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Abstract: The abundance and distribution of soil microbial populations, i.e., microbial diversity is
widely promoted as a key tenant of sustainable agricultural practices and/or soil health. A common
approach to describing microbial diversity is phylogenetic analysis with high-throughput sequencing
of microbial DNA. However, owing to the tremendous amounts of data generated, a continuing
effort is required to better assess the effects of agricultural management systems on soil microbial
diversity. Here, we report on the combined effects of management systems on bacterial and fungal
diversity in a loessal agricultural soil located in north-central Mississippi, USA. Amplicon sequencing
was performed using 16S rRNA-gene and ITS2 from soil samples collected from a three-year study
with combinations of maize-soybean crop rotation, tillage practices, and winter vegetative covers.
Differences were found in microbial fungal β-diversity among the management systems, with distinct
clustering patterns for no-tillage combined with either winter weeds or bare-fallow. Management
systems showed a significant influence on soil pH and bulk density, which were positively correlated
with fungal community composition. Developments in the description and interpretation of soil
microbial diversity will contribute to a more accurate understanding of its role in the various functions
and processes important to agricultural soil management.

Keywords: microbial ecology; soil management systems; amplicon sequencing; fungal communities;
soil pH; bacterial and fungal diversity; soil fertility

1. Introduction

Soil microbial communities play essential role in enhancing soil fertility via nutrient
cycling, altering biochemical soil environment, contributing to soil structure and crop
productivity [1–4]. Increased microbial diversity is commonly associated with other key
soil health factors and supports plant resistance to various environmental stresses [5]. Bac-
teria and fungi are the major microbial decomposers, releasing macronutrients, especially
nitrogen (N).

Conservation agriculture (CA) practices, such as no-tillage (NT), cover crops (CC) and
crop rotation alter the composition, diversity, abundance, and activity of soil microbial
communities [6–8]. Adoption of CA practices benefits the soil by improving soil quality,
reducing soil erosion, and may have synergistic effects on crop productivity over time [9].
However, some practices like cover crop systems often require significant cost and man-
agement inputs [10]. CA practices influence soil microbial community composition by
increasing soil organic carbon (SOC) substrate, aeration and available moisture through
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improved soil structure, and moderating extreme temperatures [11–13]. Consequently,
these changes create a microsite environment more conducive for microbial activities in-
volved in the nutrient cycling and building of SOC [14]. On the other hand, intensive
agricultural practices, such as conventional tillage, can also lead to changes in soil microbial
diversity [15]. Intensive tillage can lead to soil compaction below the depth of tillage,
oxidation of organic matter, and increased soil moisture loss [16]. Soil conditions under
NT and CCs increase moisture retention, as residue on the soil surface promotes a cooler
surface than the conventional tillage [17]. Fungi are better adapted to lower temperatures
than bacteria [18]. Additionally, tillage leads to microbial habitat modifications, interfer-
ence of soil pore networks and increase surface runoff which directly effects the microbial
communities [19,20].

Previous studies revealed that, after 15 years of soybean-winter wheat–corn rotations,
no- tillage and cover cropping increased SOC by 14% than conventional tillage (CT) [21].
Addition of crop rotation (corn, soybean, sorghum and wheat) to a monoculture with cover
crops increased the SOC by 8.5% and nitrogen (N) by 12.8%, which considerably increased
the soil microbial biomass C (20.7%) and N (26.1%) [22]. In addition, no-tillage with residue
management in different cropping systems has improved the soil aggregation ratio and
macroaggregate SOC stock by 36–66% [23].

Limited studies have compared the impacts of conservation agriculture practices
between bacterial and fungal community composition. It was previously reported that in a
comparison with mineral and organic fertilizers with different tillage systems, soil bacterial
communities were principally structured by tillage, while fungal communities were mainly
affected by fertilizer source and tillage [24]. Sun et al. [25] stated that, tillage changes the
vertical distribution of soil bacterial and fungal communities, where bacterial community
differences were defined by the presence and/or absence of species, while differences in the
relative abundance of fungal species were observed. Zhang et al. [26] showed soils under
soybean-maize rotation with organic fertilizer were dominated by bacterial communities
and it reduced the percentage of fungi in soil by 24% when compared with the same
fertilizer application and continuous maize-soybean.

Previous studies suggest that soil management practices shift the microbial diversity
and community composition [15,27]. It is critical to understand how the combination of
management systems shapes the soil microbiome. Additionally, soil microbiome differs
across the soil types [28]. However, the combinational effects of differential tillage, winter
cover practices and crop rotation on the soil microbial community in the silt loam soils is
poorly understood. Therefore, we hypothesized that soil bacterial and fungal community
composition and diversity will significantly differ across the different management systems.

2. Materials and Methods
2.1. Site Description

The study was conducted on a Grenada silt loam soil on 1.5% slope (Fine-silty, mixed,
active, thermic Oxyaquic Fraglossudalfs; [29]), located at the Jamie L. Whitten Plant Mate-
rials Center (USDA) in northwest Mississippi (33◦59′01′′ N; 89◦48′16′′ W). Mean annual
precipitation was reported to be 1490 mm, with a somewhat greater proportion falling in
winter-spring than summer-autumn, while daily mean temperatures ranged from 10.7 ◦C
to 23 ◦C [30].

2.2. Experimental Design and Treatment Description

The experiment was conducted from fall of 2015 to fall of 2018. The study was arranged
as a randomized complete block design with four replications of each tillage-winter cover
system. We used three replications in this study. The treatments as systems were two tillage
regimes (conventional tillage and no-tillage) combined with three winter cover practices
in which soybean (Glycine max (L.) Merr.) and maize (Zea mays L.) were rotated annually.
The three winter cover practices were (1) bare (herbicide control of winter weeds), (2) cover
crops, and (3) winter weeds. Cover crops were mixes of species that were determined using
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the NRCS Cover Crop Selection Tool [31]. The cover crop mixes included cereal rye [Secale
cereale L.], oilseed radish [Raphanus sativus L.], and crimson clover [Trifolium incarnatum
L.]). In total, the six management system treatments were (1) conventional tillage-bare
(CT-B), (2) conventional tillage-cover crops (CT-CC), (3) conventional tillage-winter weeds
(CT-WW), (4) no-till-bare (NT-B), (5) no-till-cover crops (NT-CC), and (6) no-till-winter
weeds (NT-WW).

Soybeans were planted in the spring of 2015, followed by maize (2016) with the same
rotation repeated in 2017 and 2018. The field was separated into treatment plots that were
4.1 m wide× 61 m in length and consisted of four raised bed/rows. Raised beds had 102 cm
between row centers. Experimental crop management details, which include fertilization,
tillage and winter cover practices, and weed control are given by Jacobs et al. [32].

2.3. Soil Sampling

Soil samples were collected in the fall after the maize harvest, in the year 2018. For
each management systems, bulk samples (top 10 cm) were collected within each plot from
three locations. Root debris were removed, and soil samples were composited, which were
transferred in the 50mL tubes, transported to lab in coolers (4 ◦C) and stored at −80 ◦C for
DNA extraction.

2.4. DNA Extraction, Sequencing, Data Processing and Analysis

Soil microbial DNA was isolated using the DNeasy Power soil kit (Qiagen, Hilden,
Germany) following the manufacturer’s instructions. DNA quantity and integrity was
assessed by Nanodrop® ND-1000 spectrophotometer and agarose gel electrophoresis, re-
spectively. Extracted DNA was sent to Novogene (https://en.novogene.com/; Sacramento,
CA, USA) for bacterial and fungal amplicon sequencing and sequenced on Illumina MiSeq
platform (250-bp paired-end reads). The primer sets used for amplification of bacterial
16S rRNA (V4 region) and fungal ITS2 were, 515F (GTGCCAGCMGCCGCGGTAA) and
806R (GGACTACHVGGGTWTCTAAT) [33]; ITS3F (GCATCGATGAAGAACGCAGC) and
ITS4R (TCCTCCGCTTATTGATATGC) [34], respectively.

The obtained paired-end raw reads were demultiplexed and subjected to quality
check followed by denoising with DADA2. The allied metadata, high quality bases with
phred score >Q20 were imported into QIIME via q2-import. The stitched reads were
analyzed using the QIIME 2 (version 2021.11) software pipeline [35]. Amplicon Sequence
Variants (ASV’s) were generated via DADA2 version, 2021.11.0 [36] using 97% similarity
and taxonomy was assigned for 16S gene (using Greengenes) and ITS gene (using UNITE).

Data analysis was carried out using the MicrobiomeAnalyst software (version: 4.1.3;
https://www.microbiomeanalyst.ca/ (accessed on 28 August 2022)) [37,38]. In Micro-
biomeAnalyst, Marker Data Profiling (MDP) module was used to obtain the differential
bacterial and fungal diversity matrices. BIOM table obtained from QIIME was used as data
input. Data filtering and normalization was carried out following the steps described in one
of our previous studies [27]. In brief, Alpha diversity was derived from Shannon diversity
index and Chao1 (Richness). For Beta diversity, taxonomic and phylogenetic community
comparisons were performed using Bray–Curtis and weighted UniFrac, respectively as
the distance function using the Principal Coordinate Analysis (PCoA) ordination method.
Sequence reads (raw data) were submitted to the Sequence Read Archive (SRA, NCBI) and
can be accessed using the project accession number PRJNA889025.

2.5. Analyses of Soil Properties

Soil properties, pH, EC (dS/cm), total C (%), Phosphorous (P; mg/kg), Potassium
(K; mg/kg), Zinc (Zn; mg/kg), Bulk density (g cm−3), Sand (%), Silt (%), Clay (%) and
aggregate size were measured in the study. Soil pH was determined in 1:1 soil-water
slurries [39], and soluble salts were measured as electrical conductivity [40]. Available P, K
and Zn determined in Mehlich-3 extracts [41]. Samples to measure soil bulk density were
collected in-tact with a hydraulic probe (Giddings, Windsor CO) from the 0–10 cm depth

https://en.novogene.com/
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on top of the raised bed in the fall of 2018. Oven-dry soil mass and core volumes were used
to calculate bulk density as the mean of two subsamples. Separate cores were collected for
measurement of soil organic carbon (C), which determined by loss on ignition [42]. Alfisols
derived from loess, such as the Grenada soil often contain hydroxy-interlayer minerals
in the clay fraction, which possess interlayer water that can lead to an overestimation
of total C by loss on ignition [29,43–45]. Loss on ignition was corrected to soil organic
carbon using the quadratic equation developed by Jensen et al. [44] utilizing clay content.
Particle size fractions (sand, silt, and clay) were measured by the hydrometer method [46].
Aggregate size was determined from core samples by dry-sieving [47] as aggregates re-
tained on 100-mesh (0.149 mm openings), 200-mesh (0.074 mm openings) and 300-mesh
(0.044 mm openings).

2.6. Statistical Analysis

In MicrobiomeAnalyst, statistical analysis for alpha diversity was evaluated using
the Mann–Whitney/Kruskal–Wallis method at the significance level, p < 0.05. For Beta
diversity, Permutational MANOVA (PERMANOVA) was used to test the significance of
dissimilarity measures. Spearman’s Rank correlation analysis was used to obtain the
pattern correlation graphs. ANOVA was performed to estimate the significant differences
among means of treatment systems using (library—“doebioresearch”) Tukey’s HSD Test
at p < 0.05 in RStudio 4.0.2. Mantel test was used to estimate the correlation between soil
characteristics and microbial community composition using PC-ORD software (version 6.22;
MJM Software, Gleneden Beach, OR, USA), which uses the Pearson’s correlation to compare
the matrices. Canonical Correspondence Analysis (CCA) was performed using the PAST
software, to explore association and the microbial community composition constrained
by soil characteristics. Variation partition analysis was carried out using the CANOCO
(version 4.5) software to quantify the relative contributions of soil variables and treatments
to the fungal community structure.

3. Results
3.1. Microbial Alpha and Beta Diversity Differences in the Different Management Systems

After 3 years of management practices, i.e., the combination of crop rotation, tillage
and winter cover practice, bacterial and fungal alpha diversity indices did not significantly
differ among the management systems. In fungi, more variation in the average values was
noticed in richness than Shannon diversity index (Table 1).

Table 1. Soil bacterial and fungal alpha diversity indices under combination of crop rotation, tillage
practice and winter cover management systems.

Bacterial Alpha Diversity Indices

Treatments Shannon Richness (Chao1)

CT-B 4.14 (0.18) 78.41 (13.79)
CT-CC 3.89 (0.60) 71.91 (47.63)

CT-WW 4.25 (0.34) 90.01 (31.04)
NT-B 4.40 (0.36) 108.03 (39.83)

NT-CC 3.82 (0.19) 53.33 (11.23)
NT-WW 4.14 (0.20) 77.33 (15.04)

p-value 0.29 0.32

Fungal Alpha Diversity Indices

CT-B 3.33 (0.47) 117.66 (9.38)
CT-CC 4.06 (0.19) 140.09 (20.14)

CT-WW 3.48 (0.86) 113.92 (25.12)
NT-B 3.71 (0.34) 115.34 (10.55)

NT-CC 3.52 (0.87) 129.03 (13.71)
NT-WW 4.07 (0.15) 132.21 (10.95)

p-value 0.37 0.30

Note: Mean value followed by standard deviation in parenthesis. (Significance level: p = 0.05) (CT-B: Conventional
Tillage-Bare fallow; CT-CC: Conventional Tillage-Cover Crop; CT-WW: Conventional Tillage-Winter Weeds; NT-B:
No-tillage- Bare fallow; NT-CC: No-tillage-Cover Crop; NT-WW: No-tillage-Winter Weeds).
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PCoA analysis of Bray–Curtis and phylogenetic tree based weighted UniFrac distances
were used to visualize the beta diversity changes in the microbial communities (bacterial
and fungal) under combination of tillage and winter cover systems. Soil bacterial communi-
ties showed no significant differences across the systems and distance matrices (Figure 1a,b).
Fungal community composition differed significantly (p = 0.01) for Bray–Curtis distance
matrix, accounting for 29.9% of total variation (Figure 1c). The fungal phylogenetic compo-
sitions (weighted UniFrac distance matrix) also showed significant (p = 0.003) differences
across the systems. However, UniFrac matrix showed more of the variance in the data
(54.3%) compared to Bray–Curtis distance method (Figure 1d). The systems, NT-WW
and NT-B showed distinct clustering compared to the other management systems. Thus,
the weighted UniFrac matrix was selected for interpretation of the results. These results
revealed that no dissimilarity was observed in bacterial communities compared to fungal
communities, irrespective of the management systems.
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Figure 1. Principial coordinate analysis (PCoA) plot depicting the Bray–Curtis (a,c) and weighted
UniFrac distance matrix (b,d) of bacterial (a,b) and fungal (c,d) communities under combination of
crop rotation, tillage practice and winter cover management systems. (CT-B: Conventional Tillage-
Bare fallow; CT-CC: Conventional Tillage-Cover Crop; CT-WW: Conventional Tillage-Winter Weeds;
NT-B: No-tillage- Bare fallow; NT-CC: No-tillage-Cover Crop; NT-WW: No-tillage-Winter Weeds).

3.2. Bacterial and Fungal Community Composition in the Different Management Systems

Variations in the relative abundance at the phylum level were calculated to know
the differential impacts of treatments on the microbial communities. Post hoc statistical
analysis revealed no significant differences between the systems for relative abundances of
bacterial communities at the phylum level (Supplementary Table S1), which is consistent
with the bacterial beta diversity shown in Figure 1a,b.
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The relative abundances of the top three fungal phyla were significantly different
among the management systems and were dominated by the phylum, Ascomycota (Table 2).
Across the management systems, relative abundance of the top three fungal populations at
the phylum level were observed in the order Ascomycota > Basidiomycota > Mortierellomycota
(Table 2). Higher relative abundance of Ascomycota was found with no-tillage-cover crop
(84%) followed by no tillage-bare fallow (72%) and no tillage-winter weeds (67%) as
compared to conventional tillage systems (Table 2). The second most abundant phylum,
Basidiomycota, ranged from 44% with conventional till-bare winter to 7% in no-till-cover
crop (Table 2). The third most abundant, Mortierellomycota, was highest under conventional
till-winter weeds (14%) and lowest under no-till-cover crop (2.8%) (Table 2).

Table 2. Relative abundance of fungal phyla (obtained from the biom table) in the combination of
crop rotation, tillage practice and winter cover management systems.

Treatments Ascomycota
(%)

Basidiomycota
(%)

Mortierellomycota
(%)

Chytridiomycota
(%)

Glomeromycota
(%)

CT-B 39.50 (6.36) d 44.23 (11.99) 10.23 (4.93) ab 1.38 (0.84) 0.37 (0.29)
CT-CC 62.82 (4.91) bc 21.88 (2.92) 5.99 (1.47) bc 3.77 (1.03) 0.36 (0.15)

CT-WW 48.06 (21.15) cd 29.72 (30.62) 13.90 (4.95) a 2.89 (2.15) 0.61 (0.54)
NT-B 71.90 (1.42) ab 11.86 (5.37) 4.82 (2.74) bc 2.42 (1.23) 1.13 (0.59)

NT-CC 84.08 (2.27) a 7.13 (1.61) 2.83 (0.94) c 1.87 (0.57) 0.66 (0.68)
NT-WW 66.59 (2.40) b 12.14 (0.99) 6.70 (1.58) bc 6.08 (3.00) 1.36 (0.56)

p-value <0.001 *** 0.05 * 0.013 * 0.056 0.171

Note: mean value followed by standard deviation in parenthesis. Tukey’s HSD test at p = 0.05. (Significance
level: * p < 0.05, *** p < 0.001) (CT-B: Conventional Tillage-Bare fallow; CT-CC: Conventional Tillage-Cover
Crop; CT-WW: Conventional Tillage-Winter Weeds; NT-B: No-tillage-Bare fallow; NT-CC: No-tillage-Cover Crop;
NT-WW: No-tillage-Winter Weeds).

3.3. Microbial Community Profiling and Correlation Analysis

To further elucidate phylum level relative abundances, a combination of pattern
correlation and heat map analyses was carried out to evaluate correlations between highly
abundant bacterial or fungal phyla and management systems. In the bacterial community
profile, the phylum Acidobacteria showed positive correlation (0.28) across the systems.
However, many of the bacterial phyla exhibited negative correlations and no significance
differences were observed between systems (Supplementary Figure S1).

For the fungi, profile analysis results were similar to relative abundance (Table 2),
where strong positive correlation (0.71, p < 0.001) was observed for the phylum Ascomycota
across the management systems (Figure 2). This result is complimented by the heatmap,
showing highest presence of Ascomycota in the no-tillage systems, with the highest in
cover crop (NT-CC), followed by bare (NT-B) and winter weeds (NT-WW) (Figure 2). This
suggests that no-tillage practice is a dominant factor in fungal community composition
and distribution.

3.4. Soil Properties

Soil physiochemical characteristics under different tillage and cover management
systems is shown in Table 3. Soil pH and bulk density were significantly different among
the systems. Soil pH was significantly lower (pH-5.8; p < 0.005) in the no-tillage-cover crop
system compared to other systems. Although there were significant differences in soil bulk
density among the management systems, no clear pattern was discerned (Table 3). There
were no differences for total carbon (C), soil test potassium (K), phosphorus (P), and zinc
(Zn), as well as percentages of sand, silt, clay, and aggregate size (Table 3).
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Figure 2. Pattern correlation and heat map analysis of fungal phyla across different management
systems. Bars indicate the correlation coefficients of the different phyla which are ranked by cor-
relation and to the right, heatmap showing levels of abundance (red-higher; blue-lower) in each
system. (CT-B: Conventional Tillage-Bare fallow; CT-CC: Conventional Tillage-Cover Crop; CT-WW:
Conventional Tillage-Winter Weeds; NT-B: No-tillage- Bare fallow; NT-CC: No-tillage-Cover Crop;
NT-WW: No-tillage-Winter Weeds).

Table 3. Effect of tillage and winter cover management systems on soil physiochemical properties.

Treatment
Systems pH EC

(dS/cm)
Total C

(%)
P

(mg/kg)
K

(mg/kg)
Zn

(mg/kg)
Sand
(%)

Silt
(%)

Clay
(%)

Bulk
Density

(g cm−3)

Agg. Size
100 Mesh

(g/g)

Agg. Size
100 Mesh

(g/g)

Agg. Size
100 Mesh

(g/g)

CT-B 6.3 (0.6) a 0.3 (0.1) 0.5 (0.3) 21.0 (7.0) 69.8 (22.2) 1.3 (0.4) 24 (7) 59 (5) 17 (3) 1.26 (0.07)
bc 5.00 (1.23) 1.40 (0.28) 2.45 (0.53)

CT-CC 6.0 (0.3) ab 0.2 (0.1) 0.5 (0.1) 22.0 (2.9) 62.3 (12.1 1.3 (0.2) 16 (8) 67 (4) 18 (3) 1.20 (0.03) c 6.40 (1.72) 1.15 (0.34) 2.30 (0.62)

CT-WW 6.2 (0.6) a 0.3 (0.1) 0.4 (0.0) 19.5 (3.0) 68.5 (8.4) 1.2 (0.2) 25 (10) 58 (9) 18 (2) 1.30 (0.06)
bc 5.10 (0.26) 1.15 (0.34) 2.20 (0.33)

NT-B 6.0 (0.3) ab 0.3 (0.1) 0.4 (0.0) 23.5 (2.6) 62.8 (14.8) 1.4 (0.3) 15 (5) 67 (5) 19 (1) 1.43 (0.04)
a 5.30 (1.29) 1.10 (0.26) 2.30 (0.20)

NT-CC 5.8 (0.4) b 0.2 (0.1) 0.6 (0.1) 19.5 (3.1) 57.8 (4.3) 1.3 (0.2) 23 (13) 59 (11) 19 (2) 1.36 (0.07)
ab 4.90 (0.35) 1.60 (0.37) 2.70 (0.26)

NT-WW 6.2 (0.3) ab 0.3 (0.1) 0.5 (0.1) 23.0 (5.6) 70.5 (26.4) 1.2 (0.3) 16 (4) 67 (4) 18 (2) 1.46 (0.09)
a 5.45 (0.96) 1.25 (0.34) 2.50 (0.20)

p-value 0.005 ** 0.475 0.167 0.426 0.821 0.767 0.355 0.209 0.934 <0.001 *** 0.319 0.323 0.314

Note: mean value followed by standard deviation in parenthesis. Tukey’s HSD test at p = 0.05. (Significance
level: ** p < 0.01, *** p < 0.001). (CT-B: Conventional Tillage-Bare fallow; CT-CC: Conventional Tillage-Cover
Crop; CT-WW: Conventional Tillage-Winter Weeds; NT-B: No-tillage-Bare fallow; NT-CC: No-tillage-Cover Crop;
NT-WW: No-tillage-Winter Weeds).

3.5. Relationship between Soil Properties and Fungal Community Composition

Canonical correspondence analysis (CCA) was conducted on ASVs to describe the
relationship between fungal community composition and selected soil properties (Figure 3).
This was not performed on bacterial data since no differences in the bacterial community
composition were observed. CCA revealed 37.3% of total variation, where changes in the
soil fungal communities were positively correlated with pH, soil test P, and negatively
correlated with bulk density (Figure 3). CCA was also performed on the relative abundances
according to fungal phyla (Figure 4). These results showed that the no-till-cover crop system
samples grouped into a distinct clusters along first principal component axis (Figure 4).
Where the strongest relationship was with soil bulk density (BD in Figure 4) and aggregate
size and Ascomycota and Mucoromycota phyla (Figure 4). The no-till-winter weeds system
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clusters were associated with soil test P and EC and the abundance of Glomeromycota and
Kickxellomycota (Figure 4). In addition, the Mantel test was used to calculate correlations
between corresponding positions of fungal community composition and soil property
distance matrices. Overall, soil pH was significantly correlated (p = 0.014) with the relative
abundances of fungal phyla (Table 4).
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Figure 3. The distance based canonical correspondence analysis (CCA) illustrating the influence of
soil properties on fungal communities (estimated using ASV’s). Soil properties are labelled in blue
and treatments are in different colors. Lengths of each arrow/vector indicates the correlation. CT-B:
Conventional Tillage-Bare fallow; CT-CC: Conventional Tillage-Cover Crop; CT-WW: Conventional
Tillage-Winter Weeds; NT-B: No-tillage-Bare fallow; NT-CC: No-tillage-Cover Crop; NT-WW: No-
tillage-Winter Weeds.
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Figure 4. The distance based canonical correspondence analysis (CCA) showing the distribution of
soil fungal communities (performed using fungal relative abundances) and soil characteristics in the
different tillage and cover management systems. Soil properties and fungal phyla are labelled in
blue and treatments are in black color. CT-B: Conventional Tillage-Bare fallow; CT-CC: Conventional
Tillage-Cover Crop; CT-WW: Conventional Tillage-Winter weeds; NT-B: No-tillage- Bare fallow;
NT-CC: No-tillage-Cover Crop; NT-WW: No-tillage-Winter Weeds.
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Table 4. Correlation analysis between soil characteristics and fungal communities using the
Mantel test.

pH EC C P K Zn Bulk
Density

Aggregate
Stability

R 0.336 −0.141 0.179 −0.001 −0.053 0.041 0.032 −0.071
p value 0.014 * 0.301 0.333 0.989 0.667 0.683 0.719 0.633

Abbreviations: EC = Electrical Conductivity; C = total carbon; N = total nitrogen; P = Phosphorus; K = Potassium;
Zn = Zinc. * p < 0.05.

Variation partitioning was combined with CCA to explain the relative contributions
of management systems and soil properties to the variations in soil fungal communities.
The combination of tillage-winter cover practice systems was the major factor shaping soil
fungal communities, which is explained by 46.3% variation (Figure 5).
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Figure 5. Variation partition analysis of the effects of different management systems and soil variables
on the fungal community structure.

4. Discussion

In this study, after three years of maize-soybean rotation with tillage-winter cover
management systems, fungal community composition varied significantly. In contrast,
bacterial communities displayed no differences despite a higher number of bacterial (5120)
than fungal (2400) ASVs.

Microbial alpha diversity was assessed using Shannon diversity index, which is
more stable and reliable than other methods and less sensitive to sequencing errors [48].
However, it is weighted towards more abundant taxa as compared to species richness
estimates. Interestingly, both bacterial and fungal diversity and richness (Chao1) were not
significantly different across the management systems (Table 1). Some past studies have
reported higher bacterial and fungal diversity under NT than CT [49], while others showed
higher microbial alpha diversity with CT than NT [50]; several have reported no change in
alpha diversity with tillage [51,52]. Additionally, microbial community composition can
vary with the season and/or between soil types [53,54]. Several other factors like sampling
depth may explain this response in microbial diversity, as recent studies found that soil
microbial diversity increases with increasing soil depth under NT [52]. Crop diversity via
rotation influences the microbial activity and community composition at different crop
growth stages through root exudates, which employs microbial populations by differences
in substrate quality [55–57]. Our results indicated that 3 years of these management systems
have not affected either alpha diversity or species richness.

We hypothesized that management systems would cause significant difference in
the abundance and distribution of soil microbial populations. However, in our study no
differences in bacterial community compositions. In contrast, study by Smith et al. [20]
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had a greater impact of CT versus no-till, and NT fields had distinct bacterial communities.
There were system effects on fungal communities, which was shown in clear dissimilarities
(Figure 1c,d) for both the distance methods. In this study, there were similarities in the
minimally disturbed systems with no tillage. Young and Ritz [19] showed an effect of CT
in soil microbial community distribution. Fungal communities respond to the degree or
intensity of soil disturbance as hyphal networks can be disrupted by CT [58]. Evidence
from recent findings support our study where there was a greater shift in the beta diversity
of fungal communities than bacteria with similar management systems [50]. Moreover,
soil fungal communities in NT systems across 0–100 cm soil depth revealed high levels of
stratification, where deeper depths had fungal communities with lower alpha diversity [59].

In the study, PCoA showed no clear partitioning for bacteria among the management
systems for either taxonomic (Bray–Curtis) and phylogenetic (weighted UniFrac) distance
methods. These results were in contrast to those of Wang et al. [60] who showed that with
non-metric multidimensional scaling, comparison of conservation with conventional tillage
had significant differences in bacterial community composition using either taxonomic
or phylogenetic distance measures. However, with respect to fungal communities, we
found that the weighted UniFrac distance measure method showed more data variation,
axis 1 and 2 from the PCoA accounted for 33.9% and 20.4% of the variation across the
systems, than the Bray–Curtis matrix (Figure 1c,d). Additionally, UniFrac distance matrix
showed differences in the cluster pattern, which may be due to the differences existing
in one or clusters of taxa in the lineages of the phylogenetic tree [61,62]. The Bray–Curtis
distance method accounts for the relative abundance of each taxon, which might account
for differences in the data variation. Weighted UniFrac is suited for large-scale comparisons
across multiple community samples and analysis of seasonal changes which is influenced
by the several factors and for exploring transient changes in microbial communities re-
lated to nutrient availability [62]. The specific ordination methods and distance measures
can generate the different outcome that may lead to alternate interpretations of beta di-
versity. Thus, the choice of the distance measure method is crucial since the relative
abundance and distribution of soil bacterial and fungal populations is critical to delineating
community changes.

Across different soil management systems, we found that Ascomycota and Basidiomycota
were the dominant fungal phyla. There was significant difference in the phylum Ascomycota
between the systems (Table 2). These results are consistent with other studies. A similar
study by Kodadinne Narayana et al. [27], where soil management practices (NT and CCs)
in a dryland soybean system resulted in Ascomycota and Basidiomycota as the dominant
phyla. Previous studies stated that intensive agriculture often decreases the abundance of
bacterial and fungal communities [19], which is consistent with our results where a higher
abundance level of Ascomycota was observed in management systems with no tillage.

Soil management practices can cause variation in soil physio-chemical properties.
Generally, changes in soil properties are linked with changes in microbial communities [63].
In the study, soil pH and bulk densities were significantly different across the management
systems (Table 3). Additionally, no significant differences were observed for other proper-
ties. While others have observed the increased levels of most of nutrients (soil total nitrogen,
P, and exchangeable K; calcium, magnesium and Zn) with NT compared to conventional
tillage [20,64]. Although there were differences in soil bulk density, there were no clear
patterns based on management system. The comparatively lower pH under no-tillage-cover
crop system might be due decomposition related to differences in the quality of organic
matter as a substrate [65]. A meta-analysis by Li et al. [66] reported that relative to CT, NT
decreased soil pH by 1.2% and 3.3% in the surface and subsoil, respectively. Consequently,
no-till and cover cropped soils may aid in enrichment of soil organic matter quality in the
surface layer due to accumulation of crop residues and root exudates, which is conducive
for the soil microbial communities [67].

We further explored how management system-induced soil edaphic factors impacted
microbial diversity and community composition. Soil pH effects on fungal diversity and
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community composition were observed (Table 3), which has been shown elsewhere [68].
Growth-based measurements of fungi increased 30-fold in a study where the pH varied
from 8.3 to 4.5 [69]. A study by Tedersoo et al. [70] revealed that soil pH explained 1.5%
of the variation in total fungal community composition in an organic matter-rich soil.
However, in most cases, microbial community variation drives by multiple environmental
factors rather than single driver. Change in microbial activity, e.g., carbon mineralization
and microbial growth are interlinked [71]. In addition, soil type plays a major role in change
of soil fungal community structure and magnitude of change depends on the management
factors [28].

Overall, in this short-term study, different management systems had minor impacts
on the soil microbial communities. Management systems influenced the fungal community
composition, but the bacterial abundance and diversity were not affected. These results
demonstrated that fungal communities are responsive to no-tillage-cover crop systems.
Soil pH may have been a key factor facilitating the variation of soil fungal community
composition in the NT-CC system. Our results indicated that weighted UniFrac metric
outperforms the Bray–Curtis by capturing the more data variation. Further long-term
research is needed to better understand the relationship between these practices and the
implications of multicomponent management systems on the changes in soil microbial
communities and their relation to key functions in soil, such as plant growth promotion.
Finally, greater insight into the ecological functions of specific soil phylogeny is a central
aim for agricultural soil microbial ecology.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/land11122259/s1, Table S1: Relative abundance of bacterial
phyla across the tillage and winter cover practice management systems; Figure S1: Pattern correlation
and heat map analysis of bacterial phyla bacterial phyla across different management systems. Bars
indicate the correlation coefficients of the different phyla which are ranked by correlation and to
the right, heatmap showing levels of abundance (red-higher; blue-lower) in each treatment. (CT-B:
Conventional Tillage-Bare fallow; CT-CC: Conventional Tillage-Cover Crop; CT-WW: Conventional
Tillage-Winter weeds; NT-B: No-tillage- Bare fallow; NT-CC: No-tillage-Cover Crop; NT-WW: No-
tillage-Winter Weeds).
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