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Abstract: Humans benefit from ecosystem services (ES) and profoundly influence the ecosystem in
rapid urbanisation and large-scale urban sprawl contexts, especially at the landscape level. However,
the impacts of landscape pattern, the driving mechanism of sub-ES and the spatially explicit regional
optimisation, have been largely ignored. In response, to the present paper explores two primary
aspects: the relationship among ES, landscape pattern, urban income and agricultural output, and the
regional governance of optimised ES values (ESV), using the Wuhan urban agglomeration as a case
study area. The survey method is employed in obtaining the adjusted magnitude matrix of land
use and ecosystem services. Spatial regression analyses are conducted on each ES, including food
provision, climate regulation and soil maintenance, with socio-economic indicators and landscape
pattern index as explanatory variables. Finally, geographically weighted regression and scenario
analyses are conducted on each sub-ESV to generate adjusted coefficients in each county for ESV
regulation. The results show that urban per capita disposable income and agricultural output
significantly contribute to ESV change, with the former being negative and the latter being positive.
A highly aggregated landscape also produces reduced ESV, particularly in soil maintenance and
gas and climate regulation. We summarise the ESV in 2020 and in the period after adjustment in
different administrative counties. Provision, regulation and culture ecosystem benefits substantially
increase when attempts are made to lower the landscape aggregation pattern by 1%. In general,
counties and county-level cities have the largest ESV, with food provision as the optimum ecosystem
benefit. Districts in the capital city show an immense growth in provision and regulation, and county-
level cities show the highest growth rate in cultural service. Integrating the landscape pattern into
characterising and optimising ES, provides references for regional governance on land-use planning
and socio-economic development, which is vital to sustainable regional development.

Keywords: ecosystem service; landscape pattern; spatial modelling; regional sustainable develop-
ment; Wuhan agglomeration

1. Introduction

Humans benefit from ecosystem services (ESs) and profoundly influence the ecosys-
tem in the context of rapid urbanisation and large-scale urban sprawl, especially at the
landscape level [1,2]. All ESs are widely recognised as provision, regulation, maintenance
and cultural and recreational services, which are important for the well-being and sus-
tainable development of humans [3–5]. In return, the demand for social and economic
advancement is actively transforming the regional landscape, thereby affecting ESs [6,7].
The comprehension of linkages among ESs, landscape pattern and socio-economic develop-
ment help elucidate the driving mechanism underlying spatio-temporal ES changes, thus
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leading to additional pragmatic decisions on ecosystem management [8]. Rural areas in
China are generally the most sensitive and vulnerable regions, in which agricultural sector
development and farmer benefits tend to be offset for city development. In this process, the
rural landscape has experienced dramatic changes that raise concerns on the relationships
between ESs and landscape pattern in a rural socio-economic context.

Ecosystem service has been comprehended by scientists from a wide range of dis-
ciplines, and they have implemented multiple studies related to ES issues, such as the
spatio-temporal patterns of comprehensive ES values (ESVs) and their underlying driving
mechanisms, the relationship between landscape pattern and ESVs and the uncertainties in
landscape ecology and ecosystem service. Ehrlich et al. (1981) first proposed the concept of
ESs as an ecosystem function and environmental service [9]. Later, in ecology and sustain-
able development, ES is defined as the benefit received by humans from their interactions
with ecological structures and functions [10,11]. In sociology, Jericó-Daminello et al. (2021)
regarded ESs as ecosystem contributions combined with anthropogenic contributions,
and they have impacts on ecosystems and benefit the social system [12]. Based on the
understanding of the concept of ESs from multidisciplinary studies, it can be considered
that ESs are the attributes, processes and functions of nature that directly or indirectly
benefit human beings, through the functioning of ecosystem and natural assets [13,14]. In
general, land use and land cover change are closely related to subsequent ESV change.
Urbanisation, urban expansion, socio-economic development and human activities are
supposed to be important drivers of ES changes. In China, total ESVs continuously declined
in 1998–2008, and ESVs for regulation, culture, support and provision experienced a further
decrease during 1988–2000 and 2000–2008, respectively [15]. Fang et al. (2021) depicted
land use and ESV dynamics in the rapidly growing metropolitan area of the Yangtze and
Yellow River Basins, and discovered that human activity intensity and population density
are likely responsible for the overall decline in regional ESVs [16]. Abera et al. (2021)
assessed ESV changes by connecting observed land use dynamics with ESV evaluation, and
found forest land has been decreasing from 1986 to 2017, whereas the cropland has shown
an increasing trend and this is driving a negative overall trend in the provision of ESs in
southwestern Ethiopia [17]. Ketema et al. (2021) developed an ecosystem service supply
rate and supply–demand ratio to construct the values of nature in supplying different
ESs and indicating their use for human survival in the south-eastern escarpment of the
Ethiopian Rift Valley [18]. The results revealed that a deficit in the status the provisioning
of ecosystem service supply in the study region is not balanced with the existing ecosystem
service demand. The demographic variables in rural areas, such as human population,
population density, and number of villages, also threaten multi-functional landscapes
and reduce the capacity to deliver ESs [19]. The effect of landscape pattern on ESs has
emerged as an appealing research topic because of the exploration on spatial organisation
in the landscape, along with associated landscape modifications from rapid and slow land
cover changes [20]. The decreased variation in a landscape leads to different resistance to
ecosystem service flows, such as landscape connectivity and permeability, but the provi-
sion of services then requires flows of species, humans, or matter to connect supply and
demand areas [1]. A previous empirical study (i.e., Jiang et al. (2022) [21]), showed that ES
provision is positively and negatively related to the amount of vegetation and the degree
of fragmentation in an area, and that a multi-functional landscape reinforces local food
production and enhances biodiversity and essential ESs [22]. Local landscape structures
have been discovered to affect supply and compatibility across multiple ESs [23], and
the high value area of flood mitigation have been found to be highly correlated with the
spatial configuration of water body and woodland [24]. Moreover, landscape heterogeneity
likely benefits a small but significant number of key farmland species and ESs [25]. With
respect to uncertainties in ES studies or landscape analyses, the complexity of the landscape
and the natural system [26], case study peculiarities [27] and data and methodological
uncertainties all inherently affect ESV characterisation and modelling. The locally justified
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ES scoring method and the incorporation of stakeholder knowledge and perspectives have
been applied to communicate uncertainty and improve accuracy [28,29].

Regardless of the comprehensive studies on ESV characterisation and analysis, the
refined analysis on each ES and on spatially explicit approaches have occasionally been
applied in ESV modelling and governance. In general, ES or benefits can be categorised into
food and freshwater provision, soil conservation, hydrological adjustment, gas and climate
regulation, natural heritage and landscape aesthetic value and culture and entertainment.
These benefits are important for the survival of mankind and for well-rounded sustainability.
These benefits also have trade-offs and distinctions that differentiate the extent to which
socio-economic factors influence each benefit and that potentially provide references for
follow-up regulation and governance. However, most scenario analyses on ESVs concerned
with land use, landscape pattern effects and socio-economic development have hardly been
utilised in optimising regional ESVs. Differences in the driving mechanism underlying
various benefits and the spatial heterogeneity of the contribution of landscape pattern and
socio-economic development help manage a series of uncertainties and provide information
on regional ES governance. Thus, we adopt spatial modelling to analyse the driving factors
for the change and regulation of each ESV in the Wuhan urban agglomeration, coupled
with a survey and landscape pattern analysis. Section 2 of this research introduces the study
area and methods, Section 3 provides the results and Section 4 includes the discussion
and conclusion.

2. Materials and Methods
2.1. Study Area

The Wuhan urban agglomeration is located at the eastern part of Hubei province and
along the middle reaches of the Yangtze River in central China. Administratively, there is
one sub-provincial capital city, Wuhan, and 8 prefectural cities in the Wuhan agglomeration,
and it is thus also been renowned as “1+8” urban agglomeration. With a permanent resident
population of 32 million and an area of 57,908 km2 in 2020, Wuhan agglomeration has
experienced rapid socio-economic development as its GDP surpassed 2636 billion that
same year. The reasons why we chose Wuhan agglomeration as the case study area are
as follows.

First of all, Wuhan agglomeration is one of the pioneering urban agglomerations with
the policy of resource conservation and environment-friendly construction in China. Apart
from the Yangtze River, a number of lakes and rivers occupy large areas that are vital for
ecological conservation. In the past several decades, it has also experienced tremendous
land-use and landscape pattern changes because of rapid industrialisation and urbanisation.
In 2020, the expansion area of construction land reached 1523.49 km2, which is 2.5 times that
in 2000, in the Wuhan agglomeration. Secondly, the Jianghan Plain has been regarded as
the grain production base, and it sits in the western area of the Wuhan agglomeration. With
its physical advantages, agricultural development is essential in the Wuhan agglomeration.
In 2020, arable land and forests and grasslands occupied 49.10% and 40.52% of the total area,
respectively (Figure 1). Secondly, the Millennium Ecosystem Assessment (MEA) report
stated that the ecological services and values were not recognised enough in landscape
planning and management [30]. It is worth noting that the crops planted in the Wuhan
agglomeration are mainly rice, wheat, cotton and rape. In 2020, the total planting area of
crops reached 30,620 km2 in the Wuhan agglomeration. Among them, rice, rape, wheat
and cotton are the four crops with the largest planting area, accounting for 35.92%, 14.19%,
8.03% and 2.90%, respectively. In the last 10 years, the sown area has been reduced by
10.26%, especially the cotton planting area has reduced by more than half, while rape has
also fallen by one-third. The rural landscape pattern has undergone drastic changes. Hence,
taking the Wuhan agglomeration as a research area is helpful to explore the relative value
of ESs in the context of rural landscape. As a result, exploration of the spatial-temporal
ecosystem service and its driving forces in the Wuhan agglomeration is of great importance
for the sustainable land use and urban-rural development.
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Figure 1. Location of the Wuhan urban agglomeration.

2.2. Methodology
2.2.1. Questionnaire for Retrieving the ES Matrix

Although the estimation of certain benefits [31] can be conducted through various ap-
proaches, establishing the relationship between land use and ES is critical in deriving ESVs.
Site-specific characteristics should also be included. In general, ESs can be classified into the
following categories: provision services, such as food and freshwater supply; regulating ser-
vices, such as gas, climate and hydrological management; and soil maintenance and cultural
services, such as culture and entertainment, aesthetic value and natural heritage. All ESs
can be extended or retrenched, depending on local peculiarity to provide specific benefits to
society. In the study area, we included all nine services in the three ES groups because these
benefits are prevalent in the Wuhan agglomeration. The local community influences ESVs
and thus sets the basis for modifying ES and land-use relationships. Costanza et al. (1997)
first produced the matrix of land use and ESVs [3], and then Xie et al. (2003) applied it to
China with certain modifications [32]. Later on, there were wide applications with various
modifications, such as biomass-based [33] modifications; agriculture output-based [34];
economic value-based [35]; gas adjustment for construction land [36]; grain production-
and food market price-based [37]; the benefit transfer method [38] and adjustment based
on the socioeconomic factors [39], using expert or public opinion of local conditions [40].
Twenty experts were consulted in this study for deriving this matrix: two from government
bodies; three each from Wuhan University; two from Huazhong University of Science and
Technology; two from Central China Normal University; two from Zhongnan University
of Economics and Law; three from the Chinese Academy of Sciences (CAS) and six from
Huazhong Agricultural University. Apart from CAS, all universities and government bod-
ies of consulted experts are based in Wuhan, guaranteeing expert proficiency. The experts
from CAS have also completed projects in Wuhan or in other cities in Hubei provinces, and
are thus familiar with study area conditions. All 20 experts were interviewed and asked to
rate the importance of each ecosystem service to every land use. The experts were informed
of the ES concepts, and they all possessed adequate knowledge on the relationship between
land use and ES. The rating scale was set from 0 to 4, with 0 indicating no relative potential
4 indicating a high relative potential and 2 and 3 implying a medium relationship.

2.2.2. Global Spatial Modelling of ESVs

During the spatio-temporal change, the driving factors of ES change have been found
to be complicated, and spatial dependence was observed. To further explore the driving
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mechanism of different ES types, we adopted spatial modelling for each ES according to
provision, regulation and culture services.

The explanatory factors can generally be classified into socio-economic variables and
physical attributes. We selected 11 socio-economic variables as potential explanatory fac-
tors with respect to the demographic features (i.e., population density and urbanisation
rate), sectoral structure (i.e., proportion of the secondary and tertiary industry to total
GDP) and other key economic attributes (i.e., GDP per capita, total agricultural output,
per capita disposable income for urban and rural residents, total fixed asset investment
and foreign direct investment and per capita total retail sales of consumer goods). The
correlation and simple regression analyses are assumed to have been implemented in 2010,
2015 and 2020, to include variables with the highest correlation with ES and without the
multi-collinearity problem. Most physical attributes are temporally invariant or possess
slight variations, increasing the difficulty at which they adapt to frequent and continuous
socio-economic changes. However, the landscape pattern that depicts spatial clustering
or land use diffusion is changing because of rapid urbanisation and urban expansion.
The spatial aggregation or fragmentation of the landscape has also been revealed to be
correlated with the local biomass and genetic and species diversity, fundamentally affecting
the ecosystem and its societal benefits. Therefore, we calculated a series of landscape
metrics to identify landscape pattern effects on ES: patch density (PD), contagion index
(CONTAG), aggregation index (AI), perimeter–area fractal dimension and Shannon diver-
sity index (SHDI). Previous studies rarely considered spatial dependence in their attempt
to further examine underlying ES factors. Bundle types of ES and clustered distribution
patterns have been discovered in the Xilin Gol, from 2001 to 2014 [41]. Yohannes et al.
(2021) also suggested that a management plan should be developed to address the spatial
relationship in ES, because there is a strong positive correlation between hydrological ESs
and supporting services [2], highlighting a strong synergetic relationship between the
spatial and temporal. In this study, we tested the spatial autocorrelation of each and all
ESs, to justify the existence of spatial auto-correlation. Under the hypothesis of spatial
dependence in ESs, we employed spatial regression models to reveal driving factors and
make comparisons. Spatial regression models generally have two types: the spatial lag and
spatial error models. The spatial lag model assumes that neighbouring dependent variable
values directly affect the value of the dependent variable and incorporates the spatially
lagged variable in its specification, Equation (1). The spatial error model treats spatial
correlation primarily as a nuisance and assumes that model errors are correlated across
distances among observations, Equation (2). We performed a simple linear regression using
the ordinary least square (OLS) method and the Lagrange multiplier (LM) test to choose
between spatial lag and spatial error regression as the optimal model performance for
each ES.

yi = α W yi + β Xi + µ (1)

yi = β Xi + µ µ = ρ W µ + ε (2)

where yi is the ES value for each and all ES types; Xi denotes potential driving factors,
including socio-economic variables and metrics from landscape ecology; α is the spatial lag
coefficient; β represents the correlation coefficients for independent variables and µ is the
error term and W is the spatial weight matrix. The first order rook contiguity weight was
selected for this analysis.

2.2.3. Local Spatial Adjustment of ESVs

Preliminary ESV modelling and assessment aim to improve ESs and comprehensive
sustainability in certain areas. Most regulation and scenario analyses regarding ES opti-
misation are concerned with land use change, leaving much potential for exploring and
utilising landscape pattern effects. Previous studies confirmed that urban expansion, crop-
land encroachment and ecological land loss greatly impact ESVs with respect to land use
structure. According to empirical studies [3,33,42], ES calculation is precisely based on
areas of each land use type. Therefore, ES optimisation is achieved by adjusting the land
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use structure. However, the influence of landscape spatial distribution on ESs has scarcely
been utilised in enhancing specific and integrated ESs. We are entering an era in which land
use planning is oriented to “inventory planning” rather than “increment planning”. Thus,
the spatial form of land use is highly likely to adjust for compact and intensive growth. We
aim to improve ESs by changing the landscape pattern and conducting a scenario analysis.

The driving mechanism of ESs at each location potentially differs from one another. ES
improvement also requires the consideration of spatial heterogeneity. Previous empirical
studies assumed that factor contributions are spatially homogenous and that the regulation
on improving ESs is generally comprehensive, hindering their interpretation of the spatial
difference between ES modelling and optimisation, and reducing ES regulation accuracy.
Spatial dependence and interaction have also been widely acknowledged. Thus, geographi-
cally weighted regression (GWR) is suitable for scenario analysis through landscape pattern
regulation. GWR is a regression technique that allows locally weighted regression coeffi-
cients to move away from their global values, and the relationships between independent
and dependent variables to achieve variation by locality. Specifically, GWR constructs
a separate OLS equation incorporating dependent and independent variables of locations
falling within the bandwidth of each target location. Equations (3) and (4) shows the
GWR specifications.

yi = β0 + β1 x1 + β2 x2 + β3 x3 + . . . βni xni + εi (3)

βi = ( XT Wi X )−1 XT (4)

In this study, we use the fixed Gaussian kernel and golden bandwidth selection method
to derive the varying coefficients.

3. Results
3.1. Matrix of Land Use and Ecosystem Service

The local matrix of land use and ES is obtained and standardised from 0 to 1, on the
basis of the interview with experts and the statistical analysis. The results in Table 1 show
that each ecosystem service (i.e., provision, regulation and cultural service) is distinctly
relevant to every land use. Aside from cultivated land, which yields the highest score
for food provision, water, forests and grassland are the three other land use types with
the highest scores. Freshwater supply is most closely related with water, followed by
forests and grassland. Forests, water and grassland are the top three land use types that
significantly influence gas, climate and hydrological regulation. Soil maintenance in the
regulation category is most strongly linked to forests and grassland, followed by cultivated
land. Although construction land yields the lowest scores in terms of provision and
regulation services, it obtains the highest in culture and entertainment. Finally, forests and
water have the closest relationship with aesthetic value and natural heritage and diversity.

The relevance matrix is then transformed into the ESV equivalent per area matrix
(Table 2), on the basis of research by Xie et al. (2003) [32], which regards one ESV unit as
449.1 CNY/hm2. The ranking of relationships between land use and ESVs are the same as
that in Table 1. With the matrix and information on areas of different land use, calculating
each ecosystem service value for the following modelling method is feasible.

3.2. The Driving Factors for ESV Change

After the correlation and regression analyses, the factors of urban per capita disposable
income, agricultural output and AI are selected as driving factors for further modelling.
Scatterplots of urban per capita disposable income, agricultural output, AI and total ESV
are created in logarithmic form. Figures 2–4 illustrate the representative relationships for
provision, regulation and culture and total ESV. In general, different ESs with the same
driving factors exhibit similar patterns. The urban per capita disposable income and AI are
negatively correlated with the ESV, whereas agricultural output positively influences it.



Land 2022, 11, 140 7 of 17

Table 1. Land use and ES relevance matrix in the Wuhan urban agglomeration.

Service

C
ul

ti
va

te
d

la
nd

Fo
re

st

G
ra

ss
la

nd

W
at

er

C
on

st
ru

ct
io

n
la

nd

U
nu

se
d

la
nd

Provision
Food provision 1.0 0.5 0.5 0.7 0.0 0.26

Freshwater supply 0.3 0.5 0.5 1.0 0.0 0.24

Regulation

Gas regulation 0.5 0.9 0.7 0.7 0.0 0.40
Climate regulation 0.5 0.9 0.7 0.6 0.0 0.39

Hydrological regulation 0.6 0.9 0.8 0.9 0.0 0.49
Soil maintenance 0.7 0.9 0.9 0.5 0.0 0.49

Cultural
service

Culture and entertainment 0.3 0.6 0.6 0.7 0.8 0.24
Aesthetic value 0.4 0.9 0.8 0.9 0.6 0.36

Natural heritage and diversity 0.5 0.9 0.7 0.8 0.4 0.53

Table 2. Land use and ESV matrix in the Wuhan urban agglomeration. Unit: CNY 1 million.

Service Cultivated
Land Forest Grassland Water Construction

Land
Unused

Land

Provision
Food provision 1277.00 390.50 31.51 190.89 0.00 2.34

Freshwater supply 383.10 390.50 31.51 272.69 0.00 2.16

Regulation

Gas regulation 638.50 702.91 44.12 190.89 0.00 3.60
Climate regulation 638.50 702.91 44.12 163.62 0.00 3.51

Hydrological regulation 766.20 702.91 50.42 245.42 0.00 4.41
Soil maintenance 893.90 702.91 56.72 136.35 0.00 4.41

Cultural
service

Culture and entertainment 383.10 468.60 37.81 190.89 158.37 2.16
Aesthetic value 510.80 702.91 50.42 245.42 118.78 3.24

Natural heritage and diversity 638.50 702.91 44.12 218.15 79.18 4.77
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The scatterplots of urban per capita disposable income and ESVs (Figure 2) move
towards increased x-axis values in 2010–2020, showing that urban per capita disposable
income has increased, and that the ESV has slightly declined. The negative effects of urban
per capita disposable income are highest on climate regulation, followed by food provision.
Urban per capita income and total ESVs generate a modest negative slope. Specifically,
in 2020, the 1% decrease in urban per capita disposable income generates a 6.61%, 6.23%,
5.36% and 5.71% increase in climate change, food provision, natural heritage and diversity
benefits and total ESV, respectively.

The slopes in the scatterplots between agricultural output and ESV (Figure 3) declined
in 2010–2020, implying a greater positive influence of agriculture output on the ESV
in 2010–2015 than on that in 2015–2020. The correlation coefficient between the food
supply and agricultural output is the highest, while the correlation coefficient between
natural heritage and diversity and agricultural output is the lowest. A 1% increase in the
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agricultural output in 2010, 2015 and 2020, respectively, brings a 0.78%, 0.77% and 0.70%
increase in food provision, a 0.75%, 0.74% and 0.69% increase in climate regulation and
a 0.65%, 0.59% and 0.58% increase in natural heritage and diversity.

Similar to Figure 2, the scatterplots of AI and ESV (Figure 4) show a distinct negative
relationship, with 2010 being the most negative. The climate regulation benefit is nega-
tively affected the most, followed by food provision, total ESVs and natural heritage and
diversity. A 1% increase in AI in 2010 has led to an 86.64%, 81.44% and 69.31% decline in
climate regulation, food provision and natural heritage and diversity benefits, respectively.
Although the correlation coefficient seems large, the AI range is constrained to 4.54–4.6.
The effects of landscape pattern on ESVs also appear to be sensitive.

Differences exist among varying ESVs and explanatory variables. The urban per capita
disposable income and AI exhibit negative correlation influences on different ESVs. The
spatial coefficient is significant for all ESVs, with aesthetic value yielding the highest value
and food provision yielding the lowest.

Figure 5 shows the correlation coefficients of the nine sub-ESVs and the total ESV for
urban per capita disposable income, agricultural output, AI and spatial coefficients. The
negative correlation coefficients of urban per capita disposable income for the three partic-
ular years attenuate for urban per capita disposable income, especially during 2010–2015.
In 2010 and 2015, climate regulation has yielded the highest negative correlation coefficient,
whereas food provision has yielded the lowest. In 2020, climate regulation has the most
powerful negative influence, whereas food provision and hydrological regulation has the
weakest. Rural per capita disposable income generally presents a significantly negative
influence on regulation benefits and a weak influence on provision benefits.
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The positive contribution of agricultural output on ESVs increased during 2010–2015,
followed by an apparent decline in 2020. Within 2010–2020, the strongest positive influence
of agricultural output on ESVs is under food provision, and the weakest is under culture
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and entertainment. Agricultural output greatly influences food provision but weakly
influences culture and entertainment. The AI influences on different ESVs show an irregular
pattern with the increase in all ESVs, during 2010–2015. The AI coefficients for culture and
entertainment, aesthetic value, natural heritage and diversity and total ESV rise, whereas
the rest declines. In the following five years, the AI demonstrates negative impacts on
ESVs. The food provision yields the highest spatial coefficient in 2010 and culture and
entertainment yields it in 2015 and 2020. The lowest spatial coefficient is yielded by climate
regulation in 2010, soil maintenance in 2015 and 2020.

The spatial coefficients influences on different ESVs demonstrate a downward trend
during 2010–2020, with climate regulation suffering the most powerful impact in 2010 and
freshwater supply bearing the slightest. In 2020, the most powerful and the weakest influ-
ence transfer to aesthetic value and food provision, respectively, indicating that provision
still suffers the most powerful negative influence.

3.3. Spatial Adjustment of ESVs

The coefficients of AI and ESV, and the simulated ESV after a 1% decrease in ag-
gregation degree, have exhibited spatial heterogeneity. Figure 6a–d illustrate the spatial
distribution of food provision and freshwater supply coefficients generated from GWR, the
spatial pattern of provision ES and the optimised provision of ESV when AI is reduced
by 1%. Xiantao and Qianjiang are both county-level cities directly under the central gov-
ernment in the Wuhan agglomeration, and they yield the highest negative coefficients for
food provision and freshwater supply, respectively. The coefficients range from 0.0619 to
−1.3666 and from 0.2592 to −1.6333 for food provision and freshwater supply, respectively.
In 2020 and in the simulated scenario, Macheng in north-east Wuhan yields the highest
ESV, whereas Jianghan yields the lowest. Tianmen is a county-level city in the western area,
and it exhibits the greatest ES growth when the AI is reduced by 1%.

Figure 6e–j illustrate the spatial distribution of gas regulation, climate regulation,
hydrological regulation and soil maintenance coefficients generated from GWR, the spatial
pattern of regulation services and the optimised regulation value when the AI is reduced
by 1%. Tongcheng County in the southern Wuhan area has the strongest negative con-
tributions for all regulation services, with coefficients ranging from −1.7382 to −2.0209.
Yingshan County in eastern the Wuhan agglomeration has the weakest negative influences
on all regulation services from −0.1789 to −0.3973 coefficients. In terms of the spatial
distribution of regulation benefits in 2020 and after the adjustment, Jianghan District in
western Wuhan still has the lowest value and the least growth, Macheng County has the
highest value, whereas Chongyang County has the greatest growth.

Figure 6k–o illustrate the spatial distribution of the culture and entertainment, aesthetic
value, natural heritage and diversity coefficients generated from GWR, the spatial pattern
of culture ESs and the optimised culture value when the AI is reduced by 1%. The cultural
services yield significant spatial coefficient ranges of −0.9369 to 0.6235, −1.2156 to 0.4638,
−1.3053 to 0.3606 for culture and entertainment, aesthetic value, natural heritage and
diversity, respectively. Yingshan County generates the slightest negative influence, similar
to its result in provision and regulation services. Tongcheng County is located at the
southern part of Xianning prefectural city, and it generates the most powerful negative
influence. Similar to previous results, Macheng has the highest culture ESV in 2020 and
after the adjustment. Different from the supply and supervision services, the adjusted
cultural ESV of some counties has been reduced, and most of them belong to Huanggang
prefectural City, which is located in the eastern part of the Wuhan agglomeration. By
contrast, Qianjiang exhibits the greatest growth.
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(a) Coefficient for food provison; (b) Coefficient for freshwater supply; (c) Provision distribution
in 2020; (d) Provision optimisation through AI; (e) Coefficient for gas regulation; (f) Coefficient for
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Table 3 summarises the ESV in 2020 and after the adjustment in different administrative
counties. Provision, regulation and culture services substantially increase when attempts
are made to reduce the landscape aggregation pattern by 1%. County-level cities and
counties generally yield the largest ESVs in 2020 and after the adjustment, with food
provision being the optimum ES. Districts in the prefecture-level city show a significant
growth in provision and regulation services, and urban districts in Wuhan show the highest
regulation growth rate. Although urban districts yield the lowest ESV, the growth rate
is comparatively high after the landscape pattern adjustment. Under provision service,
a higher gap exists between food provision and freshwater supply in county-level cities
than that in urban districts, with food provision obtaining the increased amount. When
the landscape is designed to increase in fragmentation by 1%, provision services increase
at the highest growth rate of 12.55%, from CNY 39 to 44 million in capital city urban
districts. Under regulation services, hydrological regulation yields the highest ESV, whereas
climate regulation yields the lowest. County-level cities and counties distinctively have
substantial regulation services in all four ESVs, and they experience the large increase after
1% aggregation level change. County-level cities yield the higher growth rate, whereas
counties yield the lowest. In cultural services, not much difference is observed between
the ESV of aesthetic value and natural heritage and diversity, which are higher than that
of culture and entertainment, except in urban districts. Although cultural service ESV is
high in counties, they present low growth rates after optimisation. Cultural service ESV
increases at the highest growth rate from CNY 1402 to 1476 million in county-level cities,
and from CNY 80 to 83 million in capital city urban districts.

Table 3. ESV in 2020 and after optimisation in different administrative counties. Unit: CNY 100 million.

City Capital City Prefecture-Level City County-Level City

County Urban Districts Suburban
District County District County-Level City

Pr
ov

is
io

n

Food provision (2020) 0.21 2.68 7.84 1.49 6.70
Freshwater supply (2020) 0.17 1.45 4.94 0.91 3.34

Provision ESV (2020) 0.39 4.13 12.78 2.39 10.04
Optimisation value 0.44 4.56 13.52 2.60 11.24

Growth rate 12.55% 10.52% 5.85% 8.44% 11.97%

R
eg

ul
at

io
n

Gas regulation (2020) 0.16 1.81 7.87 1.19 4.77
Climate regulation (2020) 0.15 1.74 7.80 1.15 4.68

Hydrological regulation (2020) 0.20 2.14 8.49 1.36 5.50
Soil maintenance (2020) 0.16 2.09 8.67 1.33 5.69
Regulation ESV (2020) 0.68 7.78 32.83 5.03 20.64

Optimisation value 0.79 8.82 36.02 5.64 23.61
Growth rate 16.23% 13.33% 9.71% 12.18% 14.37%

C
ul

tu
ra

ls
er

vi
ce Culture and entertainment (2020) 0.27 1.56 5.62 1.05 3.90

Aesthetic value (2020) 0.28 1.94 7.84 1.32 4.94
Natural heritage and diversity (2020) 0.25 2.01 8.11 1.32 5.18

Cultural service ESV (2020) 0.80 5.51 21.57 3.69 14.02
Optimisation value 0.83 5.72 21.76 3.78 14.76

Growth rate 4.50% 3.64% 0.88% 2.35% 5.27%

4. Discussion

ES, as the benefits that humans receive from their surrounding environment, is in-
herently contributed to the sustainable development goals (17 SDGs) proposed by the
UN decade in facing severe challenges of climate change, biodiversity loss and degraded
ecosystems [43]. ESs can meet various human needs, in line with the numerous aspirations
contained in the SDGs (e.g., Clean Water and Sanitation, Zero Hunger and Climate Action).
The goal of clean water and sanitation can be realised through improving the ecological
service of freshwater supply service; the goal of enough food is closely related to the
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ecosystem service of food provision and climate change is directed related to the ecosystem
service of climate regulation [44]. It is declared by the United Nations General Assembly
(www.decadeonrestoration.org accessed date 20 December 2021) that 2021–2030 was the
decade that focused on the restoration of ecosystems [45]. Hence, it is imperative to refine
the measurement on ESs, ponder the driving mechanism of ESs and explore the feasible
approaches to improve ESs.

On the basis of the empirical studies and the local questionnaire, we derives the
conversion parameter from land use area to different ESVs, and used the Wuhan urban
agglomeration as the case study area to evaluate its ESVs. In general, the results produced
in our study are similar to the those in other regions and cases worldwide, yet there are
differences since land use distribution is different. For example, Hardaker et al. (2020)
considered that the ecosystem service of forest land and cultivated land are basically the
same in Wales, U.K. [46]. This is attributed to the fact that there is more fertile arable land
in England, more general ecological protection measures and less damage to the ecosystem,
which is different from the situation in our study area. The ecosystem service of forest
land is higher than that of cultivated land in the Wuhan agglomeration. In this sense, it is
discovered that there is also regional difference in terms of ES, due to the different physical
environment and terrestrial ecosystem. In terms of the ESV calculation results, we used
the average ESV of Ezhou City (one of the nine major cities in the Wuhan agglomeration)
in 2015, as an example. Based on the conversion parameters, we calculated the result
to be 3.60 million USD/km2, which is roughly the same as the 3.71 million USD/km2,
by Xing et al. (2020) [47]. Therefore, the results in our study can be considered to be
accurate and reasonable. Although the evidence and justifications already verify the
effectiveness, the optimal approach is to implement a local field experiment to derive
parameters integrated with observation data and previous studies.

This study aims to examine how landscape pattern influence is utilised as the medium
for adjustment in optimising ESVs, to explore the idea that global and local spatial mod-
elling are applied to generate regression results for analysis and optimisation. The primary
contributions are based on two aspects that consider how landscape pattern affects ESVs,
using spatially explicit modelling and analysis. Previous studies examined how land-
scape changes influence the terrestrial, aquatic and atmospheric environment and biomass
because the fragmentation or aggregation of the landscape pattern determines the geo-bio-
physical setting to some extent [48–50]. To explore the ways for adjustment in optimising
ESVs through landscape patterns, we divided ES into three categories, namely, provision,
regulation and culture. They all have close relationships with the biophysical environment,
food production and also biodiversity conservation, forming the theoretical basis for the
assumption that landscape pattern affects ESs [51–53]. We selected a number of metrics in
landscape ecology to describe the pattern and process at patch and landscape levels. Some
scholars also expanded the factors influencing ESs, including geographic factors [54] and
socio-economic factors [55]. The landscape index is incorporated into the regression and
scenario analyses because it is more pragmatic for landscape pattern adjustment than for
socio-economic development. Finally, we determined three indicators, including urban
per capita disposable income, agricultural output and AI. The regression model shows
that urban per capita disposable income and agricultural output are highly correlated with
ESVs, with negative and positive correlations, respectively. Achieving the ESV improve-
ment implies a reduction in urban per capita disposable income and an increase in the
agricultural output, which is impossible due to the promotion of urban livelihood and
urbanisation processes. In addition, AI also shows a significant negative correlation with
ESV, which conforms to the results from the study by Tran et al. (2022) in the Manawatu-
Wanganui region of the North Island, New Zealand, and the study by Rolo et al. (2021) in
12 rural regions across 9 European countries, including Mediterranean, Atlantic, Boreal
and Continental [56,57]. The relationship between ESV and landscape pattern have all
been diagnosed. In this sense, adjusting the landscape pattern is a feasible approach as we
enter an inventory planning era. In the context of spatial planning, the dispersed landscape

www.decadeonrestoration.org


Land 2022, 11, 140 14 of 17

patterns through mixed land use [58] and polycentric spatial form [59] to increase ESV
is viable. As a result, the highlight of the influence on landscape patterns is pioneering
and feasible.

The second contribution is related to the spatially explicit thought on ES modelling
and optimisation. Previous studies generally attempt to optimise ESVs based on land
use [60], which the spatial heterogeneity of the ecosystem change is seldom considered
or applied. In recent years, the spatial correlation in ES seems to be an appealing issue
gaining widespread attention and possessing uncertainties that require further explanation.
Degefu et al. (2021) confirmed the spatial dependence and spatial autocorrelation of ESVs
in Ethiopia [7]. Therefore, we attempt to consider spatial heterogeneity in scenario analysis.
The optimised ESV has increased by an average of 8.3% through adjusting the landscape
pattern. The typical spatial regression model assumes the existence of spatial influence
either in dependent variables or in errors, which corresponds to spatial lag and spatial
error models. The regression analysis is implemented in both forms, and the results are
compared using the OLS method. The spatial regression model is proclaimed superior due
to its improved performance and accuracy. Ultimately, the spatial error model is chosen
for exploring the global driving mechanism on the basis of the LM test. The local spatial
modelling technique, GWR, is implemented in this study, and the local spatial influences are
important to generate varying coefficients for different observations. The spatial disparity
of urban per capita disposable income, agricultural output and AI contributions on different
ESVs in various places in the Wuhan agglomeration fully unfold in accordance with the
regression results. Local regression should be implemented in the future as it compensates
the shortcomings of global modelling techniques. When varying coefficients are produced,
the local benefits of improved ESVs can be obtained through the AI adjustment. Inspiringly,
the adjustment of the urban landscape through the spatial structure and function seems
to be feasible in improving ESs [53,56]. Furthermore, it is true that in ecosystem benefits,
it is not enough to take landscape pattern, rural development and living standards as the
influencing factors. This requires a systematic strategy in which agriculture, industry and
politics all need to be included in exploring the driving mechanisms. The improvement
of ecosystem benefits requires the adjustment of specific factors and the consideration of
spatial heterogeneity to discern feasible strategies. In addition, our method can be applied
to evaluate local ESVs and analyse possible optimisation approaches through landscape
patterns, such as China, Russia, and South America. These areas have a large amount of
arable land, rivers and lakes, and diverse landscape types. The adjustment in optimising
ESVs through landscape patterns can be applied in urban and rural planning, including the
implementation of mixed land use and the shaping of multiple types of landscapes. The
increase in ESVs is beneficial to improve ecological functions and realise the 17 SDGs, such
as poverty alleviation, clean water and climate change.

5. Conclusions

The investigation on the spatio-temporal patterns of ESVs, underlying driving forces
and pragmatic optimisation approaches are important to regional sustainability. Empirical
studies have identified primary ESs and benefits, determined the primary socio-economic
driving factors and proposed several regulation pathways. However, most studies are
closely related to land use change and are comprehensively investigated. Employing the
Wuhan agglomeration as the case study area, we attempted to analyse each primary ES
in the context of food security initiatives, climate change concerns and green construction
programs in China. The results find negative influences of urban per capita disposable
income and AI, and the positive effects of agricultural outputs, with varying contributions
to different ESs. Moreover, landscape pattern influence is explored and utilised as the
medium for adjustment in optimising ESVs. Global and local spatial modelling are then
applied to generate regression results for analysis and optimisation. The spatial adjustments
on the ESVs are then performed through GWR and a 1% change in AI. The results also
reveal that ES growth rates in the AI scenario analysis declined by 1%.
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The limitations and recommendations of this study involve the in-depth interpretation
of spatial correlation in modelling ESVs, and further policy implications of spatial adjust-
ment for improving local ESVs. The spatial correlation in analysing the driving forces has
been mentioned in previous studies, whereas the interpretation of how the neighbouring
effect or the spatial influence in error emergences and changes remains unsettled. This
gap is due to complicated courses during the spatio-temporal change that are difficult to
systematically analyse. Uncertainties in the driving mechanism of the ESV changes and
further experience should be accumulated to obtain improved explanation. Additionally,
we applied spatial adjustments to ESVs through the change in landscape pattern, which is
a method proven to have increased feasibility. Considering the constraints of urban and
land use planning, the issue of how to transform the agglomeration pattern needs further
exploration. The same issues are that developing countries need to take some measures
to improve compensation after different ESs have been comprehensively improved, the
change in the spatial heterogeneity of driving forces, and whether ESVs can be regulated
and predicted in the future. In general, addressing these issues requires further collabora-
tion with experts in fields, such as ecology, biology and sociology. The current study links
the ecosystem change to landscape patterns with spatially explicit approaches.
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