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Abstract: Rapid urbanization influences green infrastructure (GI) development in cities. The govern-
ment plans to optimize GI in urban areas, which requires understanding GI spatiotemporal trends
in urban areas and driving forces influencing their pattern. Traditional GIS-based methods, used to
determine the greening potential of vacant land in urban areas, are incapable of predicting future
scenarios based on the past trend. Therefore, we propose a heterogeneous ensemble technique to
determine the spatial pattern of GI development in Jinan, China, based on driving biophysical and
socioeconomic factors. Data-driven artificial neural networks (ANN) and random forests (RF) are
selected as base learners, while support vector machine (SVM) is used as a meta classifier. Results
showed that the stacking model ANN-RF-SVM achieved the best test accuracy (AUC 0.941) compared
to the individual ANN, RF, and SVM algorithms. Land surface temperature, distance to water bodies,
population density, and rainfall are found to be the most influencing factors regarding vacant land
conversion to GI in Jinan.

Keywords: green infrastructure; vacant land transformation; ensemble stacking; multifunctionality;
machine learning

1. Introduction

Urbanization brings both opportunities and challenges, such as cities enhancing
the quality of life while urbanization poses a threat to the environment, e.g., excessive
pollution, changes to local hydrology, and biodiversity loss. The trend towards urbanization
is dramatically increasing, and it is projected that by 2050, nearly 70.0% percent of people
will live in urban areas [1].

Consequently, the demand for gray infrastructure (GY) is expected to increase, which
is associated with enormous costs. Reliance on GY will be insufficient to meet the growing
demand from urbanization, compounded by the effects of climate change and energy
scarcity [2]. While cities are challenged to balance urban development and its impact on
the environment, green infrastructure (GI) provides opportunities to enhance the resilience
of socioecological systems in urban areas. Therefore, protecting, improving, re-establishing,
and increasing urban and peri-urban green infrastructure is an important measure for
sustainable development of urban areas [3].

GI offers multiple benefits such as provision of ecosystem services, reduction of the
urban heat island, increase in biodiversity, and positive effects on human wellbeing [4].
Despite GI multifunctionality, green space area has been significantly reduced in cities,
and the majority of vacant land in cities is being converted into gray infrastructure as it
is economically viable [5]. At the same time, governments are beginning to realize the
importance of urban green spaces. This has pushed urban planners to integrate GI in
urban planning and policymaking, which may involve transforming vacant, abandoned,
or bare land to GI to make more informed development choices. Therefore, it is important

Land 2022, 11, 317. https://doi.org/10.3390/land11030317 https://www.mdpi.com/journal/land

https://doi.org/10.3390/land11030317
https://doi.org/10.3390/land11030317
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/land
https://www.mdpi.com
https://orcid.org/0000-0002-6984-7328
https://orcid.org/0000-0003-3726-1098
https://doi.org/10.3390/land11030317
https://www.mdpi.com/journal/land
https://www.mdpi.com/article/10.3390/land11030317?type=check_update&version=1


Land 2022, 11, 317 2 of 21

to understand the trend of land conversion to GI or GY in cities and how changes in their
spatiotemporal patterns are linked with the processes that drive these changes.

In recent years, several studies have been conducted for exploring the suitability of
vacant land or derelict site conversion to GI or GY using GIS-based multicriteria deci-
sion analysis (MCDA) [6,7]. These researches have utilized the weighted linear methods
or analytical hierarchy approaches to determine the importance of factors. However, these
methods recommend what sites should be converted into GI or GY based on multiple
benefits instead of understanding the spatiotemporal trend. Furthermore, these conven-
tional methods lack in certain ways: (1) difficulty in selecting an appropriate method
for assigning weights for factors, (2) weights are given based on an expert choice which
can be subjective and biased, (3) varying results from different standardization methods,
and (4) no standardized methods for results evaluation.

Apart from multicriteria-based methods, other methods have also been developed
to simulate and predict future LULC scenarios, such as cellular automata (CA), Markov
chain (MC), and agent-based modeling [8]. However, these methods are not capable
of dealing with spatial heterogeneity in cities and are applied at large spatial scales [9].
Problems associated with these methods can be solved by using data-driven methods,
i.e., the integration of artificial intelligence (AI) with GIS methods. AI-based methods
use a mathematical framework to drive the relationship between the trend of conversion
to GI/GY and their driving factors. Weights for factors are determined by the trends
of the real-world conditions rather than the subjective choices [10]. AI-based methods
are built upon large datasets, which enable us to combine information from multiple
factors involved in GI development. Finally, data-driven methods are capable of predicting
potential future scenarios.

Utilizing AI, Labib [10] predicted the likelihood of conversion to GI or GY along wa-
terways and derelict sites in Manchester city council based on machine learning algorithms
LR, ANN, and adaptive neuro-fuzzy inference system (ANFIS). However, these machine
learning algorithms still face challenges due to several reasons, such as selection of models
from a wide range of AI models available, distinct outcomes of each model [11], complex
nonlinear relationship between influencing factors and sites [12], quality of model used [13],
and the issue of accuracy.

Simultaneously, researchers have developed ensemble machine learning methods,
which combine a set of classifiers working collectively for handling complex and high-
dimensional data [13]. These methods provide results with better accuracy by expanding
the hypothesis space of the fitting function [12]. Several studies used metalearning tech-
niques with homogeneous models such as bagging [14], boosting [15], AdaBoost [16], and
random forest [17]. These methods use the same classifiers multiple times to construct a
single model, leading to duplicating a single classifier’s shortcomings. To overcome this,
heterogeneous ensemble methods are developed which combine different classifiers, such
as CNN-RNN-SVM-LR [18], SVM-ANN-NB-LR [12], and ANN-SVM-RF-RS-bagging [11],
and can capture the advantages of numerous classifiers.

However, these ensemble methods have not been used before in the domain of vacant
land transformation likelihood into GI or GY. Therefore, to fill this knowledge gap, this
study aims to (1) propose a new ensemble model based on the heterogeneous stacking
algorithm ANN-RF-SVM and the analysis of individual models to understand the spa-
tiotemporal trend of GI and GY development in Jinan, China. (2) Based on GI/GY change
analysis within the time frame of 2000–2020, the locations are identified which were con-
verted into GI and GY during these 20 years in Jinan. (3) The trend of land-use change (GI
or GY) in Jinan along with driving forces (such as nearby green areas, population density,
accessibility, pollution, etc.) is used to train the models, and (4) the trained models pre-
dicted the future locations for the transformation of GI or GY. (5) The results of the stacking
model are then compared with the performance of conventional standalone models SVM,
RF, and ANN. These findings will inform Jinan authorities and urban planners to make
GI decisions about specific sites. It will give them information about the factors involved
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in GI development and if they need to change the urban planning of Jinan to consider
the neglected factors. This study will also be a guide for future studies focusing on such
methods for GI development.

2. Materials and Methods
2.1. Study Area

Jinan, extending between 36◦01′ N–37◦32′ northern latitude and 116◦11′ E–117◦44′ east-
ern latitude, is the capital of Shandong province, occupying an area of about 8133.57 km2.
It is located in the northwestern part of Shandong province, spanning over six districts, one
county-level city (Zhangqiu City), and three counties (Pingyin Country, Jiyang Country,
and Shanghe Country) [19] (Figure 1). In this study, only the main central urban area of
Jinan is considered, which covers an area of 2083.87 km2. Jinan has warm temperate and
semihumid monsoon climate conditions with an average annual temperature of 14.6 °C,
and an average annual rainfall of 500 mm to 600 mm. The rainfall is unevenly distributed
during the year, with the most extreme events occurring between July and August [20].

Figure 1. The geographical location of the study area: Location map of Jinan in China (top right),
Jinan (bottom right), and Jinan urban area (top) showing multifunctional GI.

According to the Jinan Yearbook (2003–2020), the population of Jinan reached 9.20 mil-
lion in 2020 compared with 5.82 million people in 2003. In 17 years, Jinan administrative
area increased by 1.25 times from 8177 km2 to 10,244 km2, and built-up area increased
by 4.2 times from 200 km2 to 839.7 km2 [21]. The urbanization in Jinan is constrained by
mountains in the south and the Yellow River in the north, hence causing urban sprawl
in only two directions [22]. In response to the undesirable impact of urban sprawl, Jinan
Municipal Government announced planning for the Ecological Garden City for the years
2010–2020, and in 2021 Jinan Green Regulations were proposed, which will be implemented
in March 2022 [23,24].
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2.2. Land Use Land Cover (LULC) Change Analysis (2000–2020)

In this work, remote sensing satellite data of Landsat-8 Thematic Mapper (TM) (2020)
and Landsat-7 Enhance Thematic Mapper Plus (ETM+) (2010 and 2000) were acquired
from the United States Geological Survey (USGS) Earth Explorer [25]. Images were pre-
processed in Arcmap 10.8 and radially calibrated and atmospherically corrected in Envi
5.3. The LULC maps for 2000, 2010, and 2020 were derived using supervised maximum
likelihood classification in Envi 5.3. The quality of classified images was estimated using
Kappa statistics.

2.3. Existing Green Infrastructure Identification

The existing GI in Jinan is located at residential communities, road networks, green
belts, parks, river, and lake sites. However, to maximize the benefits of GI, only publicly
accessible multifunctional GI (parks, grassland, outdoor areas with rain gardens and
wetlands) (Figure 1) data are collected through the LULC change analysis and Baidu maps.

GI with high multifunctionality is coded as 1, while the GY is coded as 0. The GI and
GY are divided into training (70%) and test datasets (30%).

2.4. Driving Factors for Transformation

As reviewed by previous studies, the major driving factors that influence GI devel-
opment are natural, socioeconomic, and policy [6,10]. Hence, considering the existing
literature, we selected biophysical factors, i.e., rainfall, air quality, land surface temperature
(LST), and distance from river and water bodies. The socioeconomic factors under con-
sideration are the population density, density of vacant land, roads density (accessibility),
and built-up area density (surrounding land use). The spatial database of these factors is
prepared in ArcGIS-10.8 as a matrix of 1856 columns, 2244 rows with a spatial resolution of
27 m× 27 m.

2.4.1. Biophysical Factors

Urban areas that are at the risk of flooding, or contribute to downstream flooding,
may potentially influence the GI planning decision-making. Therefore, to identify areas
producing overflow, the total rainfall of Jinan is taken into account. Jinan’s average rain-
fall per month (2000–2021) data was downloaded from NASA Giovanni for TRMM at
0.25°× 0.25° [26] (Figure 2).

The GI development decision could be affected by air pollution in the surroundings.
The air quality index point data for different pollutants such as CO, NO2, O3, SO2, and PM
were obtained from Harvard Dataverse for China AQI [27] to prepare the air quality map
for Jinan using the IDW interpolation method (Figure 2).

Urban areas having a higher temperature than surrounding areas could be the driving
force for land transformation into GI. Hence, to consider the land surface temperature
(LST) of Jinan, MODIS/Terra Land Surface Temperature imagery was downloaded from
NASA Earthdata DAAC database [28] with a spatial resolution of 30 arcsec. It represents
the daytime temperature which ranged between 21 °C and 33 °C for the Jinan.

Vacant land beside rivers or floodplains and water bodies could influence their conver-
sion decision into wetlands or riparian vegetation due to their ecological benefits. For this
purpose, buffer maps for distance from water bodies and rivers were prepared for Jinan.
The buffer of <50 m, 100 m, 200 m, 300 m, 500, and >500 m was prepared using the spatial
river and water bodies data of the city from the OSM network Figure 2.
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Figure 2. Maps of biophysical factors influencing GI development: (a) rainfall, (b) air pollution,
(c) LST, and (d) water bodies buffer.

2.4.2. Socioeconomic Factors

Population density can also be a driving factor for transforming vacant land into GI
to improve lifestyle and health. The population density at 30 arcsec resolution [29] for
Jinan was obtained from NASA SEDAC gridded population of the world for the year 2020.
(Figure 3).

The probability of vacant land conversion into GI depends on the accessibility to
the vacant sites, because it means the public can easily access these areas. Hence, a road
buffer map was prepared using the spatial data of the road network obtained from the
OSM network.
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Vacant land with no GI nearby can be preferable for GI development; therefore,
the existing green areas can influence GI investment decisions. Thus, a buffer map of
distance to vacant land was prepared [30]. A buffer of <50 m, 100 m, 200 m, 300 m, 500,
and >500 m was prepared in Arc-GIS 10.8 (Figure 3).

An increase in the built-up area can cause the occupation of green spaces. However,
to a certain extent, urbanization can increase green spaces attached to the residential areas.
Therefore, a built-up density map for Jinan was prepared by downloading built-up areas
from the open street map (OSM) [30]. It was converted into a raster to prepare a kernel
density map.

Figure 3. Maps of socioeconomic factors influencing GI development: (a) population density, (b) road
buffer, (c) distance from vacant land, and (d) built-up density.



Land 2022, 11, 317 7 of 21

2.5. Importance Analysis of Driving Factors

The evaluation of determinants of GI development is vital before the training and vali-
dation of models, as some factors might generate noise or have less predictive power and do
not contribute much to achieve better accuracy of the model for the target variable [11,31].

Two multicollinearity tests, i.e., variance inflation factors (VIF) and Pearson’s corre-
lation coefficient, are utilized to measure the correlation of factors. VIF for the estimated
regression coefficient is influenced or inflated when the independent variables are not lin-
early related [11]. VIF value of 1 indicates that variables are not related, while a value greater
than 5 suggests that collinearity exists [13]. The VIF is determined using Equation (1):

VIF =
1

1− R2 (1)

where R2 is a coefficient of determination for regressing an independent variable on the
other variables. The high value of R2 means that the GI development factor is correlated
with other factors.

Pearson’s correlation is also used to identify the linear dependence between two
variables, X (GI development driving independent factor) and Y (dependent factor GI, GY).
Its value ranges between 1 and −1. It is obtained through the following Equation (2):

ρX, Y =
(cov(X, Y))

σXσY
(2)

The information gain ratio (InGR) calculates the reduction in entropy from the trans-
formation of the dataset. It can be used for factors selection by evaluating the information
gain of each factor in the context of the target factor (GI, GY) [14]. The higher the value of
InGR, the greater the significance of the factor is. It is calculated using Equation (3):

Gain ration(x, Z) =
Entropy(Z)−∑n

1 ∑n
i=1

|Zi |
|Z| Entropy(Zi)

−∑n
i=1

|Zi |
|Z| log |Zi |

|Z|

(3)

where Z is the training dataset with Zi = 1, 2, 3, ..n subset of data.

2.6. The Theoretical Background of Methods Used

The workflow of the proposed methodology for future transformation to GI sites
is given in Figure 4. After screening factors, the values of the selected factors for the
whole study area and the GI and GY sites were extracted in ArcGIS. These values were then
exported in the .csv format. All factor values were normalized before calibrating the models.
Next, the SVM, RF, ANN, and stacking model was constructed in the Python environment
under two open frameworks, Keras [32] and Scikit-Learn [33], to predict the likelihood of
future GI sites. These models were then evaluated based on different statistical measures.
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Figure 4. Flowchart of the methodology for sites development into GI/GY in Jinan: Data collection,
factors selection, modeling, site prediction, and verification.

2.6.1. Support Vector Machine (SVM)

SVM is a supervised machine learning model that is based on the structural risk
minimization concept [34]. In the current study, the SVM model used the GI training
datasets to calculate the optimum hyperplane to maximize the distance between data
points of two classes, i.e., GI and GY. In this way, the dataset is classified into two classes for
the binary classification problem, GI and GY. A separating hyperplane (4) can be defined as

1
2
||w||2 + C ∑

i
ξi, s · t · yi(w · xi + b) ≥ 1− ξi (4)

where ||w|| is the norm of the hyperplane, b is the offset/bias of hyperplane, w is the weight
vector, ξi is the positive slack variables, C is the penalty parameter, and yi is the classified
variable. The kernel function performs data transformations to separate the data based on
the defined labels, which is computed as (5):

k(xi, xj) = (φ(xi), φ(xj)) (5)

where k(., .) is a kernel function, and xi is the training vectors. In this study, five-fold cross-
validation was used to find optimal parameters for the SVM model, as given in Table 1.
The RBF kernel was found to be better than other kernels, as in nonlinear classification,
RBF-SVM provides better results [35,36].

2.6.2. Random Forest (RF)

Random forest, introduced by Breiman, is a supervised ensemble learning algorithm
that builds a forest from an ensemble of decision trees and is trained by the bagging
method for both classification and regression [37]. The RF involves Breiman’s bagging
and Ho’s random selection of features. Bagging is an ensemble machine learning method
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that improves the accuracy of a weak classifier by creating the number of subset classifiers.
The selected parameters of random forest in the current study are given in Table 1. Factors
information is passed through each tree of random forest to obtain predictions. First, it
resamples the GI training data several times, and then at each resample step, it chooses
different random features of the GI. Given the resample and random features’ subset, it
then estimates a decision tree [14,38]. Finally, it combines the set of estimated decision trees
into a single decision tree [38]. Among the subset of randomly selected features, RF uses
the Gini-impurity index (6) as a feature selection measure, and also to set the threshold for
best splitting. It is given as follows:

∑ ∑
j 6=i

f (Yi, T)
|T|

f (Yj, T)
|T| (6)

where T is the training dataset of driving factors for GI development, and f (Yi ,T)
|T| is the

probability of each tree for each class Yi, either GI or GY.

Table 1. Parameters of machine learning algorithms used for prediction of likelihood of GI transfor-
mation.

Model Name Description of Parameters

SVM Complexity parameter = 10, gamma = “scale”, kernel = radial basis function, tolerance parameter = 0.001,
probability = True

RF n_ = 100, max_depth = 9, split criterion = gini
ANN Keras sequential model, hidden layers = 6, nodes for each layer = 80, 70, 20, 40, 40, 1, learning rate = 0.004,

activation function = relu, sigmoid, optimizer = Adam, kernel initializer = uniform,
epochs = 50, validation threshold-20

Stacking model SVM = meta classifier, ANN-RF = base learners, stacking method = predict proba,
decision function or predict

2.6.3. Artificial Neural Network (ANN)

Artificial neural networks are computing systems inspired by the human neurological
network. In this work, we use a multilayer neural network. The basic structure of an
artificial neural network consists of three layers; the input layer, a hidden layer, and an
output layer [39]. In this study, after model hyperparameter tuning, ANN with six layers
was trained with the backpropagation algorithm for GI transformation prediction using
the input data of driving factors and ground truth labels of GI and GY datasets. The input
layer size is eight, equal to the number of driving factors. Hidden layers information
processing yields the labels for GI development likelihood, which is passed to the output
layer. The output layer consists of one node, which is 1 in the case of the GI, and 0 for
the GY.

The input to each neuron j in the hidden layer is the sum of a weighted input signal xi
(∑ wjixi = netj), while wji is the weight between neuron j in the hidden layer and neuron i
in the input layer. The output yi by neuron passes by activation function f = 1

1+e−netj which
is given (7) as

yi = f (∑ wjixi) =
1

1 + e−netj (7)

Training of ANN with the backpropagation algorithm begins by randomly initializing
the network weights. Then, the comparison between predicted values of the outputs
and the actual values is performed, and the difference between them is termed an error.
The weights wji and wjk, which connect input layers to hidden layers and hidden layers
to output layers, are adjusted by backpropagating the error calculated through the error
function [40] (8):

Ek =
1
2
(zk − tk)

2 (8)
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where zk is the layer’s output while tk is the target value. The differences between predicted
and actual values are minimized by updating the layers’ weights through a backpropaga-
tion algorithm. Weights are adjusted using gradient descent algorithm (9) as

∆wji = −η
∂Ek
∂wji

∆wjk = −η
∂Ek
∂wjk

(9)

where η is a learning rate parameter. Finally, the weights (10) are updated as

wji = wji + ∆wji ∆wjk = wjk + ∆wjk (10)

2.6.4. Stacking Model

The stacking ensemble model was first introduced by Wolpert [41]. The ensemble
method combines different models to improve the model’s performance compared to the
individual model. Compared to the other ensemble methods, the stacking method uses
metalearning, which combines different types of algorithms [42]. There are two levels in
stacking structure, level-0 and level-1. In this study, at level-0 heterogeneous models, RF
and ANN were trained, and each of these base learners gave different predictions, which
were then forwarded to level-1. On the other hand, SVM is used at level-1 and is called
a metalearner because simple models work well for metaclassifier [18,43]. The output of
base learners becomes the input for a metalearner as training data.

The stacking method uses a similar idea to k-fold cross-validation to create out-of-
sample predictions and capture the distinct regions where each model performs the best.
The dataset D consists of di = (xi, yi) with GI transformation driving factors with xi and
yi as the final classifications of either GI or GY. The base learner models are denoted as
Lt(t = 1, 2), i.e., RF and ANN. The dataset D is divided into two subsets. One of them is
used to train the base learners to generate level = 0 classifiers [12] (11):

hi
t = Lt(D− di)∀i = 1, 2, .., N; ∀t = 1, 2 (11)

i ∈ [1, N], where N is the total number of datasets. A remaining subset is used on xi to
predict zit (12):

zit = f i
t (xi) (12)

and f i
t is the generalizer function that is responsible for combining the different model’s

predictions. f i
t can either be a generic function, such as average, or a model algorithm.

The predictions from level = 0 along with their true classification generate a new dataset
D′ = ((zit, zit, ..zit), yi). These are then given to a level-1 meta classifier, i.e., SVM in this
study. The metaclassifier then combines all predictions from base learners to give final
predictions (13) as

Yx = SVM( f1(x), f2(x), f3(x)) (13)

2.7. Evaluation and Assessment of Models

The results for the likelihood of transformation to GI are evaluated using several statis-
tical metrics for training and test data. We selected root mean squared error (RMSE), mean
absolute error (MAE), accuracy (ACC), sensitivity, specificity, and area under the receiver
operating characteristic ROC curve (AUC), and their details are given in Table 2. ROC is
a widely known standard criterion for model validation. The ROC curve is constructed
by plotting sensitivity on the y-axis and specificity on the x-axis. Sensitivity represents the
proportion of correctly classified GI cells, while specificity is the proportion of GY cells
correctly classified as GY sites [11]. The value of area under the ROC curve, called AUC, is
used to predict the reliability of models. Its value ranges between 0 and 1, where values
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nearer to 1 show an efficient performance of the model, while values nearer to 0 show that
the model is noninformative [44]. AUC (14), sensitivity, and specificity (15) are given as

AUC =
∑ TP + ∑ TN

P + N
(14)

Sensitivity =
TP

TP + FN
Speci f icity =

TN
FP + TN

(15)

where P is the total number of GI pixels, and N is the total GY pixels. TP and TN are true
positives and true negatives correctly classified as GI and GY cells. FP and FN are false
positives and false negatives incorrectly classified as GI and GY cells. The ROC curve was
used for both training and test datasets to validate the final prediction maps.

Table 2. Statistical index-based evaluation measures used for the assessment of models.

Measure Equation Explanation

Root Mean Squared Error (RMSE) RMSE =
√

1
n ∑n

i=1(yi − ŷ) Measures the average error performed by the

ŷ is a predicted value of y model for predicting the output values.
Mean Absolute Error (MAE) MAE = 1

n ∑n
i=1 |(yi − ŷ)| Measures the average error in a set of predictions

from actual values.
Accuracy (ACC) ACC = TP+TN

TP+TN+FP+FN The proportion of correctly classified
GI and GY pixels.

3. Results and Discussion
3.1. GI and GY Distribution (2000–2010–2020)

The spatial distributions of LULC classes for the years 2000, 2010, and 2020 are shown
in Figure 5. There are significant changes in all LULC classes; in this research paper, only
GI and GY changes in the central urban area of Jinan are discussed.

Figure 5. Classified LULC maps of Jinan for year 2000, 2010, and 2020.

For 2000, GY covered an area of 230.41 km2, which increased to 267.62 km2 in 2020.
The major contributor to the GY increase is the cropland in the east and west of the urban
area, which decreased significantly. As the south of Jinan is mountains while the north is
the Yellow River, urban expansion is mainly toward the east and west. On the other hand,
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GI covered an area of 61.36 km2 in 2000, which decreased to 35.58 km2 in 2010 and then
increased to 51.90 km2 in 2020. The major contributor to the decrease in GI from 2000 to
2010 is an increase in built-up area and bare land. On the contrary, an increase in GI from
2010 to 2020 is attributed to bare land and cropland in Jinan.

The increase in GI during 2010–2020 is due to the Ecological Garden City Initiative
by Jinan Municipal Government from 2010 to 2020. Under this initiative, green corridors
were introduced along roads and river networks. Furthermore, tree planting, biodiversity
protection planning, and public communication were adopted. Jinan was also a pilot
city for The Sponge City Project by the Chinese Government in 2015, which involved the
construction of sunken greenbelts, and rain gardens in communities [45].

3.2. GI Network and Vacant Land

Mapped GI of Jinan shows that it is unevenly distributed in the urban area. About
51.90 km2 GI is mapped, primarily located in the suburban part of the city. Only a small
part of the fragmented GI lies in the central urban area. In this study, only multifunctional
GI is considered for further analysis, which covers an area of about 23.35 km2 (Figure 6).

Figure 6. Map of GI and vacant land in Jinan.

Bare land with no vegetation or pioneer vegetation and streams or riverbanks without
vegetation is considered as vacant land. A total of 526 vacant land parcels (26.97 km2) were
mapped in Jinan (Figure 6) using the LULC change analysis and Baidu map, which were
further analyzed for their potential to convert into GI or GY.

3.3. Data Extraction and Factor Importance

The factor values for GI and GY sites were extracted to train, test, and predict the future
sites. Rainfall per month for Jinan is given in Figure 2. In the south, with high elevation,
and southeastern intensive construction parts of Jinan, rainfall is high (68.54 mm/m), whereas
the urban center and northwest of Jinan have comparatively low rainfall (60.43 mm/m).
A similar rainfall pattern was observed in other studies [46,47], and it is attributed to the
local elevation and urbanization of Jinan. AQI values are high in the urban center compared
to the rest of the city (Figure 2). Jinan temperature ranged between 21 °C and 33 °C with
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the high temperature in urban center, industrial clusters, and farmland on the eastern
side. In contrast, a low temperature was observed in the south of Jinan. A similar trend of
temperature was observed in previous studies conducted in Jinan [48,49]. Similar to the
AQI, population density, built-up density, and road density are also high in the city center
(Figure 3). Due to high built-up density in the city center, vacant land parcels are high in
number towards the suburban part of Jinan (Figure 3).

Multicollinearity and InGR were used to determine the correlation and importance of
each factor for GI transformation. Results for multicollinearity showed that the minimum
VIF value (1.06) was obtained for water bodies buffer, and the maximum value (1.66)
was obtained for LST. The VIF values for all factors are less than 5, which ensures the
independence of all the factors for potential GI sites prediction variables. The VIF values
for all the factors are given in Table 3.

Table 3. Multicollinearity analysis showing VIF values less than five for all the driving factors of
GI transformation.

Variables VIF Variables VIF

Population density 1.36 Rainfall 1.53
Vacant land buffer 1.30 Road buffer 1.19

Air quality 1.62 Built-up density 1.61
LST 1.66

Water buffer 1.06

Correlation between GI driving factors is also estimated through Pearson’s correlation.
There is no significant correlation found between all factors except built-up density and
population density, with a correlation of 0.51 (Table 4). Hence, it depicts that all factors can
be used for GI transformation analysis.

Table 4. Pearson’s correlation coefficient pairs of factors.

Rainfall AQI LST Water
Buff. Pop. Density Road

Buff.
Vacant Land

Buff.
Built-Up
Density

Rainfall 1
AQI −0.34 1
LST 0.28 0.38 1

Water buff. 0.17 −0.021 0.061 1
Pop. den. 0.027 0.11 0.1 −0.094 1
Road buff. −0.071 −0.13 −0.21 0.064 −0.23 1

Vacant land buff. −0.087 −0.24 −0.38 −0.14 0.086 0.015 1
Built-up density 0.13 0.097 0.13 −0.11 0.51 −0.36 0.21 1

InGR results showed (Figure 7) that the highest value was 0.193, for LST, followed
by water buffer (0.191), population density (0.161), and rainfall (0.104). Vacant land buffer
(0.066), AQI (0.046), built-up density (0.026), and road buffer (0.018) indicate that they had
no significant role in vacant land to GI likelihood transformation.

This result indicates that the LST, distance from water bodies, population density,
and rainfall contributes to sites transformation to GI in Jinan. Hence, high temperature
areas, sites near water bodies, high population density, and high rainfall sites will likely be
converted into GI. Previous studies also recognized the importance of population density,
sites near water bodies, and flood zones as the driving force of conversion to GI sites, while
built-up density and road density had low importance in GI transformation [6,10].
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Figure 7. Prediction power of each driving factor influencing GI development, using InGR.

According to the InGR result, LST is the main driving factor behind the GI develop-
ment in Jinan. Distance from water bodies is the next important factor. There is a strong
interdependence between urban GI and urban water bodies for water management and
treatment. That is why distance from water bodies is a significant factor for developing GI.
Several multifunctional GI sites in Jinan are around water bodies, such as Daming Lake,
Spring City Square, Baotu Spring, Five Dragons Pool, and GI along riverbanks. Population
density is another factor that contributes to GI development. Jinan’s population density
is 898 people per square kilometer; the east–west expansion of Jinan also influences its
population distribution. A study conducted by Ma [50] found that in the core center of
Jinan, population size is positively correlated to the GI present within a 1.2 km distance.
However, at local (>1.2 km) and city scale, population size is negatively correlated to the
GI distance.

Rainfall distribution also influenced GI development. The average rainfall in the
central urban area is 60.43 mm/m, in the low-lying region. Therefore, apart from local
rainfall, runoff from surrounding high-elevation regions moves toward lower elevations of
the urban center and becomes stagnant points in the case of intense rainfall. That is why
many GI projects were initiated previously in the core urban area under The Sponge City
project to retain and reduce stormwater in flood risk areas.

Distance of vacant land to existing GI played no significant role in the decision-making
of GI development. The central urban area of Jinan is a low-lying area, so it is difficult for air
pollutants to transport and diffuse, whereas industries lie in the southwest and northeast
part, which are upwind [51]. Therefore, air pollutants enter the city and aggravate the air
pollution. However, air pollution was not a driving factor for GI development in Jinan.
Likewise, built-up density has less influence on GI investment decisions, indicating that GI
development is more likely to occur in open areas with vacant land rather than congested
built-up areas. Furthermore, sites in urban centers are more likely to be converted into GY
due to economic value [10,52]. In literature, road density and accessibility to green areas
are identified as important factors [53]. However, in this study, distance to road network
was not a significant driving force to develop GI, which is also found in a study conducted
in Jinan [50], indicating that for >1.5 km, accessibility to GI is dispersed.
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3.4. Models for GI Likelihood Site Prediction

Four models, i.e., SVM, RF, ANN, and a stacking model, were employed to predict
the likelihood of vacant land conversion to GI or GY in Jinan. Using the geometrical
interval classification in ArcGIS, the maps were divided into five classes: very high, high,
moderate, low, and very low (Figures 8–11). Higher values give a higher likelihood of
being transformed into GI sites.

Figure 8. GI development potential sites mapping by SVM model: (bottom right) (a) North and
(b) East of Jinan likely to be converted into GI.

Results obtained with SVM are shown in Figure 8. It was observed that only 1.64%
of the area falls under very high class, and 9.93% under high class for becoming GI sites.
With the RF model, 2.14% of the area fell under very high class to be converted into GI
(Figure 9), and 3.58% of the study area for high class. ANN showed a 5.27% area (Figure 10)
for the very high class and 1.11% for the high class. Finally, the stacking model gave 5.12%
(Figure 11) for the very high class and 0.05% for the high likelihood class.

Three significant regions were identified for all maps, which will likely be converted
into GI, and these were grouped as A (north), B (east), and C (west of central urban area)
(Figures 8–11). These regions lie within the second ring road of Jinan, which comes under
the past and future City Master Plans by Jinan Municipal Government. Furthermore, these
regions depict high LST, are near water bodies, have high population density, and high
rainfall.Region A is along the Yellow River, which comprises a large area of vacant land to
be transformed into riparian vegetation. This region is a pilot area for an ecological corridor
beside the Yellow River. Ninety-four projects have been proposed for this region, and 24
have been completed. Region B encompasses the under-construction areas, i.e., the indus-
trial south road and the industrial north road. This area is rapidly being transformed due
to urban expansion in this direction. Some of the vacant land identified in this region is
likely to be transformed into GI, which will improve the ecological and social services in
intensive construction areas. It is practically significant to incorporate GI at the beginning
of the project. Region C also falls under the ongoing urbanization such as vacant land near
Jing Shi Lu road, Jinan West Railway Station, and Jinan West Expressway.
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Figure 9. GI development potential sites mapping by RF model: (bottom right) (a) North and (b) East
of Jinan likely to be converted into GI.

Figure 10. GI development potential sites mapping by ANN model :(bottom right) (a) West and
(b) East of Jinan likely to be converted into GI.
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Figure 11. GI development potential sites mapping by stacking model: (bottom right) (a) (b) North
of Jinan likely to be converted into GI.

On the other hand, the identified vacant land in the central core area of Jinan is under a
very low potential class to be converted into GI because of the densely built-up area having
a high demand for GY with a small area of public green belt. Hence, the areas predicted by
models are logically reasonable for conversion into GI or GY sites due to the combination
of biophysical and socioeconomic conditions in these regions.

3.5. Models Validation

Models were evaluated using statistical measures and ROC curve for training and
testing data. Table 5 presents the statistical results of the models.

Table 5. Performance evaluation of models for training and validation datasets using statistical measures.

Methods
RF SVM ANN Stacking

Training Validation Training Validation Training Validation Training Validation

RMSE 0.269 0.314 0.360 0.428 0.187 0.280 0.158 0.273
MAE 0.073 0.099 0.130 0.183 0.059 0.096 0.053 0.013

Accuracy 0.935 0.892 0.871 0.818 0.967 0.913 0.975 0.923
AUC 0.918 0.909 0.879 0.877 0.920 0.937 0.975 0.941

Sensitivity 0.978 0.975 0.989 0.897 0.973 0.964 0.998 0.964
Specificity 0.934 0.847 0.938 0.737 0.898 0.912 0.934 0.891

The RMSE and MAE values in training datasets of the stacking model are (0.158, 0.053),
respectively, ANN (0.187, 0.059), RF (0.269, 0.073), and SVM (0.36, 0.13). Results showed
that the lowest errors are obtained for the stacking model, then ANN, RF, and SVM. Similar
results are obtained for the validation data as well, i.e., stacking model (0.273, 0.013), ANN
(0.28, 0.096), RF (0.314, 0.099), and SVM (0.428, 0.183). In terms of accuracy for training
and validation data, the stacking model showed the ACC of 0.975 and 0.923, respectively,
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indicating that 97% of pixels are correctly classified as GI and GY, while the second-best
model is ANN (0.967, 0.913), followed by RF (0.935, 0.892) and SVM (0.871, 0.818).

For the validation of GI site maps produced by four models, AUROC was obtained
for both training and validation datasets. The success rate curve of training data is shown
in (Figure 12). The AUC value (0.975) for the stacking model is well-fitted compared to
other models, followed by ANN (AUC = 0.920), RF (AUC = 0.918), and SVM (AUC = 0.879).
The predictive capability of models for the validation dataset is obtained by prediction
rate curve (Figure 12), which showed similar results to training data. The stacking model
outperformed, with an AUC of (0.941), followed by ANN (AUC = 0.937), RF (AUC = 0.909),
and SVM (AUC = 0.877), the same as validation data.

Different statistical measures (RMSE, MAE, ACC, sensitivity, specificity) and ROC
curve AUC showed that the newly proposed heterogeneous ensemble stacking model per-
formed the best, followed by the ANN model, RF, and SVM. The stacking model increased
the accuracy and AUC values of metaclassifier and base learners in an ensemble compared
to individual models. This difference in performance between the stacking ensemble model
and individual models is also observed in several studies [11,12,16,18,54,55], where they
provided better results than the conventional single machine learning models. However,
all the works mentioned above focus on natural disaster prediction using stacking models,
while this research uses the stacking model to predict the likelihood of transformation
to GI.

a b

Figure 12. ROC analysis for three models and stacking estimator with AUC values: (a) training
dataset; (b) validation dataset.

Due to the availability of large and multisource data and the advancement in AI,
the major concern is improving the accuracy of prediction maps. Ensemble approaches
proved to be more accurate than the individual models as the two-level framework learns
better and the metaclassifiers reduce the bias generated at the first level [12]. The main
strength of the stacking model is that it improves the predictive power of the classifiers,
and therefore it is necessary to consider the models carefully before selecting them as base
learners or metaclassifiers [13]. A powerful model adds positive properties to stacking
and other subordinate models, i.e., the overall performance of the stacking model depends
on individual classifiers [56]. Consequently, ANN was used as one of the base learners in
this study, which increases other models’ differentiation index, whereas RF is an ensemble
technique with multiple trees. SVM and ANN proved to be the best combination in
ensemble model studies conducted by [12,56,57]. An ensemble can also empower the
models with lower or moderate performances, such as SVM in this study. SVM does
encounter problems in the case of high-dimensional data and complex classes, but with
RBF kernel and hyperparameter tuning, it can overcome this problem [58].

Among the applied models (SVM, RF, ANN, stacking) in the current study, only the
ANN was used previously for the GI development likelihood study. To the best of the
authors’ knowledge, only one study was carried out to predict vacant land transformation
into GI/GY along waterways and derelict sites in Manchester City Council, utilizing
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machine learning models. Their model’s verification indicated that ANN performed better
(90.3%, 89.3% training, 91.8%, 89% validation) than the ANFIS and LR model [10].

Consequently, this research provides a valuable contribution because it extends the
previous research into another study area with different topographical and meteorological
conditions and policies. In Jinan, the transformation of vacant land into GI/GY has not been
assessed before. Hence, this study will update policymakers and urban planners on what
driving factors are responsible for GI/GY development in Jinan and what factors are not
involved in the transformation. Similarly, results can also guide where the focus should be
shifted to consider the neglected factors. Moreover, it will provide information about vacant
sites which are more likely to be converted into GI and GY. Thus, they can make decisions
related to those specific sites. On the other hand, understanding the spatial pattern of GI
and vacant land in Jinan could help assess and create future planning scenarios.

4. Conclusions

The previous trend of vacant land conversion into GI/GY in Jinan, China, from 2000
to 2020 was examined. Based on this, a new stacking ensemble model (ANN-RF-SVM)
and the individual models were used to predict future sites having the higher potential of
conversion to GI while considering the ecological and socioeconomic factors. From this
study, the following conclusions are drawn:

• Mapped GI from 2000–2010 indicates a decrease in the area, i.e., 61.36 km2 to 35.58 km2,
whereas it increased from 2010–2020, i.e., 51.90 km2, due to Jinan Municipal Govern-
ment policies and projects.

• According to VIF and Pearson correlation values, all factors are independent of each
other. InGR values depict the most contributing factors for GI development in Jinan
as LST, water bodies distance, population density, and rainfall.

• A heterogeneous ensemble stacking model is designed with ANN-RF as base learners
and SVM as metaclassifier along with individual models of SVM, RF, and ANN.
The output of models showed that the stacking model outperforms (AUC 0.97428,
0.94069) the base classifier ANN, RF, and SVM, because an ensemble stacking model
reduces overfitting and bias and increases the efficiency of base classifiers. Hence,
stacking is a promising and reliable way to predict the sites which will likely be
converted into GI/GY in any area.

• Due to the black-box nature of machine learning models, current research results are
more predictive than explanatory. However, to overcome this, factors influencing the
outcome of models are determined, including their degree of influence on prediction.

• Few of the driving factors, such as site size, land price, ownership, and green equity
index, are not integrated into this research due to the unavailability of data that could
play a significant role in GI development.Therefore, we suggest that economic factors
should be included in the decision-making process by urban planners. Furthermore,
it is also recommended to add economic factors to the modeling process for future
studies to improve model predictions further.
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