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Abstract: Habitat suitability (HS) describes the ability of the habitat to support living organisms.
There are several approaches to estimate habitat suitability. These approaches are specific to a species
or habitat or estimate general HS broadly across multiple species or habitats. The objectives of the
study were to compare the approaches for estimating HS and to provide guidelines for choosing
an appropriate HS method for conservation. Three HS estimation methods were used. Method 1
scores the suitability based on the naturality of the habitat. Method 2 uses the average of HS values
found in the literature. Method 3 uses the species richness as an indicator for HS. The methods were
applied to a case study in the Choctawhatchee River Watershed. GIS applications were used to model
the suitability of the watershed. The advantages and disadvantages of the HS methods were then
summarized. The multiple HS maps created using the three methods display the suitability of the
watershed. The highest suitability occurred in the southern parts of the region. Finally, a decision
support tool was developed to help determine which approach to select based on the available data
and research goals.

Keywords: conservation; ecology; GIS; habitat suitability; indicators; land use/cover; spatial
data; watershed

1. Introduction

Habitat suitability (HS) describes a habitat’s ability to support a particular fish or
wildlife species [1,2]. HS relates to environmental variables such as vegetation to the
probability of a species’ occurrence [3,4]. A simple way to describe HS is to determine how
natural a habitat is [5]. The more a habitat resembles its natural state, the more suitable it is
for the species to live in it. It is important to study HS as it is used to characterize how ideal
a habitat is. Anthropogenic pressures on biodiversity such as urban growth and agriculture
are key factors that cause HS decline [6,7]. Efforts to limit anthropogenic impacts on
species and habitats can be strengthened by using tools for biodiversity monitoring. These
include the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, the
ecological niche model (ENM), and the habitat suitability index model (HSIM) [8,9].

Understanding of the interactions between species and their environment is needed to
determine the optimum habitat conditions. Indicators are powerful tools to represent the
complex interactions between multiple components of the environment in simple terms [10].
Living and nonliving components such as plant/organism growth or climate are important
in categorizing suitability [11]. Resources that a species needs to survive are often used as
indicators. Parameters such as vegetation density, the abundance of water, and sediment
characteristics also serve as indicators [12,13]. Other parameters such as road density [14]
and the shell dissolution of mollusks [15] can be used as indicators in HS. Sometimes, the
presence of a species can also be used as an indicator. For example, the presence of bird
species has been used as indicators of habitat structural components and complexity [16].
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Since HS is a measure of species–habitat interactions, mapping HS is useful in conservation
efforts. The consistent estimation of HS is necessary to create reliable maps [17].

In the past, approaches for estimating HS were either species-focused or habitat-
focused. HS is calculated based on the needs of individual species or species group in
the species-focused approach [3]. The habitat-focused approach considers the presence of
habitat components that may either be biotic or abiotic [18,19]. The different approaches
are chosen based on the research goals [20,21].

A habitat-focused approach is common for estimating suitability [22]. With the habitat-
focused approach, the HS index is calculated by dividing the current habitat conditions by
the optimum habitat conditions. This results in a value between 0 and 1. When a simulation
modeling framework is used, the index is the ratio of a model’s output compared to an
established standard of comparison or an optimum habitat condition. The comparison
standard is either (1) an assigned numerical value that corresponds with the qualitative
rankings (excellent = 4, average = 2, etc.); (2) a maximum regional value for models that
use defined units (productivity, population density, etc.); or (3) the maximum rank for
models that classify habitats hierarchically [1]. The denominators in all of these methods
are related to the optimum habitat conditions. Factors affecting the optimum habitat
conditions can be biotic (i.e., vegetation density and predation [2,23,24]) or abiotic (i.e.,
topography, water availability, soil characteristics, and temperature for soil systems and
sediment concentration, and dissolved oxygen for aquatic environments [12,25–28]). The
habitat is completely unsuitable when HS is characterized with a value of 0, while a value
of 1 represents the optimum conditions [29].

A species-focused approach is used when the goal is to conserve a certain species. An
example is the evaluation of habitat suitability based on the ability of each landscape to
provide the needs of song birds [19]. Alternatively, a habitat-focused approach is taken to
conserve a specific land use or land cover. For instance, water parameters such as water
presence frequency and water depth re used to estimate HS for the wetlands. Description
of lad use/land cover can be obtained in [30]. However, these approaches are very specific.
It is important to compare the results of different methods in any region.

Objective

The objective of this paper was to compare three methods for estimating the habitat
suitability and to develop a way to choose a method for estimating HS based on the
available data and research goals.

These methods were then applied in a case study in the Choctawhatchee River Water-
shed. The study watershed is a biodiversity hotspot that houses more species of trees than
any other forests in temperate North America [31].

2. Study Region, Materials, and Methods
2.1. Study Region

Figure 1 shows a map of the study region created using ArcMap® 10.4.1. The
Choctawhatchee River and Bay Watershed is an important location in the Southeast of the
United States. It is a biodiversity hotspot containing an abundance of native plant and
wildlife species as well as being a critical habitat for gulf sturgeon and Choctawhatchee
beach mice. Over 60% of the watershed is in Alabama, where there is a significant agricul-
ture component [32].

As of 2019, the land use in Choctawhatchee River Watershed is provided in
Figure 1 [33]. The region has high species richness when compared to the rest of the
United States [34].

2.2. Methodology

ArcMap 10.4.1 was used to analyze the datasets. Python programming was also used.
The libraries used were the Geospatial Data Abstraction Library (GDAL) 3.2.0 developed
by the Open Source Geospatial Foundation in Chicago, IL, USA; NumPy 1.19.2 created by
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Travis Oliphant in Provo, UT, USA; and Pandas 1.2.1 created by Wes McKinney in New
York City, NY, USA. Three methods of modeling HS were used. Spatial data were obtained
for LULC, species richness, and region extents. Table 1 lists the data and their sources.
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Figure 1. Location of the Choctawhatchee River Watershed. (a) The species richness index of the
United States is shown as are where the watershed is in the United States, higher richness index
values are shown as red and lower values in blue. (b) A pie chart of the proportion of each LULC.
(c) The full extent of the watershed and the locations of the Choctawhatchee and Pea Rivers.

Table 1. The details of the spatial data used in the study.

Data Year Source Reference

National Land Cover Dataset
(NLCD) 2019 USGS [33]

Species Richness 2018 Florida International
University [34]

Choctawhatchee River
Watershed Extents 2016 USGS [35]

Southeast Plains Ecoregion extents 2017 EPA [36]

Eastern Temperate Forest
Ecoregion Extents 2018 EPA [37]

Method 1—Binary Method: Step 1: Download the Multi-Resolution Land Characteris-
tics Consortium (MRLC) LULC data [38]; the land use/land cover data from the National
Land Cover Dataset (NLCD) for the year 2019 and its legend were obtained [33]. Step 2:
Classify the natural and unnatural groups and assign index; agriculture and developed
land use classes were deemed unnatural, and the land cover classes open water, wetland,
grassland, shrubland, and forests were considered as natural. Step 3: Obtain the binary
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HS index; Unnatural LULC classes were assigned an HS index value of 0 and natural
LULC classes were given an HS index value of 1. Step 4: Create an index map (natural
and unnatural) where the LULC values were replaced with the corresponding HS index
values (0/1) to create an index map. The analysis involved using the following software:
ArcMap 10.4.1 (Clip tool from Raster Processing toolbox) and Python codes (Geospatial
Data Abstraction Library with Jupyter notebook).

Method 2—Literature Review: Step 1 was the same as in method 2. Step 2: A doc-
ument search was performed using Google Scholar (e.g., habitat suitability), which gave
500,000 plus results, and a more focused search using words in quotes, additional words
(e.g., “habitat suitability”, “InVEST”), and selected time-period (2010–2020) was carried out.
Priority was given to articles based on the following three criteria: (1) the full articles were
accessible; (2) the articles used a similar definition for habitat suitability; and (3) the articles
provided the numerical habitat suitability values for LULCs comparable to those found in
the study region. A total of 21 articles were retrieved. In Scholar search, InVEST, as an addi-
tional search term, was used in the search to narrow down the results in a systematic way.
Step 3: Obtaining HS index (between 0 and 1). The results of the search were summarized in
a table and graphs provided in the Results section. Habitat suitability values were organized
by the specific LULC. The LULC were further grouped into broad classifications according
to the LULC descriptions provided by the MRLC [39], for example, rivers, lakes, reservoirs,
and glaciers were grouped as simply “water”, while open forests, orchards, and native
forests were grouped as simply “forest”. When multiple values for a group were obtained
from the literature, the average values for suitability were calculated and used to create
the table. The box plot was created using Python. The HS vales were placed into single
column arrays for each LULC group. A box plot was then created for each LULC group and
displayed in the same figure. Step 4: Create an index map (natural and unnatural). The
LULC values between 0 and 1 were replaced with corresponding HS index values (0/1) to
create an index map. The analysis was carried out using the software described in Method 1.
A table (Table 2) lists the references for each land use/cover type along with the number
of data points obtained for them. The LULC values in the map clipped to the watershed’s
extents were replaced with the mean values obtained in the literature review.

Method 3—Species Richness Method: Step 1: Bring the datasets to uniform scales and
obtain the species richness data [34]. National Land Cover Data (NLCD) land use/land
cover map’s resolution (30 m × 30 m) were rescaled to species richness maps with a
10 km × 10 km resolution. ArcMap 10.4.1 software with the Resample tool using the
MAJORITY technique was used [40]. Step 2: Average the richness/land use. The major
LULC from ~111 pixels (30 m) now represent the LULC for the 10 km map. The richness
and LULC data were merged into one raster file by using the Combine ArcMap Spatial
Analysist tool to observe both the number of species and LULC for each pixel. Step 3:
Clip the watershed area. Shapefiles for the Choctawhatchee watershed (HUC 031402) and
the Southeast Plains and Eastern Temperate Forest ecoregions were obtained [35–37]. The
combined richness raster was clipped to the extent of each shapefile. Step 4: Estimate the
average richness value. The average species richness for each LULC was then calculated
for each region as well as the entire contiguous United States. Habitat suitability indices
were normalized using the species richness results by dividing the species richness of each
LULC by the highest species richness value for each region. If a 10 km grid cell for a forest
within the Southeast Plains has a richness value of 300 and the highest richness value in
that region is 600, the HS index would be 0.5 (300 divided by 600). Step 5: Mapping HS.
The LULC values in the original 30 m map were replaced with the corresponding habitat
suitability index values.

A table (Table 3) listing the total species richness, standard deviation, and count of
grid cells was created by importing the attribute tables of the species richness raster images
clipped to the extents of the Choctawhatchee River Watershed, Southeast Plains Ecoregion,
Eastern Temperate Forest Ecoregion, and the contiguous United States.
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3. Results
3.1. Method 1—Binary Method

A hypothesis map was created using the binary method where it was assumed that
developed lands such as urban and agriculture have a suitability index score of 0, and every
other landscape was assumed to have an index score of 1. The number of grid cells with a
value of 0 were counted and compared to the number of grid cells that had a value of 1.
Approximately 27.33% of the watershed had low suitability. The areas with low suitability
appeared near the middle and northern parts of the watershed. Most grid cells with zero
suitability occurred on the Alabama side of the watershed. Figure 2 displays the resulting
HS index map of the watershed.
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Figure 2. The habitat suitability map of the Choctawhatchee Watershed using the binary method
(Method 1).

3.2. Method 2—Literature Review Method

A total of 21 studies were analyzed. Of the 21, 15 studies originated in China [9,41–54],
two studies were from Ethiopia [29,55], and only one study each originated in India [56],
Indonesia [57], Spain [58], and the United States [19]. A total of 36 values were used to
calculate the average suitability for water, 17 were used for bare lands, 30 were used for
grasslands, ten were used for shrub lands, 36 values were used for forests, 18 were used for
wetlands, 24 were used for agricultural, and 15 were used for developed lands. The habitat
with the highest mean value was forest land. Next was shrubland, followed by water and
wetlands that had nearly the same average suitability. Developed lands predictably had
the lowest mean suitability.

Table 2 breaks down the broad land use/cover classes into specific types and lists the
references that site each LULC. The number of values obtained for each LULC type is listed,
along with the average suitability. Different LULC within the same class sometimes had
very different suitability values. For instance, raw land and beaches were both considered
bare land, but had an HS of 0.05 and 0.9, respectively. The overall average HS for each
broad LULC class is also listed.
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Table 2. The average habitat suitability for each land use/cover type obtained from the literature review.

LULC Class Types References Data Points Average HS

Water

Water [19,29,41,42,51,53–56] 10 0.75
Rivers [9,44,46–48] 6 0.88
Lakes [9,44–47,50,54] 6 0.98
Pond [9] 1 0.9

Reservoirs [44,45,47,50,58] 6 0.83
Shallows [44] 1 0.6
Streams [58] 4 0.73

Channels [45] 1 1
Canals [50] 1 0

Overall 0.807

Bare Land

Bare Land [19,29,50,56] 4 0.125
Dry Land [43,44,47] 7 0.243

Desert [49] 1 0.1
Raw [54] 2 0.05

Unused Land [41,48] 2 0.255
Beach [9] 1 0.9

Overall 0.224

Grassland

Grass [9,19,42–45,47–49,51,53–
55,58] 29 0.727

Meadow [41] 1 1

Overall 0.736

Shrub Land

Shrub [9,29,43–45,50,51,54,58] 9 0.84

Bush [48] 1 0.8

Overall 0.837

Forest

Forest [9,19,29,41–
43,45,47,49,51–53,57,58] 25 0.931

Woodland [9,29,44,47,50] 8 0.844

Orchard [43,52] 2 0.25

Forestry [48] 1 0.9

Overall 0.873

Wetland

Wetland [9,19,45,49,51,54,56] 9 0.844

Marsh [43,46,47] 5 0.74

Mudflat [46] 1 0.8

Bottom Land [44] 1 0.6

Mangrove [57] 1 0.8

Swampy Bush [57] 1 1

Overall 0.806

Agriculture

Agricultural
land [19,41,58] 6 0.375

Farmland [42,53,55,57] 5 0.4

Cropland [29,45,48,54] 4 0.363

Pasture [29] 1 0.5

Irrigable Land [43,54] 2 0.35

Paddy Field [9,43,44,47,50] 6 0.267

Overall 0.354
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Table 2. Cont.

LULC Class Types References Data Points Average HS

Developed Land

Built-up Land [29,42,53] 3 0

Urban [19,41,48,58] 5 0.03

Suburban [54] 1 0

Construction [54] 1 0

Rural
Residence [53] 1 0

Roads [46,54] 2 0

Infrastructure [54] 1 0

Transportation [54] 1 0

Overall 0.01

The landscapes with the largest range of suitability values were water habitats, which
had values ranging from 0 to 1. This was followed by forest habitats with values ranging
from 0.1 to 1. The land use with the lowest variability was developed land, which ranged
from 0 to 0.15, with most studies reporting the suitability to be 0. The median and average
values were similar for grasslands, shrub lands, wetlands, and developed lands. Median
and average values for the remaining landscapes were not as close with averages falling
well below the median value, except for bare lands, where the average was higher than the
median. This is displayed in the box plots of Figure 3. The bold line represents the median,
the diamond marker represents the mean, and the circles represent the outliers.
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the mean. The circles are the outliers.

Figure 4 displays a HS map of the watershed based on the average values derived
from the literature. The Alabama side of the watershed in the North generally had a lower
HS when compared to the Florida side in the South. Urban areas had the lowest HS at
0.012. Urban land uses made up 6.80% of the watershed. Bare land had the second lowest
HS at 0.224 and made up 0.12% of the watershed. The habitat with the third lowest HS
was agriculture, having a HS near the median at 0.354. Agriculture made up 21.26% of the
watershed. Overall, about 28% of the watershed had a relatively low HS.
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Figure 4. The habitat suitability map of the Choctawhatchee Watershed created using the results of
the literature review.

3.3. Method 3—Species Richness Method

The area of interest was the Choctawhatchee River and Bay Watershed located in the
Southeast United States. The watershed was within the boundaries of the Southeastern Plains
ecoregion, which was in the Eastern Temperate Forest ecoregion that encompassed most of
the Eastern United States. A visual representation of these regions is shown in Figure 5.
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Table 3 lists the average total richness and standard deviation values for each LULC.
The number of pixels is also listed. Each pixel represents 100 square kilometers. The
watershed had higher values than the averages at broader levels. Since the LULC raster
was resampled from 30 m to 10,000 m, there were no pixels where high intensity developed
land, barren land, or herbaceous wetland were the majority LULC. The values for these
LULCs were estimated based on the most similar region (Southeast Plains). The trends
also did not match across levels. Richness was high in the medium intensity developed
land within the watershed, but richness generally decreased as the intensity (amount
of impervious surface) increased. Broad generalizations might not be accurate when
assessing a watershed. A visual representation of Table 3 can be seen in Figure S3 in the
Supplementary Materials.

Table 3. The average and standard deviation of the species richness for each land use/cover type.

Contiguous USA Eastern Temperate
Forest Southeastern Plains Choctawhatchee River

Watershed

LULC Mean Std Pixels Mean Std Pixels Mean Std Pixels Mean Std Pixels

Open Water 316.84 52.56 2246 345.1 40.324 1105 383.96 25.846 94 417.56 19.90 9

Developed,
Open Space 335.01 46.072 2427 353.91 34.221 1671 390.16 28.627 247 414.72 18.34 19

Developed,
Low Intensity 333.75 40.63 1126 348.23 31.222 753 381.41 23.211 79 415.75 14.66 4

Developed,
Medium
Intensity

331.57 41.125 402 349.55 34.137 212 377.25 22.493 24 432 0 1

Developed,
High Intensity 339.32 40.082 95 350.31 33.576 52 384.75 22.833 8 ND ND ND

Barren Land 262.92 37.884 768 355.89 36.131 53 391.5 26.588 10 ND ND ND

Deciduous
Forest 329.65 30.388 9441 340.77 24.622 6931 373.61 20.356 389 404.31 7.11 16

Evergreen
Forest 311.82 54.033 10,764 384.92 34.983 2999 401.53 26.248 1069 424.55 18.76 126

Mixed Forest 328.44 40.853 1976 345.5 35.622 1358 385.3 22.14 247 403.06 3.84 16

Shrub Land 274.71 40.996 17,894 375.09 37.557 244 404.89 28.416 76 428.77 22.30 13

Grassland 251.83 38.533 10,275 368.41 44.047 146 399.43 31.225 40 450.33 3.21 3

Pasture 331.45 40.55 4099 346.19 28.541 2682 389.56 25.549 192 408.1 6.97 21

Cropland 279.5 50.227 13,052 327.76 32.584 4941 392.03 22.139 393 425.3 9.71 20

Woody
Wetlands 352.32 54.173 2463 377.99 43.896 1707 397.48 24.934 441 431.61 17.34 33

Herbaceous
Wetland 305.69 49.801 429 333.04 50.352 135 402.2 29.072 5 ND ND ND

Figure 6 shows the resulting maps. The lowest index value when using the average
species index for the Southeast Plains ecoregion was close to 1, meaning that there was
very little variability in the values. The variability increased as the sample size used to
calculate the average increased. The lowest HS values occurred the most in the northern
parts of the watershed in the Southeastern Plains and Eastern Temperate Forest maps. The
map derived from using the entire contiguous United States did not seem to have a pattern
aside from the highest suitability occurring in wetlands along the streams of the watershed.
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3.4. Comparison of the Methods

The average HS values of each LULC is shown in Figure 7. The landscapes with
consistently high HS values, regardless of method, are open water, forests, and wetlands.
The most apparent differences in HS were seen with agriculture and urbanization. These
two land uses were low when using the binary and literature review methods. However,
HS was high for these land uses when using the species richness data.
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The binary method is the simplest method. It only requires a list of the habitats present in
a region and an understanding of which ones are natural or unnatural. The literature review
method requires more research than the other methods. This method is also heavily reliant
on values from previous works. The obtained values are assumed to be correct. The species
richness methods require species count data. The completeness of the data has a large impact
on the outcome, so the values will be inaccurate if many species are not accounted for.

3.5. Choosing a Method

Assessing what data are available is vital when deciding on a method. The natu-
ral/unnatural binary method is used when minimum data are available. If the habitats
are known, it is possible to determine whether the habitat is natural or unnatural. A list
of habitats is derived from the literature or datasets. Mapping HS requires spatial data.
Research goals may require the HS values to be more exact. Using 0 and 1 for unnatural
and natural, respectively, would be too broad. Expressing variation between the HS of
different habitats requires expert knowledge of the target region. The literature review
method is used when there is no access to expert knowledge. A literature review is used to
synthesize the results of multiple studies [59]. Existing literature is needed to perform a
literature review and gathering results from similar studies is preferred [60]. HS indicators
such as species richness are used in a data driven approach. Using an indicator requires
available data for the study region or a similar region. Indicators that are used for this are
biophysical, socio-economic, or management attributes [61]. The characteristics of each
landscape were studied to determine an indicator that could be used to model the suitabil-
ity across all landscapes, which included the biotic and abiotic components of deciduous
forests [62], evergreen forests [63], mixed forests [64,65], wetlands [66,67], shrub lands [68],
grasslands [69,70], and bare lands [71,72]. Species richness was used as an indicator to
estimate the overall health of any habitat and to identify priority conservation areas [73–75].

Figure 8 summarizes when to use each method and lists the information required
to perform them. The figure indicates the specificity and complexity of the methods in
relation to each other. The binary method is the simplest and least specific of the methods.
Next is the literature review method, followed by the species richness method, the most
complex and specific method of the three.
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complexity level, and research goals.

4. Discussion

The results revealed that there were significant differences in the habitat suitability
scores when using the different methods. However, the Florida side of the watershed
consistently had a higher average suitability than the Alabama side.

4.1. Assumptions and Limitations in the Case Study

The three methods to estimate habitat suitability are the natural/unnatural binary
method, a literature review of published works, and the indicator method using species
richness. The binary method is the simplest method since calculations are not required. This
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method requires the knowledge of the landscapes present in the area of interest. Some land
covers such as forests and wetlands could be managed and therefore considered unnatural.
It was assumed that the only unnatural LULC were urban areas, cropland, and pastures. The
literature review resulted in a map that was similar to the binary map. The key difference
was the absence of 0 or 1 values in the map based on the literature review. Bare land also
had an index value that was less than agriculture. There was also some variability between
the index values of the urban and agricultural lands instead of both being assumed to be
equally unsuitable. Generally, the areas that had the lowest suitability were nearly the same.

The map of species richness (Figure 1a) showed that the index values were all close
to one. This is likely due to the region being a biodiversity hotspot [31,76]. During the
development of the three maps using the species richness data in conjunction with LULC,
the species richness values were higher in the Choctawhatchee River Watershed than in
the rest of the United States due to (1) the watershed being more diverse than average or
(2) there was a smaller sample size, which resulted in higher average values. Furthermore,
there were not enough data points within the Choctawhatchee River Watershed to calculate
the average species richness for every LULC. Using the average richness values resulted in
maps dissimilar to each other, aside from the values having low variability compared to
the results of the literature review. These maps also did not resemble the hypothesis binary
map. Developed land was among the land uses with the highest suitability when using
the average based on the contiguous United States. However, developed land is usually
thought to be 0 or very close to it [29,41,42,46,48,53,54,58]. This could either mean that the
species richness is a more accurate indicator of HS than averaging the results from past
studies, or that the species richness was not adequate on its own to estimate HS. It could
also mean that the species richness dataset is too limited.

A study in another region would use the species richness data available in that region.
If no data are available, the values from a nearby region are useable. A literature review can
also be used to estimate the values. The number of species in an area could also be counted
manually when working in a small area. It is also possible to use the presence of one
species as an indicator of the species richness of another species based on how important
the indicator species is to the diversity of a habitat [77–79].

4.2. Advantages and Limitations of the Methods Used

The advantage of the binary method (Method 1) is that it can be applied in the absence
of data or expert knowledge. Its limitation is that it is broad and does not account for
the differences between LULCs. Agriculture (both cropland and pastures) and all other
different types of developed lands are assumed to have the same suitability. It is possible
that agricultural lands are more suitable than developed lands because they are not entirely
unnatural. Open space also may be more suitable than high intensity developed lands.

The advantage of obtaining HS values from literature (Method 2) is that this method
does not require expert knowledge. The more variable values are more descriptive than
the simple binary method. The assumption is that the values used in the literature are
accurate. However, the accuracy of the values changes when using an average of the values.
This method is limited by the publications available, which requires other scientists and
researchers to have conducted studies beforehand. These HS values come from the literature
originating in various regions due to the lack of studies conducted in the Choctawhatchee
River Watershed. This may be a potential advantage as HS can be estimated in a region
where no previous studies are available. Studies based on regions that are unlike the area of
interest cause this method to have the same disadvantage as the binary method (i.e., LULCs
are given the same suitability values despite being different). This is because the values for
all types of similar habitats are used to calculate an average. Every type of developed land,
agricultural land, forest, and wetland is assumed to have the same suitability, which may
not be accurate. There are also habitats that have a wide range of values. Both beaches and
deserts are bare land. Beaches have high HS and deserts have low HS. In this case, using
the average may not be adequate to account for the range in values.
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Furthermore, the HS values were the average value from 23 articles. The limitation of
this method is that the average value is subjective to the literature used.

The species richness method (Method 3) presents a way to estimate the general habitat
suitability, whereas other methods estimate the suitability for a single species, a species
group, or a specific habitat. This method does not require knowledge of the individual
species, the present, or optimum habitat conditions. The binary method where natural is
suitable, and unnatural is not suitable, is currently how HS is modeled in cases where there
is no specific habitat data or when the goal is to estimate HS in general [5].

The main disadvantage is that the results of these methods are sensitive to the amount
of data that is present. There is currently a lack of wildlife population data in most locations.
The database used in this study only presented the species richness for the vertebrates
(mammals, birds, reptiles, amphibians, and fish) and trees. The available data did not
cover all macro-organisms. There was no species richness data for invertebrates such as
arthropods and mollusks, non-tree plant species such as grasses and shrubs, or fungi. The
total population of each species group was also unavailable. The details found in Table S3
in the Supplementary Materials cannot be utilized given the obtainable data.

The resolution of the spatial data also influences the accuracy. Accuracy decreases as
the grid cell size increases because it becomes harder to account for the evenness of a species.
For instance, a grid cell can represent a hectare. Most of the species might live in a section
that is a tenth of a hectare. However, all of the species were counted to obtain a total value
for the entire hectare. Smaller grid cell sizes allowed for more precise species mapping.

Using species richness by itself is not adequate when estimating the habitat suitability.
When looking at suitability maps made from individual species group richness

(Figure 9), tree richness had the highest range of index values. Despite the index val-
ues, the range of bird species was the highest, with the lowest being three species and
the highest being 249 species. The distribution of values in the total richness index map
(Figure 1a) was most influenced by the number of trees and birds. This means that areas
in the Southeast United States and along the coasts had the highest biodiversity. The
distribution of species did not seem to be driven by general land use types, but rather a
combination of climate, terrain, and other factors.
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The advantage of relating the species richness to specific land uses is that it gives an
extra dimension to maps in comparison to the existing methods that estimate HS using
LULC alone. This method also grants the ability to determine the typical suitability of a
habitat based on data. As new data become available, HS can be adjusted to reflect the
changes in biodiversity [80–82]. Being based on observable data can be an advantage and a
disadvantage for the method.

The HS estimation methods are based entirely on the number of species, assuming
that the species are distributed independently of spatial evenness. Doing so increased the
possibility of the inaccuracy in the results. In addition, functional species such as predators,
raptors, or primary productivity as indicators of HS could be used as relevant factors for
the study. Validating theoretical concepts is a challenge because there are not observations
to validate the model [83,84]. These apply to HS, also a theoretical concept.

4.3. Implications for Conservation

The spatial representation of HS is a good tool for supplementing conservation strate-
gies. Biodiversity maps are used to protect biodiversity in many conservation programs [85].
Studies have shown a link between habitat suitability and wildlife population viability for
a variety of species [86–89]. The binary method of estimating HS may not be a good tool for
biodiversity conservation as it is not a function of biodiversity or habitat conditions directly,
but it does show where human land uses occur [5]. The results of the literature review
provide a good idea of which habitats are the most suitable. The most suitable habitats can
then be studied to determine the species viability [90]. The HS maps where suitability is an
index of species richness are direct estimations of biodiversity. These maps can be used to
rank habitats in an area to determine which habitats are the most viable and which habitats
potentially need conservation attention.

HS are linked both directly and indirectly to almost all the 17 Sustainability Develop-
ment Goals (SDGs). For example, HS is important for water and land resource conservation,
which are related to SDG-14 (life below water) and SDG-15 (life on land). HS is indirectly
related to SDG-6 (clean water and sanitation) because it is an integral part of water integrity,
which is influenced by the physical characteristics of the waterbodies (physical integrity)
and impacts the life below water (biological integrity) [91,92].

5. Conclusions

The objective was to compare the three approaches for estimating habitat suitability,
summarize the advantages and disadvantages of these methods, and provide guidelines
for selecting a HS method for conservation. The study focuses on the Choctawhatchee
River Watershed (in Alabama and Florida, USA). The three habitat suitability estimation
methods were as follows. Method 1 provides a suitability score based on the naturality of
the habitat. Method 2 uses the average values from the literature with similar definitions
for habitat suitability. Method 3 uses species richness. HS estimation is approachable from
the perspective of a single species or species group, from a habitat-focused standpoint, or
with the goal of estimating the suitability for wildlife in general. These approaches can
be too specific or too broad. Estimating HS using species richness data is more specific
than the existing binary method while being broad enough to use when modeling large
multi-habitat areas such as a watershed. If complete species richness data are available, this
method is advantageous. Using a more complete dataset may reveal that natural habitats
are more suitable than developed lands. It is therefore important to gather more data before
using species richness as an indicator.

In choosing a method, approaches can be chosen after determining what types of data
are feasibly obtainable and based on the research goals. Things to consider are the specificity
of the method, the accuracy of the data, and the assumptions made. Different methods
change how conservation strategies are chosen. Broad methods assist in identifying how
natural each habitat is. Specific methods assist in identifying the species or resource
distribution in each habitat [74]. It is important to consider conservation goals when
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choosing a method. Using a method that includes one or multiple HS indicators such as
species diversity, the presence of invasive species, and/or water quality makes it easier to
decide on which conservation measures to take [75,93].

Steps should be taken in the future to improve HS mapping. This includes using
models and techniques such as machine learning to predict species richness based on
inventory data for terrestrial species [94,95] and aquatic species [96]. Modeling the change
in HS in real-time is also a possibility [97]. These methods are currently not being used
to produce maps for habitat conservation or the general public. Using functional species
or primary productivity as indicators of HS could be used as relevant factors for study
in the future. Habitat suitability modeling will become accessible and more evidence-
based when accurate and complete species maps become obtainable. This will make it
possible to consistently identify habitats to apply conservation actions. Currently, it is
best to have expert knowledge of the region to estimate the suitability of the habitats
or use the literature review carried out in this study. If this is not an option, using the
natural/unnatural approach is the next best method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11101754/s1, Figure S1: Venn diagram comparing decid-
uous forest, evergreen forest, and wetland habitats; Figure S2: Venn diagram comparing shrub
land, grassland, and bare land habitats. 1 Steppe grasslands have very fertile soils. 2 Savannah
grasslands have sandy/stony soil; Figure S3: Average terrestrial species richness for each LULC
class.; Figure S4: Venn diagram that compares the Brillouin, Shannon–Wiener, and Hurlbert biodi-
versity index equations.; Table S1: Potential habitat conditions and components: A—all; B—bare
land; D—deciduous forests; E—evergreen forests; G—grassland; S—shrub lands; W—wetlands;
Table S2: Optimum habitat conditions; Table S3: Biodiversity Index Equations.
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