaporation of shallow soil layers and
results in drier soil.
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4. Conclusions

The accuracy of soil moisture simulations primarily relies on the parameterization
schemes and the precision of atmospheric forcing and surface data. In this study, we
conducted offline land surface simulations at single points using CLM5 and CoLM2014, of
which the atmospheric forcing and surface data were obtained from SCAN stations. The
simulated soil moisture was interpolated to the soil depths of the observations to evaluate
the performance accuracy of CLM5 and CoLM2014.

At the selected SCAN sites, the CLM5 simulations (0.38) had generally higher correla-
tion coefficients than those of the CoLM2014 simulations (0.11). The correlation coefficients
were highest at Little River, with mean values of 0.61 and 0.48 in all the soil layers for
CLM5 and CoLM2014, respectively. The correlation coefficients were lowest at Powder Mill
as the site has a moderate slope and the current lateral flow schemes in both models are
insufficiently accurate. In terms of the correlation coefficient, the soil moisture variation
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simulated by CLM5 was closer to the observed soil moisture variation than that simu-
lated by CoLM2014, especially in shallow soils (layers one to three) and during periods of
intense precipitation.

In contrast to the correlation between the simulation and observations, the RMSEs of
the CLM5 simulations were larger than those of the CoLM2014 simulations at almost all the
sites, indicating that the CoLM2014 simulations were numerically closer to the observations
than the CLM5 simulations. Both CoLM2014 and CLM5 performed best at Little River,
with RMSE and bias decreasing with increasing soil depth. CLM5 performed the worst at
Powder Mill, with an RMSE reaching 0.2458 mm3·mm−3.

Both models’ simulations of the diurnal variation in soil moisture variation require
improvement. The simulated diurnal variations in soil moisture corresponded reasonably
to the observations only in the shallow soil layers (0–0.2032 m). Even at the site where
the models were most accurate, Little River, in terms of seasonal infiltration rate, CLM5
simulated more soil moisture infiltration than CoLM2014 from the surface soil layer in
winter and autumn, where the CoLM2014 infiltration rate was lower than that of CLM5:
295% and 255%, respectively. In summer, CoLM2014 simulated 23% more soil moisture
infiltrating than CLM5 from the surface soil layer.

The differences in model performance occurred for multiple reasons. Although surface
data, such as soil properties, vegetation function types, and land cover types, were obtained
from observations at SCAN sites, the land surface models do not accurately describe
physical processes, such as lateral flow processes. Additionally, soil moisture is observed at
fixed depths, but it is nonlinear in space. The interpolation of soil moisture from model
layers to observation depths is, therefore, inherently inaccurate.

Small-scale hydrology processes are not represented well in land surface models
(LSMs), for example, lateral overland flow and subsurface flow, which may play a key role
at hyper resolutions. In this study, CoLM2014 and CLM5 were evaluated on a few data-
adequate sites in the North American region; we hope to evaluate and improve the LSMs
using more observations. Continued research is needed to further evaluate the coefficient
of variation in the land surface balance budget, which comprises precipitation, infiltration,
soil water movement, evaporation, runoff, and subsurface runoff as these factors have been
identified as key determinants of variability in soil moisture. We think evaluation results
will provide assistance to model developers working on improving their land surface
models; more accurate LSMs will benefit researchers working on climate change, natural
disasters, etc.
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