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Abstract: The changes of land use/land cover (LULC) are important factor affecting the intensity of
the urban heat island (UHI) effect. Based on Landsat image data of Wuhan, this paper uses cellular
automata (CA) and artificial neural network (ANN) to predict future changes in LULC and LST. The
results show that the built-up area of Wuhan has expanded, reaching 511.51 and 545.28 km2, while
the area of vegetation, water bodies and bare land will decrease to varying degrees in 2030 and 2040.
If the built-up area continues to expand rapidly, the proportion of 30~35 ◦C will rise to 52.925% and
55.219%, and the affected area with the temperature >35 ◦C will expand to 15.264 and 33.612 km2,
respectively. The direction of the expansion range of the LST temperature range is obviously similar
to the expansion of the built-up area. In order to control and alleviate UHI, the rapid expansion of
impervious layers (built-up areas) should be avoided to the greatest extent, and the city’s “green
development” strategy should be implemented.

Keywords: land use/land cover changes; urban thermal environment; machine learning algorithms;
artificial neural network; Wuhan

1. Introduction

China is going through a stage of rapid urbanization, the proportion of the urban
economy in the national economy is constantly increasing [1], and the resource and envi-
ronmental problems facing cities are becoming increasingly urgent [2,3]. In 2030, China’s
urbanization rate will reach 70%, and the percentage of urban population is expected to
be as high as 60% [4,5]. The rapid development of urbanization and the rapid expansion
of urban population have caused impervious surfaces represented by reinforced concrete
to gradually occupy urban space [6]. These building materials have small heat capacity,
fast heat absorption, and strong temperature storage, and are the main heat source for
the rise of ground temperature [7–9]. The urban heat island (UHI) effect is a product of
urbanization [10,11], and is the most prominent feature of the impact of human activities
on temperature [12,13]. UHI is one of the most significant features of urban climate, and
it is also one of the environmental problems that are ubiquitous in urban ecosystems and
attract more and more attention [14,15]. Land use/land cover (LULC) change analysis is an
important technology to measure environmental sustainability and ecological environment
quality [16,17]. The research on the relationship between LULC and urban surface tempera-
ture can not only analyze the spatial characteristics of urban thermal environment under
LULC from the origin of heat island phenomenon, but also provide theoretical basis for
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rational use of land resources, rational planning of urban construction, and weakening of
urban heat island effect [18,19].

Since Lake Howard conducted a study of “urban heat island” in the 19th century,
taking the temperature and suburbs of central London as an example, people have begun
to pay attention to the changes in urban surface temperature [20]. Scholars have carried out
a lot of research on the relationship between urban development and thermal environment,
and most of them use land surface temperature (LST) as a quantitative indicator of thermal
environment [21]. The research content mostly focuses on the following aspects: using
impervious surface to characterize urban land cover, and analyzing the impact of land
change caused by urban development on LST [22]. There are many LULC indicators that
predict changes in LST in a region. Indicators such as the normalized difference vegetation
index (NDVI) are weaker predictors of LST, while the normalized difference building
index (NDBI) and the normalized difference bare soilindex (NDBSI) are considered more
reliable by a large number of studies [23,24]. Some scholars have established models of the
relationship between Impervious Surface Percentage (ISP) and the index of impervious
surface landscape pattern and LST to explore the response law of LST spatial distribution
to impervious surface changes [25]. There are also scholars discussing the relationship
between human activities and other social and economic factors of urban development
and LST. Their research mainly analyzed the influence mechanism of population density,
economic development status, intensity and type of human activities on LST [26,27].

With the continuous development of remote sensing technology, it has provided
effective help for the inversion of surface temperature, and has accelerated the pace of
research on urban heat island effects. The application of remote sensing (RS) and geographic
information system (GIS) provides important technical support for estimating urban LULC
changes and LST distribution [28]. Landsat image data provide the possibility to describe
the changes of LULC and its impact on LST. A lot of research is carried out around LULC
and LST prediction, and the choice of prediction method will directly affect the accuracy
of prediction [29]. Currently, Markov chain (MC), cellular automata model (CA), logistic
regression (LR) and other methods are used in the prediction of changes in LULC and
LST [19,30,31]. Artificial neural network (ANN) is an algorithmic mathematical model that
is similar to the structure of the brain’s synaptic connections for distributed and parallel
information processing, and has the ability of self-learning and self-adaptation [32]. One of
the most important advantages of ANN is that it can model complex nonlinear relationships,
it has good advantages for the prediction and simulation of LULC and LST [33,34].

Although the current research has achieved many results, there are still the following
problems: (1) The research method used is relatively simple, and the relevant analysis
methods are not screened and selected, and the decision-making of the analysis model
needs to be improved. The research methods are mostly based on correlation analysis and
ordinary linear regression analysis, ignoring the spatial heterogeneity of urban development
and LST, and it is difficult to deeply explore the impact of spatial variability of urban
development on LST. (2) The research elements are not synergistic. Many studies only
conduct a single analysis of land cover or climate environment, and fail to study the
common time changes and impact relationship between the two. It is difficult to provide
a reasonable reference for environmental governance in different regions. The possible
innovations in this research are as follows. (1) This article is based on remote sensing
image data of the past two decades (2000, 2011, 2020). Through comparative analysis of
multiple methods, CA and ANN models are used to predict the growth trend of urban
land cover and LST in 2030 and 2040. (2) Analyze the synergy between LULC and LST
under different time conditions, and quantify the impact of urban LULC changes on urban
thermal environment.
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2. Materials
2.1. Study Area

This study uses the main urban areas of Wuhan (Jiang’an District, Jianghan District,
Qiaokou District, Hanyang District, Wuchang District, Hongshan District, and Qingshan
District) as the case study area. Wuhan is an important industrial city in China, as well
as the central economic center and regional transportation hub. It has jurisdiction over
7 central urban areas and 6 remote urban areas. Wuhan is located at 113◦41′–115◦05′

east longitude and 29◦58′–31◦22′ north latitude (Figure 1). It belongs to the humid north
subtropical monsoon climate, with abundant rainfall, sufficient sunshine, hot summers
and cold winters. Generally, the average annual temperature is 15.8–17.5 ◦C. During the
year, the average temperature in January is the lowest at 0.4 ◦C; the average temperature
in July and August is the highest at 28.7 ◦C. The summer is extremely long for 135 days.
Because Wuhan is located at 30 degrees north latitude, the sun can reach 38 degrees at
noon in summer. It is also located inland and far from the ocean. The terrain is like a basin.
The rain is concentrated in the rainy season in early summer, and heat collection is easy to
dissipate. There are many rivers and lakes, so there is more water vapor at night. Coupled
with the urban heat island effect and the control of the subtropical high during the summer
drought, it is very muggy. Wuhan is known as the “Three Big Stoves”, and the urban heat
island effect is significant.
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2.2. Data Sources

In this study, the Landsat multispectral remote sensing image data are all sourced
from the official website of U.S. Geological Survey (http://earthexplorer.usgs.gov/ (14
June 2020). Landsat 4–5 Thematic Mapper (TM) and Landsat 8 Operational Land Imager
(OLI) image data are used as research data to monitor LULC changes, LST distribution and
related indexes (Table 1). In order to truly reflect the condition of the ground objects, it
eliminates the problems of image data overlap and radiant brightness distortion caused by
factors such as the sun’s height, terrain, atmosphere, and the photoelectric system of the
sensor itself. It needs to pre-process the image with radiometric calibration, atmospheric
correction, band removal and other preprocessing [35]. This study used ENVI 5.3 to
preprocess the image, and the data analysis was done using ArcGIS 10.3, IBM SPSS 21
and other software. Wuhan city administrative division vector data and meteorological
station data are auxiliary data. The vector data of the administrative division of Wuhan
City is used for the division of the study area. The weather station data is used for the
temperature verification of the inversion, and comes from the China Meteorological Data
Network (http://data.cma.cn/ (25 May 2020)).

http://earthexplorer.usgs.gov/
http://data.cma.cn/
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Table 1. Description of the collected seasonal satellite image from USGS Earth Explorer.

Date of
Acquisition Sensor Path/Row

Multi-Spectral
Band

Resolution
Cloud Cover

27 July 2000 TM 123/39 30 m <10%
8 June 2011 TM 123/39 30 m <10%

3 August 2020 OLI_TIRS 123/39 30 m <10%

3. Methods
3.1. LULC Classification

The research applied the support vector machine (SVM) supervised classification
method in ENVI 5.3 software. In this supervised classification, images are classified
using polygons (training samples/signatures), which represent separate sample regions
of different LULC types to be classified [36]. The images are divided into four types of
land cover, namely water body (including rivers, lakes, ponds and any other wetlands),
vegetation (including woodland, shrubland and any other vegetation surface), bare land
(including sand, bare soil, and no vegetation land) and built-up area (including buildings,
roads and any other impervious surfaces).

3.2. Accuracy of LULC Data

In this paper, about 50 samples are collected for each LULC land use type in the ENVI
5.3 software platform, and the LULC map of the corresponding year is generated. The
accuracy of the LULC classification map in each issue is mainly determined by randomly
selecting 350 sample data and analyzing them in the Global Positioning System (GPS) and
Google Earth images and ground truth data [37,38]. This is one of the important methods
for evaluating the accuracy of image classification. Among them, the overall accuracy, user
accuracy, producer accuracy, and kappa statistic formula are as follows [39].

Overall accuracy =
Total number o f corrected classi f ied pixelxs(diagonal)

Total number o f re f erence pixels
∗ 100 (1)

User accuracy = Number o f correctly classi f ied pixelxs in each catagory(diagonal)
Total number o f re f erence pixelxs in each catagory(row total) ∗ 100 (2)

User accuracy = Number o f correctly classi f ied pixelxs in each catagory(diagonal)
Total number o f re f erence pixelxs in each catagory(column total) ∗ 100 (3)

Kappa coe f f icient(T) = Total number o f sample o f corrected sample−∑(col.tol∗row tot)
(Total number o f sample)2−∑(col.tol∗row tot)

∗ 100 (4)

3.3. Inversion of Surface Temperature

According to the characteristics of different thermal infrared remote sensing data,
there are three main types of land surface temperature retrieval algorithms: atmospheric
correction method, single-channel algorithm and split window algorithm [20,26,40]. In
this paper, the atmospheric correction method suitable for Landsat satellite imagery is
used to retrieve the surface temperature of the thermal infrared bands of TM and TIRS.
Landsat8 TIRS has two thermal infrared bands, b10 and b11. In this study, b10, which has
a similar spectral range to the TM thermal infrared band, is selected for the inversion of
land surface temperature [19,41]. The principle of the atmospheric correction method is to
first estimate the influence of the atmosphere on the surface thermal radiation, and then
subtract this part of the atmospheric influence from the total thermal radiation observed
by the satellite sensors to obtain the surface thermal radiation intensity. Finally, this heat
radiation intensity will be converted into the corresponding surface temperature [42]. The
thermal infrared radiance value Lλ received by the satellite sensor is composed of three
parts: the upward radiance of the atmosphere L↑, the true radiance of the ground reaches
the satellite sensor energy after passing through the atmosphere; the downward radiation
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of the atmosphere reaches the ground and the reflected energy L↓ [36]. The formula of the
thermal infrared radiance value Lλ received by the satellite sensor is (radiation transfer
equation):

Lλ =
[
ε× B(Ts) + (1− ε)× L↓

]
× τ + L↑ (5)

In Formula (5), ε is the surface emissivity, Ts is the true surface temperature (K), B(Ts)
is the black body thermal radiation brightness, and τ is the transmittance of the atmosphere
in the thermal infrared band. Before retrieving the surface temperature, the remote sensing
image needs to be preprocessed by radiometric calibration and atmospheric correction. Ra-
diation calibration refers to the received remote sensing data, usually gray value (DN value),
which will be converted into radiation or ground reflectivity [43]. Atmospheric correction
is to eliminate the influence of atmospheric molecular factors and aerosol scattering on the
ground object reflection, and accurately obtain the ground object reflectance information.
This article uses the FLASSH module in ENVI 5.3 to perform atmospheric correction on the
TM/TIRS images in the study area. The specific steps of surface temperature inversion are
shown in Appendix A.

3.4. The Prediction of LULC Map

This paper uses the MOLUSCE (Land Use Change Assessment Module) plug-in in the
QGIS 2.18 software to predict future LULC changes [20]. The plug-in includes several steps
starting from the input module, regional change analysis, modeling method, simulation
and verification. We load the independent variable and the dependent variable into the
input module, where the independent variable is the LULC raster data of the main urban
area of Wuhan, and the dependent variable includes the raster data of elevation, slope,
distance from residential, commercial, road and water body. In order to predict the LULC
maps in 2030 and 2040, the LULC maps in the main urban area of Wuhan in 2000, 2011 and
2020 are used. We analyze the area change in the MOLUSCE plug-in, calculate the LULC
change between two time periods, and generate a transition matrix and a LULC change
graph. In the modeling method stage, the ANN model is used to predict the LULC change
conversion potential, and the maximum iteration is set to 1000. We set its neighborhood
pixels to 9 (3 × 3) units to define the maximum iteration of the model and neighborhood
pixels for neural network analysis and prediction [44]. In order to verify the accuracy of
the predicted LULC map, we use Kappa statistics for verification.

3.5. The Prediction Process of LST

In the practice of case studies, more machine learning methods are generally used,
including feedforward neural network (FFNN), radial basis function neural network
(RBFNN), Kohonen self-organizing neural network, recurrent neural network (RNN),
convolutional neural network (CNN) and modular neural network (MNN) [45–47]. Before
predicting the LST, we need to input parameters such as the LST, LULC map, NDBI, NDBSI
image, latitude and longitude of the past years into the model to identify hidden patterns
in the data set and generate predictions by moving along the time series data. The LST
maps of the main urban area of Wuhan in 2000 and 2011 were used to simulate the LST
maps in 2030 and 2040. This article mainly uses two machine learning methods, ANN and
Elman, and we run them in MATLAB 2016b to predict the LST in the main urban area of
Wuhan in 2030 and 2040. In order to choose a more appropriate prediction algorithm, we
compare the prediction performance of the two algorithms by the correlation coefficient
(R) and root mean square error (RMSE) of the 2020 forecast and the actual interpreted LST
data [31,48]. The Formulas are as (6) and (7).

RMSE =

√
∑(Tobs − Tmodel)

2

n
(6)
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R =

 ∑
(
Tobs − Tobs

)(
Tmodel − Tmodel

)√
∑
(
Tobs − Tobs

)2
√

∑
(
Tmodel − Tmodel

)2

 (7)

Through the correlation coefficient results, it is found that the results of the fitting
are significantly different (Figure 2). In the prediction of LST, the R of ANN and Elman
algorithms are 0.885 and 0.080, respectively, and the corresponding RMSE are 0.513 and
0.705, respectively. It shows that the prediction results of the ANN algorithm are better and
more robust, and are more suitable for predicting the LST in this study area. It shows that
the prediction result of the ANN algorithm is more robust and more suitable for predicting
the LST in this study area [20].
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3.6. ANN Model

Based on the existing remote sensing image data, we build a 100 × 100 fishing net in
ArcMap software to generate sampling points. Then extract the LULC pixel value to the
center of the grid and use this value as one of the input parameters of ANN [26]. Similarly,
we extracted the LST, NDBI, NDBSI, longitude and latitude of the main urban area of
Wuhan in 2000, 2011 and 2020 respectively. Next, to predict the future LST of the main
urban area in 2030 and 2040, a sequence of past years LST, LULC, NDBI, BDBSI images at
an interval of 10 and 20 years, Latitude and longitude were provided as input parameters
to the ANN model to identify hidden patterns in the data set and generate predictions by
moving along the time series data [48,49]. The formulas are as follows.

LST (t + 10) = f [LST(t), LST(t− 10), LULC(t), LULC(t− 10), NDBI(t), NDBI(t− 10), NDBSI(t), NDBSI (t− 10)] (8)

LST (t + 20) = f [LST(t), LST(t− 20), LULC(t), LULC(t− 20), NDBI(t), NDBI(t− 20), NDBSI(t), NDBSI (t− 20)] (9)

In the Formulas (8) and (9), the t = 2020.

4. Results and Analysis
4.1. Variation in Past LULC Patterns

Based on the ENVI 5.3 platform, we used the SVM algorithm to classify the remote
sensing image data over the years (Figure 3). The accuracy of the LULC classification map
is described in Table 2. The percentages of overall accuracy and Kappa coefficient of LULC
classification maps in 2000, 2011 and 2020 are 98.12%, 87.97%, 91.37% and 89.68%, 91.25%,
and 90.18%, respectively. The percentages of overall accuracy and Kappa coefficient for all
years are greater than 87.97%, indicating that the classification shows high accuracy [50,51].
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On the whole, the vegetation area is showing a continuous decreasing trend, the built-up
area is continuously expanding, and the water body and bare land area are also showing a
continuous decreasing trend.
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Table 2. Accuracy assessment of classified LULC maps using SVM algorithm.

Year User Accuracy
(%)

Producer
Accuracy (%)

Overrall
Accuracy (%)

Kappa Statistics
(%)

2000 87.56 89.51 98.12 89.68
2011 89.16 90.33 87.97 91.25
2020 91.08 88.24 91.37 90.18

Statistics on the area of various land types are shown in Table 3. It shows that the
area of vegetation land decreased from 370.675 km2 in 2000 to 283.554 km2 in 2011, with a
decrease of 23.50%. In 2020, the area of vegetation land further reduced to 246.859 km2,
with a decrease of 12.94%. From the two stages, compared with the previous 10 years, the
decline of vegetation area in the next 10 years has slowed by nearly 50%. The reason may
be the continuous expansion of construction land in the main urban area from 2000 to 2020,
which has squeezed some space for vegetation.
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Table 3. Changes in LULC class from 2000 to 2020.

Class

2000 2011 2020 2000–2020

Area (Km2)
Area of
Change
(Km2)

Rate of
Change (%)

Vegetation 370.675 283.554 246.859 −123.816 −50.16
Built-Up Area 267.683 388.852 452.111 184.428 40.79

Water Body 320.742 289.869 263.898 −56.844 −21.54
Bare Land 8.365 5.192 4.599 −3.766 −81.88

From the two stages, compared with the previous 10 years, the decline of vegetation
area in the next 10 years has slowed by nearly 50%. The reason may be the continuous ex-
pansion of construction land in the main urban area from 2000 to 2020, which has squeezed
some vegetation. The decline in the next 10 years is mainly due to the government’s
implementation of the concept of “green water and green mountains are golden mountains
and silver mountains” in the new round of urban planning. More attention has been paid
to the healthy and sustainable development of urban green development, the addition of
“pocket parks” and the strengthening of greening renovation in urban gray areas.

The urban construction area has continued to increase, expanding from 267.683 km2

in 2000 to 388.852 km2 in 2011, and reaching 452.111 km2 in 2020. During this period, the
area of urban construction land increased by 40.79%, which is closely related to the rapid
development of urbanization in Wuhan during this period. Due to the continuous economic
and social development and the continuous population expansion, the construction area
of the main urban area, transportation construction land and public activity space needs
to continue to rise, causing more construction land to squeeze the phenomenon of other
types of land. During the period, the area of bare land decreased by 81.88%. The area of
bare land decreased from 8.365 km2 in 2000 to 5.192 km2 in 2011, and further decreased
to 4.599 km2 in 2020. It may be due to the increased intensity of the landscape design and
renovation projects on both sides of the Yangtze River during this period, which led to the
reduction of the bare land in the river bed during this period.

Similarly, the area of the water body has dropped from 320.742 km2 in 2000 to 263.898
km2 in 2020, and the area has decreased by −56.844 km2, a decrease of 23.578%. This may
be because in order to increase and supplement the area of farmland in the Jianghan Plain,
there have been many blind reclamation activities before 2011, such as lake filling and weir
filling for farmland. In addition, due to the continuous expansion of the built-up area in
the main urban area, some rivers and lakes are shrinking.

4.2. Analysis of LST Changes

Due to the limitation of the research location, it is difficult to obtain the specific
temperature of a specific area. However, the use of satellite imagery and remote sensing
technology can effectively estimate the urban LST on the micro and macro scales. We
estimated the summer LST in the main urban area of Wuhan based on Landsat’s thermal
induction zone, and combined the characteristics of the LST results to divide it into four
types: <25 ◦C, 25~30 ◦C, 30~35 ◦C, >35 ◦C (Figure 4). In 2000, the highest temperature in
the main urban area of Wuhan was 32.1 ◦C and the lowest temperature was 16.4 ◦C. The
remote sensing image of 2000 was collected on July 27, which was the mid-summer time,
but the temperature was relatively low at this time. In 2011, the highest temperature in the
main urban area was 36.3 ◦C and the lowest temperature was 22.3 ◦C. Compared with 2000,
the lowest and highest temperatures increased by 4.2 and 5.1 ◦C respectively. The remote
sensing images in 2011 were collected on June 8, which was in the early summer period,
and the highest temperature at this time node reached 36.3 ◦C. In 2020, the minimum and
maximum temperatures in the main Wuhan urban area will be 20.6 and 37.3 ◦C, respectively.
This is compared with 2000 and 2011. Except for a slight drop in the minimum temperature,
the temperature in the main urban area in 2020 will be higher overall. Compared with
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other cities at the same latitude, the LST of the main urban area for three years is generally
higher, which also verifies Wuhan’s reputation as China’s “three major stoves”.
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The area of four types of temperature is counted in AcrGIS 10.3 (Table 4). It reveals
that the summer LST in the main urban area of Wuhan is mainly in the two intervals of
25~30 ◦C and 30~35 ◦C from 2000 to2020. These two temperature ranges account for more
than 77%, but the area with a temperature >35 ◦C accounts for less than 3%. In 2000, the
area with the temperature less than 25 ◦C was 152.015 km2, which only accounted for
15.713% of the main urban area. The area in this temperature range in 2011 and 2020 are
139.273 and 126.448 km2, respectively.

Table 4. Range wise LST distribution in the study area from 2000 to 2020.

Year

<25 ◦C 25~30 ◦C 30~35 ◦C >35 ◦C

Area Ratio Area Ratio Area Ratio Area Ratio

(Km2) (%) (Km2) (%) (Km2) (%) (Km2) (%)

2000 152.015 15.713 501.872 51.874 313.581 32.413 0 0
2011 139.273 14.396 398.596 41.200 423.066 43.729 6.533 0.675
2020 126.448 13.069 315.661 32.627 515.108 53.242 10.251 1.059

4.3. Changes in LST under Different LULC

We conducted statistics on the LST area of Wuhan’s main urban area under different
LULCs in ArcGIS 10.3 (Table 5). It shows that the highest temperature range in the main
urban area in 2000 was 25~30 ◦C, and the proportion of water body in this range reached
20.580%, followed by vegetation, which accounted for 18.694%. The temperature range
with the second highest proportion is 30~35 ◦C, of which the built-up area accounts for
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15.917%, and the vegetation accounts for 14.616%. Compared with 2000, the situation in
2011 is slightly different. This mainly shows that the highest temperature range in the main
urban area is 30~35 ◦C, and the built-up area accounts for as high as 30.937%. In the range
of 25~30 ◦C, the proportions of vegetable and water body are still significant, 16.709% and
15.910% respectively. In 2020, the temperature range with the highest proportion of the
main urban area is 25~30 ◦C, and the proportion of built-up area in this range reaches the
maximum, which is 36.606%, followed by vegetation, with a proportion of 10.239%.

Table 5. Cross-linkage of LST variation over different LULC classes.

LULC
<25 ◦C 25~30 ◦C 30~35 ◦C >35 ◦C

Area
(Km2) Ratio (%) Area

(Km2) Ratio (%) Area
(Km2) Ratio (%) Area

(Km2) Ratio (%)

2000
Vegetation 33.214 3.433 183.474 18.964 153.987 15.917 0.000 0.000

Built-up Area 11.435 1.182 114.847 11.871 141.401 14.616 0.000 0.000
Water Body 105.413 10.896 199.106 20.580 16.254 1.680 0.000 0.000
Bare Land 1.953 0.202 4.445 0.459 1.967 0.203 0.000 0.000

2011
Vegetation 30.521 3.155 161.651 16.709 90.757 9.381 0.817 0.084

Built-up Area 5.120 0.529 80.276 8.298 299.307 30.937 3.978 0.411
Water Body 103.554 10.704 153.924 15.910 32.361 3.345 0.013 0.001
Bare Land 0.078 0.008 2.765 0.286 0.641 0.066 1.708 0.177

2020
Vegetation 32.321 3.341 114.685 11.854 99.057 10.239 0.915 0.095

Built-up Area 6.921 0.715 85.258 8.812 354.149 36.606 5.783 0.598
Water Body 86.244 8.914 112.779 11.657 61.785 6.386 3.058 0.316
Bare Land 0.962 0.099 2.894 0.299 0.241 0.025 0.502 0.052

It is worth noting that the built-up area occupies a larger area in the three temperature
ranges of 25~30 ◦C, 30~35 ◦C and >35 ◦C. This feature is particularly obvious in 2020.
Compared with other land types, the proportion of built-up area in these three temperature
ranges is relatively high, which are 34.098%, 11.287% and 0.098%, respectively. This may be
because the built-up area is mostly urban asphalt or concrete roads and buildings. They
will produce long-term infrared heat waves and high thermal radiation, which will cause
the LST of the main urban area to rise, and the rise of LST is an important factor in causing
UHI. It is well known that vegetation and water body have a regulating effect on urban
LST. Therefore, we can moderately increase the water body and vegetation space in order
to regulate and reduce the UHI effect.

4.4. Prediction and Analysis of LULC

The LULC and DEM data of the main urban area of Wuhan in 2000, 2011, and 2020,
as well as the power factor raster data of Slope and Road were added to the QGIS 2.18-
MOLUSCE plug-in. We use the ANN simulation function of the MOLUSCE plug-in to
predict LULC in 2030 and 2040. Before that, we need to use the 2000 LULC and 2011 LULC
to predict the LULC of the main urban area in 2020. Subsequently, we tested the predicted
results with the real 2020 LULC results in the MOLUSCE plug-in. The QGIS-MULUSCE
Plugin module verification result shows that the correctness of LULC in 2020 is predicted to
reach 84.018%, Kappa (overal) is 0.756, Kappa (histo) is 0.898, and Kappa (location) is 0.843.
It shows that the prediction results of this model are robust and suitable for predicting
future LULC under this standard [52].

The LULC in the main urban area of Wuhan in 2030 and 2040 is predicted in QGIS-
MOLUSCE, and the area of various types of LULC is calculated (Figure 5 and Table 6).
Comparing the LULC of 2030 and 2040 to ArcGIS 10.3 and the comparison of the LULC of
2020, it is found that the built-up area of Wuhan’s main urban area has further expanded.
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In 2030 and 2040, the built-up area will be expanded from 2000 to 511.510 km2 and 545.282
km2. In contrast, in 2030 and 2040, the areas of vegetation, water body and bare land in the
main urban area are shrinking, and the reductions are 18.76%, 4.03%, 53.28% and 24.78%,
11.10%, and 58.74%, respectively.
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Table 6. Predicted LULC changes in the study area for 2030 and 2040.

LULC Class
Area(Km2) Net Change (%)

2000 2011 2020 2030 2040 2020~2030 2020~2040

Vegetation 370.6749 283.554 246.859 200.559 185.687 −18.76 −24.78
Built-up Area 267.6834 388.8522 452.111 511.51 545.282 13.14 20.61
Water Body 320.742 289.8693 263.898 253.267 234.616 −4.03 −11.10
Bare Land 8.3646 5.1921 4.599 2.13 1.881 −53.28 −58.74

4.5. Prediction and Analysis of LST

Predicting and simulating the LST have an important guiding role in the evaluation
of the future UHI in the study area and the formulation of the adjustment mechanism.
As described in Section 3.5 of the article. The more parameters entered in the model can
improve the prediction accuracy of the ANN. In this paper, NDBI, NDBSI, LULC, latitude
and longitude are used as supporting parameters and input into the ANN model for
prediction. In the prediction of LST, the R and RMSE of the prediction result are 0.885 and
0.513, respectively, indicating that the prediction result of the ANN algorithm is robust.
Then, the summer LST of the main urban area of Wuhan in 2030 and 2040 was predicted,
and the area of each temperature interval was counted in ArcGIS 10.3 (Figure 6 and Table 7).
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Table 7. Statistical description of LST in main urban areas in 2030 and 2040.

Year

<25 ◦C 25~30 ◦C 30~35 ◦C >35 ◦C

Area Ratio Area Ratio Area Ratio Area Ratio

(Km2) (%) (Km2) (%) (Km2) (%) (Km2) (%)

2030 121.257 12.533 318.915 32.964 512.032 52.925 15.264 1.578
2040 98.544 10.186 301. 097 31.122 534.215 55.219 33.612 3.473

Figure 6 and Table 7 show that the temperature range of <25 ◦C and 25~30 ◦C in the
main urban area will be tightened in 2030 and 2040. The range of 30~35 ◦C and >35 ◦C
continues to expand, of which 30~35 ◦C will rise from 32.413% in 2000 to 52.925% and
55.219% in 2030 and 2040, respectively. The temperature range of >35 ◦C has been expanded
from2.095 km2 in 2020 to 15.264 km2 in 2030 and 33.612 km2 in 2040. From the perspective
of extreme temperature, the future temperature in the main urban area will rise to varying
degrees. In 2030, the minimum temperature in the main urban area in the summer of 2040
will be 22.1 ◦C and 23.6 ◦C, and the maximum temperature will be 38.5 ◦C and 39.1 ◦C. The
expansion trend of the main urban area in the range of 30~35 ◦C and >35 ◦C is somewhat
similar to the expansion trend of built-up area in 2040. This shows that if the development
of rapid urbanization is not rationally curbed, it will inevitably further aggravate the urban
heat island effect.

5. Discussion and Conclusions

With the development of GIS and RS technology, although the application of CA
and ANN models can provide effective methods for the prediction of LULC and LST, the
accuracy of the prediction results needs to be improved [53]. The prediction results of CA
and ANN models may only predict the development trend as a whole, and their ability to
identify the relationship between variables is limited. This is not enough to clearly predict
the development process of LULC and LST. In addition, in order to obtain better prediction
results, we try to find remote sensing image data with consistent time and high resolution,
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but there are still some differences in time and the resolution of the image is not high [51,53].
Therefore, these shortcomings should be considered to further improve the accuracy of
the forecast in the following research and provide a more reliable reference for the green
development and sustainable development of the city.

This research is based on remote sensing image data of LULC and LST in the main
urban area of Wuhan in 2000, 2011 and 2020. We use the CA and ANN models in the
Molusce plug-in of the QGIS 2.18 software platform to predict the LULC and LST in 2030
and 2040. We can get the following conclusions.

(1) In the past 20 years in Wuhan, with the rapid development of urbanization, the
land use structure of the main urban area has undergone great changes. The area of built-up
area in the main urban area of Wuhan continues to expand. Compared with 2000, the area
of built-up area in 2020 has increased by 40.79%.

(2) The expansion of built-up area in the main urban area is mainly by replacing or
squeezing vegetation, water bodies and bare land. The area of bare land and vegetation
decreased significantly, with a decrease of 81.88% and 50.16%, respectively. According to
the forecast results, the built-up area will be further expanded in 2030 and 2040.

(3) From 2000 to 2020, except for the slight decrease in the minimum temperature in
the summer of 2010 in the main urban area of Wuhan, the overall temperature has shown a
gradual upward trend. In 2030 and 2040, the predicted extreme temperature of LST has
shown signs of increasing compared with previous years. The 30~35 ◦C and >35 ◦C areas
in the main urban area continue to expand. The direction of the expansion range of the LST
temperature range is obviously similar to the expansion of the built-up area.
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Appendix A

Inversion of surface temperature.
According to the characteristics of different thermal infrared remote sensing data,

there are three main types of land surface temperature retrieval algorithms: atmospheric
correction method, single-channel algorithm and split window algorithm [26,54]. In this
paper, the atmospheric correction method suitable for Landsat satellite imagery is used to
retrieve the surface temperature of the thermal infrared bands of TM and TIRS. Landsat8
TIRS has two thermal infrared bands, b10 and b11. In this study, b10, which has a similar
spectral range to the TM thermal infrared band, is selected for the inversion of land surface
temperature [19,55]. The principle of the atmospheric correction method is to first estimate
the influence of the atmosphere on the surface thermal radiation, and then subtract this
part of the atmospheric influence from the total thermal radiation observed by the satellite
sensors to obtain the surface thermal radiation intensity. Finally, this heat radiation intensity
will be converted into the corresponding surface temperature [42,56]. The thermal infrared
radiance value Lλ received by the satellite sensor is composed of three parts: the upward
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radiance of the atmosphere L↑, the true radiance of the ground reaches the satellite sensor
energy after passing through the atmosphere; the downward radiation of the atmosphere
reaches the ground and the reflected energy L↓ [57]. The formula of the thermal infrared
radiance value Lλ received by the satellite sensor is (radiation transfer equation):

Lλ =
[
ε× B(Ts) + (1− ε)× L↓

]
× τ + L↑ (A1)

In Formula (A5), ε is the surface emissivity, Ts is the true surface temperature (K), B(Ts)
is the black body thermal radiation brightness, and τ is the transmittance of the atmosphere
in the thermal infrared band. Before retrieving the surface temperature, the remote sensing
image needs to be preprocessed by radiometric calibration and atmospheric correction.
Radiation calibration refers to the received remote sensing data, usually gray value (DN
value), which will be converted into radiation or ground reflectivity [58]. Atmospheric
correction is to eliminate the influence of atmospheric molecular factors and aerosol scat-
tering on the ground object reflection, and accurately obtain the ground object reflectance
information. This article uses the FLASSH module in ENVI 5.3 to perform atmospheric
correction on the TM/TIRS images in the study area. The specific steps for inversion of
surface temperature are as follows.

NDVI = (BNir − BRed)/(BNir + BRed) (A2)

FV = (NDVI − NDVIS)/(NDVIV − NDVIS) (A3)

In Formula (A2), BNir and BRed represent the reflectivity of the image in the near-
infrared band and the red band, respectively. In Formula (A3), FV is the vegetation coverage,
and NDVIS is the NDVI value of non-vegetation pixels. NDVIV represents the NDVI
value of pure vegetation pixels.

Secondly, the surface specific emissivity thermal infrared radiance is calculated. The
surface emissivity refers to the ratio of the amount of radiation emitted by the surface to the
amount of radiation emitted by a black body at the same temperature. There are obvious
differences in the surface emissivity of various land use types. Qin et al. proposed to divide
the types of ground features into three types: water bodies, natural surfaces, and towns,
and then calculate their respective surface emissivity values [36]. The structure of the water
surface is simple, and the specific emissivity in the thermal band is very high, so the default
emissivity value of the water body is 0.995.

εsur f ace = 0.9526 + 0.0614FV − 0.0461FV
2 (A4)

εbuilding = 0.9589 + 0.086FV − 0.0671FV
2 (A5)

where, the εsur f ace is the specific emissivity of the natural surface pixel; εbuilding is the specific
emissivity of the town. The calculation formula for the radiance B(TS) of a blackbody at a
temperature of T in the thermal infrared band is as follows:

B(TS) =
[

Lλ − L↑ − τ(1− ε)L↓
]
/τ · ε (A6)

We enter the imaging time and intermediate latitude and longitude in NASA (http:
//atmcorr.gsfc.nasa.gov/ (16 June 2020)) to obtain the parameters in the formula.

Finally, the true surface temperature is retrieved. Because of the difference between
the brightness temperature and the true temperature of the earth’s surface [46–48]. After
obtaining the radiance of a black body with a temperature of TS in the thermal infrared
band, it is necessary to obtain the true surface temperature TS according to the inverse
function of Planck’s formula [49,59]. The formula is as follows:

TS =
K2

ln
[

K1
B(TS)

+ 1
] − 273.15 (A7)

http://atmcorr.gsfc.nasa.gov/
http://atmcorr.gsfc.nasa.gov/
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In Formula (A7), K1 and K2 are constant terms, and different image data have different
values. For TM data, K1 = 607.76, K2 = 1260.56; and for TIRS data, K1 = 774.89, K2 = 1321.08.
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