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Abstract: The management of regional eco-environmental risks is the key to promoting regional 

economic sustainability from the macro level, and accurate evaluation of the evolutionary trends of 

regional ecological risk in the future is of high importance. In order to clearly identify the possible 

impact of future development scenario selection for the Chengdu-Chongqing Economic Zone (C-C 

E Zone) on the evolution of landscape ecological risk (LER), we introduced the Patch-generating 

Land Use Simulation (PLUS) model to simulate land use data for the C-C E Zone from 2030 to 2050 

for two scenarios: natural development (ND) and ecological protection (EP). Based on the ecological 

grid and landscape ecological risk index (LERI) model, the landscape ecological risk (LER) evolu-

tionary trends seen in the C-C E Zone from 2000 to 2050 were analyzed and identified. The results 

showed that: (1) The PLUS model can obtain high-precision simulation results in the C-C E Zone. In 

the future, the currently increasing rate of land being used for construction will be reduced, the 

declining rates of forest and cultivated land area will also be reduced, and the amount of land being 

used for various purposes will remain stable going into the future. (2) This study found that the 

optimal size of the ecological grid in the LERI calculation of the mountainous area was 4 × 4 km. 

Additionally, the mean values of the LERI in 2030, 2040, and 2050 were 0.1612, 0.1628, and 0.1636 

for ND and 0.1612, 0.1618, and 0.1620 for EP. (3) The hot spot analysis results showed that an area 

of about 49,700 km2 in the C-C E Zone from 2000 to 2050 belongs to high agglomeration of LER. (4) 

Since 2010, the proportions of high and extremely high risk levels have continued to increase, but 

under the EP scenario, the high and extremely high risk levels in 2040 and 2050 decreased from 

14.36% and 6.66% to 14.33% and 6.43%. Regional analysis showed that the high and extremely high 

risk levels in most regions increased over 2010–2050. (5) Under the ND scenario, the proportions of 

grids with decreased, unchanged, and increased risk levels were 15.13%, 81.48%, and 3.39% for 

2000–2010 and 0.54%, 94.75%, and 4.71% for 2040–2050. These trends indicated that the proportion 

of grids with changed risk levels gradually decreased going into the future. This study analyzed the 

evolutionary trends of LER at the C-C E Zone for the ND and EP scenario. On the whole, the LER for 

the C-C E Zone showed an upward trend, and the EP scenario was conducive to reducing the risk. 

These research results can serve as a valuable data reference set for regional landscape optimization 

and risk prevention and control. 
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1. Introduction 

With increasing concern around ecological problems resulting from developments 

across the globe, there is the urgent problem of how to better implement macro-control 

policies to curb these issues. The management of regional eco-environmental risks is the 

key to promoting regional economic sustainability from the macro level. Therefore, accu-

rate evaluation of the evolutionary trends of regional ecological risk in the future is of high 

importance [1]. The Chengdu-Chongqing Economic Zone (the C-C E Zone) is the economic 

core of Southwest China, playing an important role in both economic development and 

ecological protection [2]. On the one hand, the C-C E Zone provides a path for increased 

accessibility to inland China and improvement of the country’s comprehensive strength. 

On the other hand, it is an important ecological barrier for the area in the upper reaches 

of the Yangtze River. Therefore, a method for identifying the current and future evolu-

tionary trends for ecological risk in the large-scale range of the C-C E Zone is a crucial task, 

and one which could guide the government towards implementing ecological risk pre-

vention and control measures and a strategy for sustainable economic development. 

Generally, ecological risk assessment adopts the methods of environmental index 

factors, construction of evaluation index systems, and landscape ecological indices. For 

example, Zhang et al. analyzed the ecological risk of tetracycline antibiotics in farmland 

soil in Yinchuan City, China via the environmental index factor method [3]. Wee et al. 

studied the ecological risk of organophosphorus pesticides on the ecosystem of the Langat 

River using a constructed risk system [4]. Cui et al. assessed the landscape ecological risk 

(LER) in the Qinling area using a constructed landscape index [5]. In general, LER assess-

ment is an effective method for risk identification, prevention, and control on a large scale 

while a landscape ecological risk index (LERI), based on ecological grid division, can re-

flect the LER status of small ecological grids [6]. The determination of the ecological grid 

size is a key parameter to such an assessment. An undersized grid will cut, destroy, or 

even change the original shape of landscape patches, but an oversized grid will lose the 

distribution details of landscape patches and cannot fully and truly reflect the internal 

LER situation [7]. Therefore, the determination of the ecological grid size is one of the key 

considerations in ecological risk assessment. In addition, research on ecological risk as-

sessment needs to accurately predict the future LER of the C-C E Zone. Since land use 

change is the main basis reflecting regional landscape change, the simulation of future 

land use data over such a large range is another key issue. Currently, a few simulation 

models for land use data are widely used, including the CA Markov model [8], CLUE-S 

model [9], and FLUS model [10], etc. These models can obtain high simulation accuracy 

for small areas, but they either cannot be used or have poor results for large scales [11]. 

Nevertheless, we adopted the method of ecological grid division and construction of an 

LERI in this study to carry out LER scenario simulation and analysis in the C-C E Zone. In 

order to use this method, an accurate simulation for land use data at a large scale had to 

be found and the determination of the ecological grid size had to be carefully considered. 

To solve the issue of accuracy in large-scale land use simulation, the Patch-generating 

Land Use Simulation (PLUS) model developed by the HPSCIL@CUG laboratory develop-

ment team in 2020 was introduced for this study [12,13]. The typical areas were selected 

and the gradient division method (1 × 1 km、2 × 2 km……10 × 10 km) adopted to identify 

the optimal ecological grid size calculated by LERI in the large-scale downhill area [14,15]. 

Therefore, based on the land use data in 2000, 2010, and 2020, this study used the PLUS 

model to simulate land use data in 2030, 2040, and 2050 under natural development (ND) 

and ecological protection (EP) scenarios. Then, based on the identification results of the 
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optimal size of the ecological grid, an LERI model, including a landscape interference in-

dex and landscape vulnerability index, was constructed to identify the LER evolutionary 

trends for the C-C E Zone from 2000 to 2050 to provide data in support of regional land-

scape optimization and ecological risk prevention and control. 

2. Materials and Methods 

2.1. Study Area 

The C-C E Zone is located in the southwest of China, and it includes Chengdu, 

Deyang, Mianyang, Meishan, ZiYang, Suining, Leshan, Ya’an, Zigong, Luzhou, Neijiang, 

Nanchong, Yibin, Dazhou, and Guang’an in Sichuan Province and Wanzhou, Fuling, the 

main urban areas of Chongqing (Yuzhong, Dadukou, Jiangbei, Shapingba, Jiulongpo, 

Nan’an, Beibei, Yubei, Banan), Changshou, Jiangjin, Hechuan, Yongchuan, Nanchuan, Qi-

jiang (including Wansheng), Tongnan, Tongliang, Dazu (including Shuangqiao), 

Rongchang, Bishan, Liangping, Fengdu, Dianjiang, Zhongxian, Kaizhou, Yunyang, and 

Shizhu in Chongqing, with an area of about 20.6  104 km2 [2]. The C-C E Zone is an ag-

glomeration of important areas for the population, towns, and industry in western China. 

With rapid economic development has come urban expansion in the region, which has 

put pressure on ecological spaces. It is crucial to accurately and effectively lay out pro-

duction, living, and ecological spaces, and this can be assisted through projection of the 

evolutionary trends of LER in the region. Therefore, LER analysis and the simulation of 

long-term series in this region is of great importance as it can promote regional ecological 

risk prevention and control and sustainable economic development. 

2.2. Data Sources 

The data used in the study included: the land use data regarding the C-C E Zone in 

2000, 2010, and 2020 from the Resource and Environmental Science Data Center of Chi-

nese Academy of Sciences (https://www.resdc.cn/Default.aspx (accessed on 1 December 

2021)) [16] and globeland30 (http://www. globallandcover.com (accessed on 15 December 

2021)); NDVI data and soil type data from the Resource and Environmental Science Data 

Center of Chinese Academy of Sciences (https://www.resdc.cn/Default.aspx (accessed on 

1 December 2021)); terrain data from geospatial data cloud website 

(http://www.gscloud.cn/ (accessed on 10 December 2021)); and road data from Open-

StreetMap. The resolution of the above data was resampled to 30 m. 

2.3. Methods 

Based on the land use data for the C-C E Zone in 2000, 2010, and 2020, we used the 

PLUS model to simulate land use data from 2030 to 2050 under different scenarios (i.e., 

ND and EP). The evolutionary trends and characteristics of LER from 2000 to 2050 were 

evaluated using ecological grids and the LERI model, and then further analyzed using 

ArcGIS software. These results could provide support for regional landscape optimization 

and risk prevention and control in the future (Figure 1). 

Land use data from the C-C E Zone were collected from 2000 to 2020, including DEM, 

slope, NDVI, soil type, distance from water area, distance from a primary road, distance 

from a secondary road, distance from a main road, distance from an expressway, distance 

from other roads, and distance from a railway line as the driving factors of land use 

change, and water area as a limiting factor of land use change. Firstly, the feasibility and 

accuracy of the PLUS model were verified for a 30 m resolution land use data simulation 

within the C-C E Zone. Land use data for the C-C E Zone were then simulated for 2030, 

2040, and 2050 for both the ND and EP scenarios. Finally, the LERI model was used to 

analyze the LER temporal and spatial evolution for the C-C E Zone from 2000 to 2050 under 

the two scenarios to provide data support for regional urban development and land lay-

out and ecological risk prevention and control in the future. 
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Figure 1. Research framework map. 

2.3.1. PLUS Model 

The PLUS model is a patch-generated land use change simulation model developed 

by the HPSCIL@CUG laboratory development team. Compared with other commonly 

used models (i.e., the CLUE-S and CA-Markov models), PLUS has the following ad-

vantages: (1) The land expansion analysis strategy applied by the model can better 

demonstrate the incentives behind various land use changes. As an example, the random 

forest algorithm is used to mine the factors of various land use expansion and driving 

forces one by one to obtain the development probability of various land uses and the con-

tribution of driving factors to various land use expansion. This strategy combines the ad-

vantages of the existing transformation analysis strategy and pattern analysis strategy, 

retains the ability of the model to analyze the mechanism of land use change in a certain 

period of time, and has better interpretability. (2) It contains a new multi-class seed 

growth mechanism, which can better simulate the patch-level change in multi-class land 

use. Combined with random seed generation and a threshold decreasing mechanism, the 

model can dynamically simulate the automatic generation of patches under the constraint 

of development probability [12,13]. 

The simulation of the C-C E Zone is divided into two steps: (1) Based on the land use 

data from 2000 to 2010, the data for 2010 and 2020, respectively, were simulated, and then 

the real data of 2010 and 2020 were used for accuracy analysis. A kappa coefficient is usu-

ally used as the basis for accuracy analysis. If the kappa coefficient is higher than 0.75, it 

means that the model achieves a highly consistent level [11]. (2). On the premise that the 

simulation accuracy met the requirements, the land use data for 2030, 2040, and 2050 were 

simulated for the ND and EP scenarios. The future demand for each land use type (i.e., 

the area of each land use type) under the ND scenario was predicted by a Markov chain 

module integrated with the PLUS model. The demand under the EP scenario was calcu-

lated by reducing the area increase or decrease in various land use types by 20% under 

the ND scenario. 
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2.3.2. Determination of the Optimal Size of the Ecological Grid 

The ecological grid will split the original natural ecosystem of the region and have a 

certain impact on the evaluation and analysis of local LER. Different sizes of the ecological 

grid will produce different results of LER; when a too large or too small ecological grid is 

used, it will be difficult to reflect the real situation of LER. 

Based on the ecological grid size delimitation results of existing scholars (Table 1), 

this study was based on ArcGIS software and the gradient division method (1 × 1 km, 2 × 

2 km, 3 × 3 km, 4 × 4 km, 5 × 5 km, 6 × 6 km, 7 × 7 km, 8 × 8 km, 9 × 9 km, 10 × 10 km) to 

divide the area into several ecological grids and code each ecological grid. The LERI of 

each grid was calculated one by one, then the Kriging method was used for interpolation, 

and the interpolation results were graded to obtain the spatial classification map of LER. 

The LERI of each grid was calculated using ArcGIS modeling and the FRAGSTATS batch 

processing method, and the change in the value range of LERI under each ecological grid 

size scenario was analyzed to determine the optimal size of the regional ecological grid 

[14,15]. 

Table 1. The size of ecological grid used in previous studies. 

Research’s Regional 
Area of Research’s  

Regional (Unit: km2) 

Resolution of 

Land Use Data 

(Unit: m) 

Size of Ecological 

Grid (Unit: km) 

Nanchang, China [17] 7402.36 30 3 × 3 

Western of Jilin, China [18] 4.69 × 104 30 3 × 3 

Western of Henan, China [19] 2.71 × 104 30 5 × 5 

District of Xiajiang, Wuhan, China [20] 2018 30 2 × 2 

Lower reaches of Tarim River [21] 1.28 × 104 30 3 × 3 

District of Wanzhou, Chongqing, China [22] 3456.55 50 2 × 2 

District of Jiangjin, Chongqing, China [23] 3217.77 30 3 × 3 

Three Gorges Reservoir area [14] 5.85 × 104 30 4 × 4 

2.3.3. Building the Landscape Ecological Risk Index (LERI) Model 

Landscape ecological risk (LER) refers to the possible adverse consequences from the 

interaction between landscape patterns and ecological processes under the influence of 

natural or human factors, which can be defined as the combination of risk probability and 

the degree of landscape lost [24]. Based on existing research results and the factors from 

the area being studied, the LERI calculation model was constructed. The calculation for-

mulas are as follows: 

����� = �
���

��

�

���

��� × ��     (1)

�� = ��� × ��� × ����   (2)

�� =
��

��
 ， �� =

�

���
�

��

�
， ��� =

� ��
��

��

�� ��
 (3)

In these formulas, n is the number of landscape types, A is the total area, Aki is the 

area of landscape type i in the k-th sample area, Ai is the area of landscape type i, Ak is the 

total area of the k-th sample area, ni is the number of patches of landscape type i, and pi is 

the perimeter of the landscape type i. Ui is the landscape interference index, which reflects 

the degree to which landscape is lost in a certain area after external interference. Ci, Si, and 

Doi are the landscape fragmentation index (indicating the degree of spatial division of the 

landscape type in a certain time), the landscape separation index (indicating the degree of 

separation of different patches in the landscape type), and the landscape sub dimension 

index (indicating the complexity of the shape of the landscape patch). The value range is 
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1–2, with larger values indicating greater complexity in the shape of the landscape patch. 

a, b, and c represent the weight of each index, and the values are 0.5, 0.3, and 0.2, respec-

tively [25]. Fi is the landscape vulnerability index, which reflects the ability of a landscape 

type to resist external interference and its sensitivity to external changes. Referring to rel-

evant studies [26], the six landscape types of construction land, forest land, grassland, 

cultivated land, water, and other land are assigned as 1–6, respectively. Normalized to Fi, 

the greater the value, the weaker the ability to cope with interference. 

2.3.4. Calculation and Classification of Landscape Ecological Risk 

Using ArcGIS software and the Model Builder tool, this study calculated the LERI of 

12,834 ecological grids in the C-C E Zone from 2000 to 2050 one by one and obtained the 

long-term series LERI distribution data. In order to ensure the spatial continuity of the 

data, the Kriging tool in ArcGIS software was used to spatially interpolate the LERI value 

for each ecological grid [15]. At the same time, in order to ensure comparability between 

multi-period data, based on the interpolation results of the LERI value in 2020, LER in 2020 

was divided into five levels: no risk, low risk, medium risk, high risk, and extremely high 

risk, using the natural breakpoint method. The value range of each grade was determined 

according to this standard, as was the LERI value in other periods. 

2.3.5. Getis-Ord Gi* Analysis 

The Getis-Ord Gi* analysis is widely used in crime analysis, epidemiology, and eco-

nomic geography to identify spatial gathering of high values (hot spots) and low values 

(cold spots) with statistical significance [27]. In a Getis-Ord Gi* analysis, the z score, p 

values, and confidence intervals (Gi_Bin) are employed to create a new output class for 

each element in the input element class. Here, the z score and p values can help to judge 

whether the null hypothesis can be rejected while the Gi_Bin field is used to identify sta-

tistically significant hot and cold spots. The elements in the confidence interval of [+3, −3] 

have a statistical significance with a confidence level of 99% while those in the confidence 

interval of [+2, −2] have a statistical significance with a confidence level of 95%, and those 

in the confidence interval of [+1, −1] have a statistical significance with a confidence level 

of 90%. When the element gathering of the Gi_Bin field is 0, there is no statistical signifi-

cance. 

3. Results 

3.1. Simulation Accuracy Analysis of Land Use Data 

The PLUS model was used to simulate the land use data. The accuracy analysis re-

sults showed that the kappa coefficient of the simulated 2010 data based on the 2000 data 

was 0.81, and the kappa coefficient of the simulated 2020 data based on the 2010 data was 

0.82. The kappa coefficients were higher than 0.75, indicating that the PLUS model had 

good simulation effects for the C-C E Zone, and the simulation accuracy had a high level 

of consistency. This meant that the model could be used to simulate future land use data 

for the C-C E Zone. 

3.2. Trend Analysis of Land Use Evolution from 2000 to 2050 

The evolution of land use in the C-C E Zone from 2000 to 2050 indicated obvious 

trends in the region, as shown in Figure 2. The overall growth rate of construction land 

decreased slowly, showing a multipolar and multipoint growth trend. From 2000 to 2010 

and from 2010 to 2020, the area increased by 496.96 and 4427.55 km2, respectively. Under 

the ND scenario, it was projected to increase by 1990.66, 3782.9, and 1172.54 km2 in 2020–

2030, 2030–2040, and 2040–2050, respectively. Under the EP scenario, the increases would 

be 1592.53, 1433.79, and 1292.44 km2 in 2020–2030, 2030–2040, and 2040–2050, respectively. 

In general, the increase in construction land under the EP scenario was reduced compared 

to the ND scenario by 4.39%, 21.38%, and 18.74% in 2030, 2040, and 2050, respectively. In 
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terms of spatial characteristics, the main urban areas of Chongqing and Chengdu were 

the main growth poles, and Mianyang, Deyang, Suining, Wanzhou, Nanchong, Luzhou, 

Yongchuan, Changshou, and Fuling were the secondary growth poles. In addition, forest 

land showed an increasing trend in the beginning and then decreased. The forest land 

area increased by 3.19% from 2000 to 2010 and decreased by 2.11% from 2010 to 2020. 

After that, the forest land area showed a slow downward trend, but the area increased 

from 2040 to 2050 under the EP scenario. Compared with the EP scenario in 2030, 2040, 

and 2050, the total area of forest land in the ND scenario increased by 0.04%, 0.28%, and 

1.48%, respectively. The cultivated land showed a slightly increasing trend (0.26%) during 

2000–2010 and then gradually decreased by 4.11% from 2010 to 2020. Under the ND sce-

nario, cultivated land decreased by 1.86%, 3.18%, and 1.01%, respectively, during 2020–

2030, 2030–2040, and 2040–2050. The decreases in the cultivated land area under the EP 

scenario saw this land type reduced to 429.84, 2567.43, and 2333.3 km2 in 2030, 2040, and 

2050, respectively, but these values were still higher than those under the ND scenario. 

The water area showed a trend of “decrease-increase-stability”, with a decrease of 4.96% 

during 2000–2010 followed by an increase of 30.13% during 2010–2020. During 2020–2030, 

the water area under the ND and EP scenarios increased by 3.92% and 3.32%, respectively, 

while the change between 2030–2040 and 2040–2050 was limited. Grassland and other 

land types were randomly distributed in mountainous areas, and the changes in the total 

area were relatively stable. Therefore, the growth rate of construction land will be re-

duced, the decline in forest land and cultivated land area will be reduced, and all types of 

land areas will gradually stabilize in the future. Meanwhile, the ecological land area under 

the EP scenario was significantly higher than that under the ND scenario. 
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Figure 2. Distribution of the simulation results of land use data in the C-C E Zone from 2030 to 

2050. 

3.3. Analysis of the Optimal Size of the Ecological Grid 

We selected the Three Gorges Reservoir area in C-C E Zone as a typical area to deter-

mine the optimal scale of the ecological grid, and the total area, topography, and land use 

types of this area were representative. We divided the study area into 60,216, 15,459, 7031, 

4049, 2638, 1869, 1405, 1091, 886, and 719 ecological grids according to the grid size of 1 × 

1, 2 × 2, 3 × 3, 4 × 4, 5 × 5, 6 × 6 , 7 × 7, 8 × 8, 9 × 9, and 10 × 10 km. We calculated the LERI 

under different sizes of the ecological grid in 2020, and obtained the curve of LERI under 

each ecological grid (Figure 3). The results show that the average value of LERI was be-

tween 0.1649 and 0.1688, and the change in the ecological grid size had little impact on the 

average value, indicating that the size of the ecological grid has little impact on the LER 

of the whole region. We extracted the maximum and minimum values of LERI, and found 

that the maximum and minimum values of LERI began to stabilize at 4 × 4 km. When the 

ecological grid was less than 4 × 4 km, the difference between them showed an obvious 

decreasing trend, and when the ecological grid was greater than 4 × 4 km, the difference 

between them tended to stabilize. In regional LERI research, the size of the ecological grid 

will have a great impact on the results. Too small an ecological grid will make the spatial 

expression too delicate, thus covering up the overall spatial law and causing a lot of re-
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dundant computing work, and too large an ecological grid will lead to the loss and mis-

judgment of the spatial law. Therefore, in order to truly reflect the temporal and spatial 

differentiation characteristics of regional LERI, and comprehensively consider the varia-

tion law of the LERI value with the size of the ecological grid, it was determined that based 

on the resolution of 30 m land use data in the C-C E Zone, the optimal scale of the ecological 

grid in the LERI calculation was 4 × 4 km. 

 

Figure 3. LERI’s value under different sizes of the ecological grid in 2020. 

3.4. Analysis of the Calculation Results of LERI 

The average values of the LERI in 2000, 2010, and 2020 were 0.1617, 0.1588, and 

0.1592, respectively. The average values of the LERI under the ND scenario were 0.1612, 

0.1628, and 0.1636, respectively, while under the EP scenario, the average values were 

0.1612, 0.1618, and 0.1620, respectively, in 2030, 2040, and 2050. The mean value of the 

LERI in the EP scenario was significantly lower than that in the ND scenario, indicating 

that the EP development scenario was valuable for reducing regional LER. 

In terms of the LERI changes in each period, the number of ecological grids with in-

creased, unchanged, and decreased LER was 5058, 272, and 7504, respectively, during 

2000–2020. The sum of the LERI for increased and decreased ecological grids was 20.7360 

and 53.0439, respectively, while the average of the LERI increased and decreased ecologi-

cal grids was 0.0410 and 0.0071, respectively. Generally, LER is decreasing in the studied 

area overall, but increases were observed in some ecological grids. During 2020–2050, un-

der both the ND and EP scenarios, the number of ecological grids with increased, un-

changed, and decreased LER was 9046, 622, and 3166 for the former and 7403, 595, and 

4836 for the latter. The sum of the LERI of increased and decreased ecological grids was 

59.5840 and 3.1447 for the former and 40.8484 and 4.3616 for the latter. The results showed 

that LER for 2020–2050 showed an increasing trend as a whole, and the EP scenario could 

significantly reduce the regional LER. 

3.5. Hot Spot Analysis of LER 

The hot spot analysis results of LER in the C-C E Zone from 2000 to 2050 suggested 

no significant change in the space of high-risk and low-risk agglomeration areas for each 

period, indicating that the overall layout of various land uses was relatively stable (Figure 

4). From 2000 to 2050, the area with the highest concentration of LER accounted for 21.13–

22.06%, indicating that the area with the highest concentration of LER was about 49,700 

km2. Using 2020 as an example, the high-value agglomeration areas of LER were mainly 

distributed in the southeast of Mianyang, the southeast of Deyang, the east of Leshan, the 

junction of Neijiang-Zigong, Yibin, Luzhou, the south of Jiangjin, Qijiang, the south of 
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Banan, the south of Fuling, Fengdu, the north of Shizhu, the north of Zhongxian, the south 

of Wanzhou, the south of Yunyang, etc. The low-value agglomeration areas of LER were 

mainly distributed in the west and middle of the C-C E Zone, including the northwest of 

Mianyang, the northwest of Deyang, Chengdu, Meishan, Ya’an, Ziyang, Suining, the 

south of Guang’an, the east of Neijiang, the northeast of Dazhou, Rongchang, Dazu, 

Tongnan, the north of Zigong, Hechuan, Bishan, etc. From the degree of change in ag-

glomeration, there was an upward trend in the degrees of agglomeration for high-value 

areas of LER in the north and southeast of Chengdu, the west and southeast of Nanchong, 

etc. In contrast, there was a downward trend in the degree of agglomeration for high-

value areas of LER in Yunyang, Wanzhou, Shizhu, Liangping, Zhongxian, etc. In addition, 

downward trends in the degrees of agglomeration for low-value areas of LER were ob-

served in the Mianyang, Deyang, Chengdu, Meishan, etc., while upward trends in the 

degrees of agglomeration for low-value areas of LER were observed in the southeast of 

Nanchong and west of Dazhou, etc. 

 

Figure 4. Distribution of hot spots of LERI from 2000 to 2050. 
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3.6. Analysis of the Grade Evolutionary Trends for LER from 2000 to 2050 

3.6.1. Overall Analysis of the Grade Evolutionary Trends for LER in the C-C E Zone 

In order to enhance the comparability between multi-period data, the natural break-

point method was used to grade LER in 2020 in ArcGIS, and the interpolation results of 

the LERI were divided into five levels: no risk (LERI value, 0–0.1456), low risk (0.1456–

0.1631), medium risk (0.1631–0.1824), high risk (0.1824–0.2034), and extremely high risk 

(0.2034–1). 

The proportions of high and extremely high risk levels for the C-C E Zone in 2000, 

2010, and 2020 were 14.21%, 13.47%, and 13.75% for the former and 8.14%, 5.63%, and 

5.89% for the latter, indicating that the LER level decreased from 2000 to 2010, and then 

increased from 2010 to 2020 (Table 2). Under the ND scenario, the high and extremely high 

risk levels for the C-C E Zone have continued to increase since 2010. Under the EP scenario, 

the high and extremely high risk levels for the C-C E Zone have continued to increase 

during 2010–2040, but there was a downward trend during 2040–2050. The high and ex-

tremely high risks decreased from 14.36% to 14.33% in 2040, and from 6.66% to 6.43% in 

2050. Therefore, the results suggested that the EP scenario was beneficial for environmen-

tal protection in the long term and could reduce the proportion of high and extremely 

high risk levels of LER in the region. 

Table 2. Statistical table of LER’s proportion of each grade from 2000 to 2050. 

Level\Period 2000 2010 2020 
ND Scenario EP Scenario 

2030 2040 2050 2030 2040 2050 

No risk 36.18 40.97 40.33 33.57 29.31 27.47 33.68 31.71 30.37 

Low risk 24.13 22.67 23.16 27.6 29.12 30.06 27.34 28.59 29.43 

Medium risk 17.34 17.26 16.87 18.12 20.02 20.13 18.36 18.68 19.44 

High risk 14.21 13.47 13.75 14.26 14.52 14.67 14.26 14.36 14.33 

Extremely high risk 8.14 5.63 5.89 6.45 7.03 7.67 6.36 6.66 6.43 

3.6.2. Evolutionary Trend Analysis of the LER Levels in Various Regions 

For LER, we usually focus on high- and extremely-high-risk areas (Table 3). The sta-

tistical analysis shows that the proportions of high and extremely high risk in most areas 

decreased from 2000 to 2010, except in Chengdu, Deyang, Meishan, Neijiang, and Fuling. 

During 2010–2050, most regions under the ND scenario showed a trend of increasing pro-

portions of high and extremely high risk, among which Fengdu, Fuling, Changshou, and 

Nanchuan had the greatest increases, by 17.76%, 15.35%, 11.76%, and 10.09%, respectively. 

During the period of 2010–2050, although the overall high and extremely high levels of 

risk in the EP scenario showed an increasing trend, these levels decreased in 22 regions 

during the period of 2040–2050, including in Dazhou, Deyang, Guang’an, Lashan, Lu-

zhou, etc. In addition, there was no high- or extremely-high-level risk distribution 

throughout Ya’an, Bishan, Dazu, Hechuan, Rongchang, Tongliang, Tongnan, and 

Yongchuan, indicating that LER in these regions is generally low. Except for the fact that 

Ya’an is located in the west of the C-C E Zone, the other regions are located in the Chengdu-

Chongqing transition zone. Furthermore, these regions are the main contributors to low 

LER due to having a medium level of economic development and flat terrain and a dense 

proportion of agriculture. In general, the proportion of high and extremely high risk in 

each region is significantly lower in the EP scenario than the ND scenario. 
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Table 3. Statistical table of high and extremely high risk proportions of LER in each region. 

Region\Period 2000 2010 2020 
ND Scenario EP Scenario 

2030 2040 2050 2030 2040 2050 

Chengdu 1.93 1.93 2.02 2.89 4.34 5 2.76 3.37 3.53 

Dazhou 1.77 1.32 1.55 1.75 2.15 2.52 1.74 1.86 1.81 

Deyang 11.26 11.65 11.46 12 12.45 12.98 11.89 12.19 12.01 

Guangan 7.12 5.23 4.63 5.42 5.92 6.39 5.33 5.61 5.25 

Leshan 47.4 47.09 47.1 48.31 49.68 52.64 48.17 49.01 47.96 

Luzhou 62.4 52.33 55.32 56.65 57.64 59.32 56.37 56.98 56.5 

Meishan 3.51 4.12 4.09 4.32 5.09 5.51 4.29 4.5 4.8 

Mianyang 12.57 10.92 11.2 12.59 13.45 13.95 12.8 12.89 12.59 

Nanchong 4.71 2.45 2.49 2.77 2.84 2.98 2.72 2.81 2.62 

Neijiang 5.84 6.1 6.11 6.33 6.84 7.22 6.31 6.49 6.39 

Suining 0.88 0.69 0.8 0.79 0.81 0.9 0.78 0.8 0.81 

Yaan 0.36 0 0 0 0 0 0 0 0 

Yibin 79.16 77.68 78.4 80.74 82.41 83.37 80.64 81.41 81.25 

Ziyang 0.56 0.53 0.58 1.11 1.44 1.88 1 1.13 1.18 

Zigong 10.65 10.83 11.04 11.51 11.81 12.37 11.42 11.59 11.52 

Main urban area of Chongqing 21.7 18.83 19.99 22.97 23.69 24.43 22.91 23.12 23.1 

Bishan 0 0 0 0 0 0 0 0 0 

Dazu 0 0 0 0 0 0 0 0 0 

Dianjiang 9.57 3.72 3.39 6.75 7.87 9.16 6.1 7.15 5.66 

Fengdu 42.81 35.02 43.38 46.72 49.48 52.78 46.04 47.83 46.37 

Fuling 58.68 59.31 61.65 68.1 72.11 74.66 67.74 69.3 68.15 

Hechuan 0 0 0 0 0 0 0 0 0 

Jiangjin 46.82 41.83 42.5 43.26 44.72 45.53 43.33 43.87 43.91 

Kaizhou 3.87 0.03 0.06 0.1 0.13 0.2 0.09 0.11 0.1 

Liangping 19.54 10.93 12.23 13.84 12.83 13.24 13.46 14.21 12.3 

Nanchuan 91.18 81.23 85.23 87.82 89.49 91.32 87.21 88.61 88.44 

Qijiang 80.32 77.21 78.66 82.97 84.77 86.92 82.63 83.89 82.7 

Rongchang 0 0 0 0 0 0 0 0 0 

Shizhu 23.11 0.26 0.19 0.22 0.35 0.63 0.22 0.29 0.32 

Tongliang 0 0 0 0 0 0 0 0 0 

Tongnan 0 0 0 0 0 0 0 0 0 

Wanzhou 50.64 12.91 14.48 15.64 17.07 18.23 15.5 16.17 15.54 

Yongchuan 0 0 0 0 0 0 0 0 0 

Yunyang 59.84 33.21 31.91 33.07 35.82 36.39 32.71 33.91 33.5 

Changshou 14.14 12.3 9.32 17.46 21.65 24.06 16.41 19.03 17.65 

Zhongxian 33.98 22.68 25.46 26.7 28.51 30.1 26.26 27.06 26.75 

C-C E Zone 22.35 19.1 19.65 20.71 21.55 22.34 20.62 21.02 20.76 

3.6.3. Analysis of the LER Rates of Change in Various Regions 

To evaluate the level of change in LER for the C-C E Zone, the rate of change was 

examined in relation to the change in high and extremely high risk levels (Table 4). During 

2000–2010, the proportions of high and extremely high risk decreased in 24 regions while 

the proportions were stable in 8 regions, and increased in 4 regions. Wanzhou, Yunyang, 

and Shizhu had the greatest rate of decline, reaching −3.773, −2.663, and −2.285 per year, 

respectively. During 2010–2020, the proportions of high and extremely high risk de-

creased in 7 regions but were stable and increased in 8 and 21 regions, respectively. 

Fengdu, Nanchuan, and Luzhou had the highest rates of increase, reaching 0.836, 0.4, and 

0.299 per year, respectively. Under the ND scenario, Suining was the only region that 
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showed a decrease in the high and extremely high risk proportions during 2020–2030. 

These proportions were stable across eight regions, with the top increases observed in 

Changshou (0.814 per year), Fuling (0.645 per year), and Qijiang (0.431 per year). There 

were increasing trends in 27 regions for the proportions of both high and extremely high 

risk levels. Similarly, the majority of the regions (27 out of 36) showed a decreasing pro-

portion of high and extremely high risk during 2030–2040 while Liangping was the only 

region with a decreasing trend (−0.101 per year), and another eight regions, including 

Changshou (0.419 per year), Fuling (0.401 per year), Fengdu (0.276 per year), etc., showed 

increasing trends in the proportion of high and extremely high risk. During 2040–2050, 

these proportions were stable in 8 regions while they increased in another 28 regions, with 

the highest increases found in Fengdu (0.330 per year), Leshan (0.296 per year), and Fuling 

(0.255 per year). In conclusion, the risk levels in Fuling, Fengdu, and Changshou contin-

ued to increase from 2000 to 2050, with risk increase rates of 0.3196, 0.1994, and 0.1984 per 

year, respectively. Fuling is one of the strongest economies in Chongqing, with its GDP 

being among the top five in the area. Fuling has a complex terrain, developed agriculture, 

and frequent interference due to human activities, which is the main reason for its high 

LER. Fengdu is a typical area of this region composed of parallel folded mountains. The 

mountains and hills in Fengdu are widely distributed, and narrow flat dams exist only in 

valleys, which is the main reason for its high LER. As a national economic and technolog-

ical development zone, Changshou has seen rapid economic development and is close to 

the main city of Chongqing. Changshou’s economic development and intense human in-

terference have remained at a high level for a long time, which is the main reason for its 

high LER. 

Table 4. Rate of change in the high and extremely high risks of LER in each region. 

Region\Period 2000–2010 2010–2020 
ND Scenario EP Scenario 

2020–2030 2030–2040 2040–2050 2020–2030 2030–2040 2040–2050 

Chengdu 0 0.009 0.087 0.145 0.066 0.074 0.061 0.016 

Dazhou −0.045 0.023 0.02 0.04 0.037 0.019 0.012 −0.005 

Deyang 0.039 −0.019 0.054 0.045 0.053 0.043 0.03 −0.018 

Guangan −0.189 −0.06 0.079 0.05 0.047 0.07 0.028 −0.036 

Leshan −0.031 0.001 0.121 0.137 0.296 0.107 0.084 −0.105 

Luzhou −1.007 0.299 0.133 0.099 0.168 0.105 0.061 −0.048 

Meishan 0.061 −0.003 0.023 0.077 0.042 0.02 0.021 0.03 

Mianyang −0.165 0.028 0.139 0.086 0.05 0.16 0.009 −0.03 

Nanchong −0.226 0.004 0.028 0.007 0.014 0.023 0.009 −0.019 

Neijiang 0.026 0.001 0.022 0.051 0.038 0.02 0.018 −0.01 

Suining −0.019 0.011 −0.001 0.002 0.009 −0.002 0.002 0.001 

Yaan −0.036 0 0 0 0 0 0 0 

Yibin −0.148 0.072 0.234 0.167 0.096 0.224 0.077 −0.016 

Ziyang −0.003 0.005 0.053 0.033 0.044 0.042 0.013 0.005 

Zigong 0.018 0.021 0.047 0.03 0.056 0.038 0.017 −0.007 

Main urban area of 

Chongqing 
−0.287 0.116 0.298 0.072 0.074 0.292 0.021 −0.002 

Bishan 0 0 0 0 0 0 0 0 

Dazu 0 0 0 0 0 0 0 0 

Dianjiang −0.585 −0.033 0.336 0.112 0.129 0.271 0.105 −0.149 

Fengdu −0.779 0.836 0.334 0.276 0.33 0.266 0.179 −0.146 

Fuling 0.063 0.234 0.645 0.401 0.255 0.609 0.156 −0.115 

Hechuan 0 0 0 0 0 0 0 0 

Jiangjin −0.499 0.067 0.076 0.146 0.081 0.083 0.054 0.004 

Kaizhou −0.384 0.003 0.004 0.003 0.007 0.003 0.002 −0.001 
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Liangping −0.861 0.13 0.161 −0.101 0.041 0.123 0.075 −0.191 

Nanchuan −0.995 0.4 0.259 0.167 0.183 0.198 0.14 −0.017 

Qijiang −0.311 0.145 0.431 0.18 0.215 0.397 0.126 −0.119 

Rongchang 0 0 0 0 0 0 0 0 

Shizhu −2.285 −0.007 0.003 0.013 0.028 0.003 0.007 0.003 

Tongliang 0 0 0 0 0 0 0 0 

Tongnan 0 0 0 0 0 0 0 0 

Wanzhou −3.773 0.157 0.116 0.143 0.116 0.102 0.067 −0.063 

Yongchuan 0 0 0 0 0 0 0 0 

Yunyang −2.663 −0.13 0.116 0.275 0.057 0.08 0.12 −0.041 

Changshou −0.184 −0.298 0.814 0.419 0.241 0.709 0.262 −0.138 

Zhongxian −1.13 0.278 0.124 0.181 0.159 0.08 0.08 −0.031 

C-C E Zone −0.325 0.055 0.106 0.084 0.079 0.097 0.04 −0.026 

3.6.4. Analysis of the Evolutionary Trends for LER Levels at the Grid Scale 

The risk-level changes in each grid for different periods were analyzed by a transfer 

matrix method. Based on the changes in risk level, the grids were divided into several 

groups: severe decline (−3), moderate decline (−2), slight decline (−1), no change (0), slight 

rise (1), moderate rise (2), and severe rise (3) (Figure 5). From 2000 to 2010, the number of 

grids with decreased, unchanged, and increased risk levels accounted for 15.13%, 81.48%, 

and 3.39% of the area, among which the grids with increased risk levels were mainly lo-

cated at the junction of Fengdu-Shizhu, the southeast of Shizhu, the east of Changshou, 

the east of Mianyang, the junction of Chengdu-Ya’an, the middle of Meishan, the east of 

Chengdu, Deyang, Dazhou, Luzhou, the main urban area of Chongqing, etc. The grids 

with reduced risk levels were mainly located in the area of Shizhu-Wanzhou-Yunyang-

Kaizhou, the area of Guang’an-Nanchong-Suining-Mianyang-Deyang, Chengdu, Ya’an, 

Meishan, Ziyang, Yibin, Luzhou, Jiangjin, Bishan, the main urban area of Chongqing, 

Nanchuan, etc. From 2010 to 2020, the number of grids with decreased, unchanged, and 

increased risk levels accounted for 1.74%, 94.95%, and 3.31%, among which the grids with 

increased risk levels were mainly located at the junction of Fengdu-Shizhu, southwest of 

Nanchong, west of Ziyang, south of Luzhou, etc. The grids with reduced risk levels were 

mainly located at the junction of Leshan-Meishan, etc. Under the ND scenario, during 

2020–2030, the number of grids with decreased, unchanged, and increased risk levels ac-

counted for 1.74%, 94.95%, and 3.31% of the area, among which the grids with increased 

risk levels were mainly located in Meishan, Chengdu, Deyang, Suining, the main urban 

area of Chongqing, Yongchuan, etc. During 2030–2040, the proportion of grids with 

changes in the risk level decreased. The number of grids with decreased, unchanged, and 

increased of risk levels accounted for 0.30%, 91.00%, and 8.70% of the area, and small rises 

in the degrees were only concentrated in Deyang, Chengdu, Mianyang, the area of Tongli-

ang-Hechuan-Bishan-Dazu-Yongchuan, etc. During 2040–2050, the proportion of grids 

with risk-level changes continued to decrease. The number of grids with decreased, un-

changed, and increased risk levels accounted for 0.54%, 94.75%, and 4.71% of the area, and 

small rises in the degrees were only concentrated in Dazhou, Nanchong, Ziyang, Mian-

yang, etc. The evolutionary trends for the risk levels in each period under the EP scenario 

were consistent with those in the ND scenario, but the decline in the proportions of risk 

levels is higher than those in the ND scenario. 
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Figure 5. Evolution distribution of the LER level at the grid scale. 

4. Discussion 

4.1. The High-Precision Simulation Effect of the PLUS Model over a Wide Area Was Conducive 

to Analyzing Evolutionary Trends in LER 

In this study, the PLUS model was introduced to simulate land use data for the C-C 

E Zone, and high-precision simulation results were obtained at a resolution of 30 m. The 

results were compared with the results of other land use simulation models, such as the 

CLUE-S model and CA-Markov model, which are widely used at present. For example, 

Islam et al. used the CLUE-S model to simulate land use data with a resolution of 30 m in 

Southeast Bangladesh, and the kappa coefficients were 0.61–0.71 [28]. Hu et al. used the 

CLUE-S and Markov models to simulate land use data with a resolution of 30 m in Beijing, 

and the kappa coefficient was greater than 0.75 [29]. Zhao et al. conducted a 30 m resolu-

tion land use simulation in Shunyi District of Beijing using a CA-Markov model, and the 

kappa coefficient was 0.77 [30]. These existing studies showed that the PLUS model has 

obvious advantages in its simulation range and accuracy, which was conducive to im-

proving the accuracy of LER evolutionary trend analysis. 
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4.2. Determination of the Ecological Grid Size Should Not Directly Refer to the Previous Re-

search 

In this study, the gradient division method (1 × 1 km, 2 × 2 km, …, 10 × 10 km) was 

used to determine the optimal size of the ecological grid in the LER calculation, but this 

was rarely done in previous studies. The main reason was that in most studies, the size of 

the ecological grid was mostly determined by two to five times of the average plaque area 

in the study area or citing the research results of other scholars. For example, Yu et al. 

used the results of other scholars when calculating LER in Amu Darya Delta and selected 

5 × 5 km as the size of the ecological grid [31]. Based on the ecological risk research carried 

out by Tian et al. in Yongjiang River Basin of Zhejiang Province, 2 × 2 km was determined 

as the ecological grid size based on 2–5 times the average plaque area in the study area 

[32]. The advantage of using this method to determine the optimal ecological grid size is 

that it was simple to operate and can reduce the amount of calculation. However, in the 

research of geography and ecology, it is obviously unscientific to use the same measure-

ment standard in different regions, such as the obvious differences in terrain, elevation, 

and landscape fragmentation between plain and mountainous regions. At the same time, 

in our research, if the size of the ecological grid was determined as 3 × 3 or 5 × 5 km, the 

spatial distribution law of LER will not reflect the actual situation. Therefore, the gradient 

measurement method proposed in this study was scientific and reasonable for identifying 

the size of the best ecological grid. 

4.3. Development Scenario Research Will Help Reduce LER in the Future 

In this study, we discussed the changes in LER under the ND and EP scenarios, and 

concluded that the EP scenario was conducive to reducing regional LER, which was re-

lated to the increase in the ecological land area and the control of construction land ex-

pansion under the EP scenario. Many studies have shown that social factors were im-

portant factors affecting LER. Yu et al. analyzed the influencing factors of LER in Amu 

Darya Delta and found that LER was higher in areas with a high population density [31]. 

Mondal et al. conducted an LER assessment study in Delhi and believed that incentives 

or services for urban development would put pressure on LER [6]. Chen et al. carried out 

LER assessment and driving force analysis in Peibei and found that the increase in the 

urbanization rate significantly improved LER [33]. Li et al. also concluded that human 

activities were the main reason affecting LER in Qinling area, and it was necessary to bal-

ance the relationship between economic development and environmental protection [1]. 

Under the EP scenario, due to the protection of ecological land and the reduced urban 

expansion rate, the LER will be effectively reduced compared with the ND scenario. This 

is consistent with the research conclusion of Xu et al., who used the Markov-FLUS model 

in Xinjiang, and the research shows that the EP scenario can significantly reduce the eco-

logical risk compared with the ND scenario [34]. The multi scenario simulation carried 

out by Tian et al. in Yancheng coastal wetland also showed that the LER of the region can 

be significantly reduced under the EP scenario [35]. For this study, the regions with a high 

concentration of LERI (southeast of Mianyang, southeast of Deyang, east of Leshan, junc-

tion of Neijiang and Zigong, Yibin, Luzhou, south of Jiangjin, Qijiang, south of Banan, 

south of Fuling, Fengdu, north of Shizhu, north of Zhongxian, south of Wanzhou, south 

of Yunyang, etc.), the regions with a high level of LERI (Luzhou, Fuling, Yibin, Qijiang, 

Nanchuan, etc.), or regions with a rapid risk rise (Fuling, Fengdu, Changshou, etc.) should 

strengthen ecological protection and build a more reasonable combination of ecological 

space, living space, and production space. 

4.4. LER Can Explain Regional Ecological Risk at the Landscape Level 

Ecological risk refers to the risk borne by the ecosystem and its components under 

the interference of natural or human activities. It is the possible adverse impacts of uncer-

tain accidents or disasters on the structure and function of the ecosystem in a certain area. 
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As an important branch of ecological risk assessment at the regional scale, LER refers to 

the possible adverse consequences of the interaction between landscape patterns and eco-

logical processes under the influence of natural or human factors [36]. Therefore, LER fo-

cuses on explaining regional ecological risk at the landscape level, which is similar to the 

approach in this study. It is generally believed that regions with a high level of economic 

development are regions with a high LER, and regions with a low economic development 

level are regions with a low LER. By measuring the LER of the C-C E Zone, this study 

found that the high level of economic development shows that the LER was low, especially 

in urban centers, such as Chengdu and the main urban areas of Chongqing. At the same 

time, the phenomenon of a higher LER was found in areas with low economic develop-

ment levels, such as Yunyang, Qijiang, etc. We believe that this was because LER only 

considers the combination of landscape and the integrity of landscape patches. In the ur-

ban center, the landscape was mainly construction land. The landscape patches here were 

relatively complete, so they did not show a high LER. In areas with a low economic devel-

opment level, the regional landscape was seriously various due to the cutting of cultivated 

plots and the loose distribution of rural settlements, so it shows a high LER. This was 

consistent with the LER analysis conducted by Chen et al. in Shiyan City [37] and Kang et 

al. in Manas River Basin [38]. This shows that an LERI can only represent the landscape 

level to judge the regional ecological risk and can be used to guide regional ecological risk 

prevention and control at the landscape level. 

Therefore, this study constructed an LERI model composed of a landscape disturb-

ance index and landscape vulnerability index. Although it provides a convenient and ef-

ficient evaluation method, and the use of this model was applicable to the LER evaluation 

based on land use change, it has less consideration of ecological processes, so it should be 

improved in the future for ecological risk assessment research 

5. Conclusions 

This research introduced the PLUS model, ecological grids, and the LERI model to 

analyze LER evolutionary trends in the C-C E Zone from 2000 to 2050 according to the ND 

and EP scenarios. The results showed that: (1) the PLUS model could obtain high-preci-

sion simulation results in the C-C E Zone. In the future, the increase rate in construction 

land area would be reduced, the declining rate of forest land and cultivated land area 

would also be reduced, and the area of various types of land would tend to be stable. (2) 

This study found that the optimal size of the ecological grid in the LERI calculation of the 

mountainous area was 4 × 4 km. Moreover, the mean values of LERI in 2030, 2040, and 

2050 were 0.1612, 0.1628, and 0.1636 for the ND scenario and 0.1612, 0.1618, and 0.1620 for 

the EP scenario. (3) The hot spot analysis results showed that an area of about 49,700 km2 

in the C-C E Zone from 2000 to 2050 belongs to high agglomeration of LER. (4) Since 2010, 

the proportions of high and extremely high risk levels have continued to increase, but 

under the EP scenario, the high and extremely high risk levels in 2040 and 2050 decreased 

from 14.36% and 6.66% to 14.33% and 6.43%. Regional analysis showed that the high and 

extremely high risk in most regions increased during 2010–2050. Moreover, the risk levels 

of Fuling, Fengdu, and Changshou increased for a long period of time, and the risk level 

increase rates of the three regions during 2000–2050 were 0.3196, 0.1994, and 0.1984, re-

spectively. (5) Under the ND scenario, the proportions of grids with decreased, un-

changed, and increased risk levels were 15.13%, 81.48%, and 3.39% for 2000–2010 and 

0.54%, 94.75%, and 4.71% for 2040–2050. The proportion of grids with changed risk levels 

gradually decreased. 

This study analyzed the evolutionary trends of LER in the C-C E Zone from 2000–2050 

under the ND and EP scenarios. On the whole, the LER risk for the C-C E Zone showed an 

upward trend, and the ecological protection scenario was conducive to reducing the risk. 

The research results can serve as a valuable data reference set for regional landscape op-

timization and risk prevention and control. In the future, in order to manage LER preven-

tion and control well, we should focus on ecological grids with a high LERI or rapid index 



Land 2022, 11, 964 18 of 19 
 

rise, agglomeration areas with a high landscape risk, and areas with a high risk level or 

rapid rise in their level. Increasing the landscape layout at the macro level and landscape 

optimization at the micro level based on a landscape index is an effective way to reduce 

regional LER. 
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