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Abstract: Accessibility is the ease of reaching opportunities (goods, services, activities, and destina-
tions). Accessibility of desirable locations such as households and commercial locations, is typically
scaffolded by land use patterns and transportation infrastructure. It can reflect people’s travel conve-
nience, cities’ viability, sustainability, and mitigate the negative effects on the environment and public
safety. Consequently, it is recognized as a fundamental principle in urban sustainable development
policies worldwide. In the literature, most of the studies have used a static or partially dynamic
approach with a single mode such as a car or public transportation by using conventional models.
These “static” models assume that household locations are static and that transportation supply and
opportunities for social practice activities are fixed in time and space, which can lead to biased or
even misleading assumptions in accessibility models. Therefore, the aim of this study is to evaluate
the impact of dynamic spatial accessibility through Mode-Dependent Accessibility (MDA) on the
location choice behaviors of urban activities such as households and commercialin the City of Wuhan,
China. This study employed the Mode-Dependent Travel Demand Model (M-TDM) to measure
the impact of short-term MDA on household and commercial activities for the years 2012 and 2015.
Additionally, an integrated spatial economic (ISE) model such as PECAS (Production, Exchange,
Consumption, Allocation, System) in order to investigate location preferences of urban activities
over space and time. Regarding household and commercial location choice, the ISE modeling results
revealed that households and commercial activities are sensitive to MDA, especially using transit.
The ISE method predicted that the R2 for household and commercial location choice models was
0.84 to 0.90 for transit-based accessibility, whereas the R2 for logsum-based static models was 0.48 to
0.72. In addition, their findings suggest that highly accessible locations that are well served by auto
are more appealing for household and commercial activities. The findings of this study will help
urban planners, transportation planners, and policymakers take into account the dynamic nature of
short-term MDA when zoning and allocating urban activities and public amenities, instead of using
static accessibility.

Keywords: accessibility; urban planning; integrated land use—transportation models; multimodal
spatial accessibility; PECAS model; Wuhan

1. Introduction

According to the United Nations Sustainable Development Goals (SDGs) 2030 agenda,
cities, and human settlements should be inclusive, safe, sustainable, and resilient. Sustain-
able mobility is included in goal 11.2 of the United Nations SDGs. This goal states that all
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citizens should have access to clean and safe transportation systems that are inexpensive,
accessible, and sustainable, and that road safety should be improved by expanding public
transportation and paying special attention to the needs of those in vulnerable situations,
such as women, children, and the elderly [1]. Accessibility provides a central framework
for the integration of transportation and land use planning, which is universally recognized
to be vital for sustainable development and transit network planning [2]. Accessibility is
the most important notion that has been proposed to define the relationship between land
use and transportation. Improved accessibility can make a significant contribution to the
quality of life [3]. Accessibility is the primary objective of transportation policy. It relates to
the capability for interaction and exchange with services and facilities [4]. Transportation
geography studies have been interested in it for a long time since it is a major subject of
public transportation. In the literature, accessibility is typically defined as the ease of travel-
ers to reach any activity location utilizing a specific transportation system [5]. Accessibility
of desirable locations (such as households and commercial locations) is typically scaffolded
by land use patterns and transportation infrastructure. It can reflect people’s travel con-
venience cities’ viability, and sustainability, and it can mitigate the negative effects on the
environment and public safety. Consequently, it is a core principle in urban sustainable
development policies worldwide [6]. Good accessibility enables people to participate more
effectively in a number of activities such as going to school, work, hospital, shopping, and
social interaction. Contrarily, poor accessibility offered by cities is the most significant
hurdle to improved living standards and sustainable growth [6].

In the literature, spatial accessibility has received considerable attention, but the ma-
jority of previous studies have focused on jobs [7], food (restaurants, grocery) [8,9], and
healthcare services (hospitals, emergency services) [8,10]. However, multimodal spatial
accessibility improves the precision and predictability of measurements, capturing the dy-
namics of the real world. It was proposed to use multimodal transportation to overcome the
constraint of conventional spatial accessibility metrics, which assumed only a single mode
of mobility (i.e., automobile) and alternative forms of mobility (e.g., public transportation,
bicycles, and walking) may be necessary for individuals with low socioeconomic status, as
they may not have access to private vehicles [11]. Moreover, public transit accounts for a
substantial proportion of travelers, particularly in large cities and among the elderly [12].
Mao and Nekorchuk [11] conducted the first study to evaluate multimodal accessibility
in Florida using the two-step floating catchment area (2SFCA) method. They revealed
that the single-mode technique tends to overestimate accessibility in urban areas with
heterogeneous transportation modes while underestimating accessibility in rural areas
with homogeneous transportation modes. These erroneous estimations arise from the
assumption of a homogeneous mode, resulting in the identification of a larger underserved
population. By taking into consideration multiple modes of transportation within popula-
tions, the multi-mode method yielded a more accurate estimate and hence provides better
direction for policymakers to create cost-effective mitigation strategies. Several empirical
findings, such as significant interregional and intermodal accessibility inequalities, have
emerged from multimodal spatial accessibility research [13]. Most previous research em-
ployed a constant or static travel time, such as the average or peak hour travel time, to
quantify accessibility, assuming that the travel time is fixed [14]. However, commuting
occurs frequently during off-peak hours, as flexible work hours have become normal days.
Constant travel time metrics may overestimate accessibility, undermining the credibility
of accessibility studies. This overestimation may lead commuters to underestimate their
travel time; consequently, they may not reach their destinations on time [15]. Accessibility
of activity locations (households, commercial, and firms) and advances in the formulation
and estimation of econometric models have led to tremendous development in urban
planning/modeling in recent years [16]. However, the literature demonstrates that these
techniques have largely ignored taking into account subtle details of accessibility, such as
those relating to a specific time of day or mode [17,18].
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Due to rapid motorization, urbanization, and population growth, cities in developing
nations face severe challenges such as traffic congestion, traffic accidents, increasing de-
mand for land, environmental pollution, and the impact on the existing demand and supply
for the transportation system, which ultimately impacts public health, city sustainability,
and the country’s economy [19–21]. Most developed countries, such as the United States
and countries in Europe, have implemented integrated land use—transport models for
sustainable urban planning [22,23]. However, such models have not been implemented in
most developing countries. To combat these issues, a few cities in the China mainland have
begun to construct urban models that can integrate economic, land use, transportation,
and environmental protection strategies during the planning process. Such models are
utilized to examine the relationship between transport demand and changes in economic
growth, spatial distribution/location choices of socio-economic activities, and resulting
land use patterns, and to forecast their future evolution. Accessibility, which is seen as the
crucial link between the transportation system and the land use system, is the fundamental
analysis tool within such models and explains how the two interact across time and space.
There are few studies that only examine MDA for auto and metro or bus by utilizing
traditional models such as 2SFCA and gravity models [8,11,13]. Traditional accessibility
parameters do not adequately account for the short- and long-term needs of urban activ-
ities. Accessibility is a dynamic attribute of locations that fluctuates by mode as a result
of changes to the transport network and varying activity distribution patterns [15]. In
principle, most economic activities are dependent on an acceptable level of accessibility in
order to survive and develop, so a range of accessibility measures need to be considered
rather than static accessibility. Therefore, it is crucial to create a solution that might provide
a more effective planning tool for a thorough understanding of the urban system.

The objectives of this study are two-fold: first, to evaluate the impact of short-term
spatial accessibility through Mode-Dependent Accessibility (MDA) on location choice
behaviors of urban activities such as households and commercial locations in the City of
Wuhan, China. This study proposed a hypothesis that the location preference of urban
activities have a strong relationship with “dynamic” MDA measures, rather than traditional
“static” accessibility value (e.g., those logsums calculated using the averaged or congested
travel time and combining all available modes). Accessibility to population/employment
distributed in the city varies depending on the type of activities that predominate, which
can be analyzed from the population’s digital footprint at each point in the city. There-
fore, it should be reasonable to assume that such a dynamic nature of MDA may have
a significantly greater influence than the traditional, static accessibility term (e.g., those
using free-flow travel time) on the location choices of urban activities. This study uses
dynamic short-term accessibility by considering the working hours of the day. This study
uses auto (private cars and taxis) and public transit (metro, and bus) for measuring MDA.
To comprehensively capture accessibility and location choice behaviors of urban activities,
this study analyzes explicitly the effects of the metro and bus, as well as their combined
effects. Second, this study employs the Mode-Dependent Travel Demand Model (M-TDM)
to measure the impact of short-term MDA on household and commercial activities for the
years 2012 and 2015. Additionally, an integrated spatial economic (ISE) model/integrated
land use transport model such as PECAS (Production, Exchange, Consumption, Allocation,
System) in order to investigate location preferences of urban activities over space and
time. The PECAS approach imitates the spatial economic systems under consideration
and has been improved with several distinct features such as an improved representation
of socioeconomic systems through a social accounting matrix and microsimulation-based
space development. It is built on the theories and experiences of its pioneers MEPLAN and
TRANUS. PECAS model is a scientifically sound ISE model which has widely been used
for forecasting and policy-making at urban and regional levels. The advantages of such
short-term MDA could offer more significant results than conventional static accessibility
on the location choices of urban activities. This study will assist stakeholders and policy-
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makers in better understanding to develop effective policies and therefore enhance their
urban planning exercises.

This study attempts to examine the impact of MDA on spatial economic activities by
answering the following major questions:

(i) Which MDA measures are most valuable when choosing the home location of house-
hold activities?

(ii) Which MDA measures are most valuable when choosing the location by other socio-
economic activities, such as commercial?

(iii) Are long-term location decisions of individuals or firms correlated with short-term
“dynamic” accessibility factors such as those related to mode?

(iv) Does the accessibility to various activities (e.g., school, work, and shopping) by
different modes influence the short-term or long-term location decisions of households
or firms?

The rest of the paper is sequenced as follows: Section 2 presents an overview of the
recent literature regarding accessibility measures and modeling approaches. Section 3
provides the study area and study data including transportation network data and land
use data. Section 4 elucidates the methods including the multimodal travel demand
model and multimodal integrated spatial economic models. Section 5 explains the study
results and discussion. Finally, Section 6 delineates the main findings, limitations, and
recommendations for future studies.

2. Literature Review

The accessibility concept was firstly introduced by Hansen in 1959 [24], and he stated
that accessibility is the potential of opportunities for interaction and an assessment of
the spatial distribution of activities around a point, adjusted for the ability and desire
of individuals or firms to overcome physical separation. Accessibility can be broadly
defined as the ease with which one place of activity can be accessible from another using
a particular mode of transportation or any available modes (such as walking, bus, rail,
bike, car, etc.) [25]. Accessibility is defined by Ben-Akiva and Lerman [26] as “the benefits
offered by a transportation/land-use system.” Bhat et al. [27] described accessibility as
“the ease with which an individual can pursue an activity of a desired type, at a desired
place, using a desired mode, and at a desired time.” Accessibility is a primary focus
of interdisciplinary research including transportation, health, economics, social sciences,
urban studies, and geography [4,28]. The origins of spatial systems can be traced back to
Tobler’s law of geography, which states that “everything is connected to everything else, but
nearby objects are more connected than distant things” [29]. Primarily, distance, speed, and
travel time estimations, also known as impedance measurements, are used to determine
accessibility in geographical systems [4]. Evaluating accessibility as the total travel time
reduced by road users and the number of additional locations reached by various road users
within their budgeted travel time is another practice [30]. In transportation planning, the
terms accessibility and mobility are usually confused. Accessibility is the ease of reaching
opportunities (goods, services, activities, and destinations), as opposed to mobility, which
is the ease of moving people and goods. Mobility falls under accessibility. Accessibility
reflects both mobility (the ability of individuals to travel) and land use patterns (the
location of activities). This approach provides more importance to nonmotorized modes
and accessible land use patterns. Multimodal transportation and more compact, mixed-use,
walkable communities tend to optimize accessibility, hence reducing the amount of travel
required to reach destinations [31].

In Europe and the United States, we have witnessed a revitalization of city centers
over the past two decades, despite the increasing accessibility of metropolitan regions [32].
This re-urbanization is perhaps driven primarily by younger generations, the so-called
millennials (roughly, those born in the 1980s and 1990s) [33]. Young households prefer
to reside in urban areas that are easily accessible and have enough public transportation,
as opposed to the sprawling, automobile-dependent suburbs [33,34]. A previous study
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on household location preferences in Paris revealed that renters place greater value on a
location’s accessibility than owners [35]. Another study conducted in Canada indicated that
households were more sensitive to accessibility with time [36]. In addition, Inoa et al. [35]
identified commuting time as a crucial element in household decision making, which
is true in European cities with larger population densities and better access to public
transportation than in developing countries. In developing countries with a high rate
of unemployment, households are often ready to travel further or even walk the entire
distance to work. Zhang et al. [37] examined public transit-based accessibility to healthcare
services in Shanghai. They selected census tracts in central Shanghai that are less accessible
to health facilities via public transportation. In contrast, the accessibility of peripheral areas
is adequate, despite the lack of neighboring healthcare facilities.

According to a recent study, Ahuja and Tiwari [4] stated that the selection of accessi-
bility measures depends on the context of the application. The fundamental strategy for
measuring accessibility can be divided into six categories: (i) Infrastructure approach: this
focuses on the speed, travel time, length of the road, density of the road network, and overall
congestion level in terms of lost vehicle hours are the major measures. (ii) Activity approach:
this focuses on catering to accessing activities. The majority of measures consist of land use
and location, potential paths, dwelling, working, recreation, shopping, and the number
of activities available within a specific range of travel time or distance. (iii) Individual’s
personal preferences approach: this focuses on an individual’s traits, activities, and prefer-
ences. Measures range from a person’s socioeconomic variables (car ownership, education,
age, and gender) to his or her attitudes and views towards use. (iv) Social exclusion and
geographic location approach: this considers an area access/geographical location when
the aggregation is at the community level. Although the individualistic method may appear
disaggregated and unachievable for inclusive planning, it enables us to understand the
fundamental components of all accessibility research. (v) Utility-based approach: this is
based on the benefits acquired by people when accessing spatially dispersed activities,
opportunities, and challenges, taking into account individual characteristics, characteristics
of different transport modes, time budgets, speed, spatial-temporal constraints, and daily
activity schedules. (vi) Mixed-measures approach: this is used when there are numerous
focal points such as travel costs (monetary, time, risk, comfort, and quality attributes),
volume (number of individuals, vehicle units, bus stops, etc.), and location (from one place
to another or many places to many places).

The measurements of spatial accessibility are derived from the interaction of three
input variables: supply (i.e., locations of infrastructure), demand (i.e., locations of expected
infrastructure users), and mobility (i.e., travel costs from demand locations to supply
locations). Sometimes, other variables, such as distance decay functions and threshold
travel time, are introduced into measurements to indicate the population’s desire to visit
infrastructure [38]. In the literature different approach has been employed for the measure-
ment of spatially accessibility such as the gravity model, Shen’s model, and 2SFCA [13].
Firstly, in the gravity model, also known as the cumulative opportunity model, the number
of opportunities (i.e., supply facilities) accessible from a given place while taking spatial
impedance into account is determined [24]. Secondly, Shen enhanced the precision of
geographic accessibility measurement by including a new variable (i.e., demand), whereas
the gravity model assumes a homogeneous distribution of individuals [39]. Thirdly, the
2SFCA technique addresses the limitation of Shen’s model, in which every supply facility
is assumed to serve every demand location in the case of an inappropriate distance decay
function. A threshold travel time is incorporated into the model to reflect the desires of the
consumer and to identify the areas accessible within the threshold travel time, such as a
catchment area [40].

Several Land Use Transportation Interaction (LUTI) models have been developed over
the past decades for location preference and interactions of urban activities, including the
Lowry model, IMREL, MEPLAN, TRESSIS, METROSIM, MUSSA, URBANSIM, REURBAN,
TLUMIP, TRANUS, DELTA, and PECAS [41–51]. These models estimate production and
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consumption positions in the metropolitan area using a multi-industry, multi-regional
input–output system, with households of various types regarded as labor-producing in-
dustries and commodity-consuming industries. PECAS is one of the recently developed
integrated land use—transport modeling frameworks. It integrates land use, transporta-
tion, the economy, and the environment. The PECAS approach has been implemented in
various locations around the world over the last 18 years, including the following: Oregon
(statewide), California (statewide), Atlanta, San Diego, Los Angeles, and San Francisco,
USA; the City of Edmonton, Province of Alberta, Canada; Caracas, Venezuela; Mumbai,
India [52].

In conclusion, each accessibility measure has benefits and drawbacks. Thus, re-
searchers should select the best approach based on their study interests, objectives, and
data collection. Most previous research employed a static travel time, such as the peak hour
and off-peak hour travel time, to quantify accessibility, assuming that the travel time is
fixed and static. These “static” models assume that household locations are static and that
transportation supply and opportunities for social practice activities are fixed in time and
space, which can lead to biased or even misleading assumptions in accessibility models.
Nevertheless, the primary components of accessibility, such as opportunities and social
activities, are dynamic and influence the location selection behavior of activities [9]. The
majority of previous research evaluated accessibility using a single mode or transit mode
with a fixed time, such as peak hours [9,53]. On the other hand, people’s preferences vary
according to the time of day and transportation modes. When directly comparing acces-
sibility indicators in different geographical regions, the majority of them fail to account
for spatial variability. Hence, it is feasible that high accessibility zones, however, lack
public transportation services, which earlier methods cannot identify. Therefore, compar-
ing the degree of public transportation services in areas with similar spatial proximity to
urban activity is more reasonable. In this context, by including spatial heterogeneity in the
evaluation criterion, this study intends to improve spatial accessibility to urban activities.
Furthermore, there has been little research on the accessibility of urban activities such as
residential, commercial, and industrial locations. Existing models failed to capture fine
features of accessibility, particularly their temporal and mode distribution. The current
trends in transportation and urban planning are not sustainable, and improvements in
transportation and land use systems are required to meet the needs [54]. Thus, the purpose
of this study is to contribute to the current literature by investigating the location choice
behavior of urban activities with the MDA employing advanced ISE models, i.e., the PECAS
model. The advantages of this method are that it captures very fine details of how various
urban activities (such as households, businesses, firms, and so on) are located. The PECAS
model is a scientifically sound integrated spatial economic model that has been widely
utilized for forecasting and policy formulation at the municipal and regional levels [52].

3. Data Collection
3.1. Study Area

This study considers the City of Wuhan as a Case study, as shown in Figure 1.
Wuhan is the capital city of Hubei Province, China. The City of Wuhan is located at
29◦58′–31◦22′ north latitude and 113◦41′–115◦05′ east longitude. The City of Wuhan has
jurisdiction over thirteen districts. The City of Wuhan includes 690 Traffic Analysis Zones
(TAZs) and 147 Land Use Zones (LUZs), with a population of 10.1 million permanent
residents by 2012, comprising 6.83 million urban population and 3.28 million rural pop-
ulation. The population increased to 10.6 million by 2015, with the urban population
increasing to 7.48 million and the rural population decreasing to 3.11 million because
of the urbanization process. As of 2020, the population of Wuhan was 12.48 million
(http://tjj.wuhan.gov.cn/tjfw/tjnj/ (accessed on 15 January 2021)).

http://tjj.wuhan.gov.cn/tjfw/tjnj/
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3.2. Study Data

Urban and rural households and employment by industry type are major datasets
used in the development of the M-TDM and ISE models. The rural and urban households
and average household size data were obtained from Wuhan statistical Yearbooks (http:
//tjj.wuhan.gov.cn/tjfw/tjnj/ (accessed on 10 March 2021)). However, the employment by
industry data was obtained from Wuhan Transportation Planning Institute (WHTPI). The
household travel survey (HTS) data which is a primary source of information that contains
all vital information to understand and quantify travelers’ traveling behavior using the
actual transport network are obtained from WHTPI (http://www.whtpi.com/Default.html
(accessed on 10 March 2021)). This dataset contains, the number of trips by modes, total
trip time, trip distance, trip origin and destination, gender, and age of trip makers.

The development of M-TDM for two cross-sectional years, 2012 and 2015, need various
levels of networks such as road network and public transit network. The road network
contains link type information, link distance, free-flow speed, daily link capacity by link
type, and the number of lanes in each road link, as presented in Table 1, and the transit
network contains detailed information about transit, as shown in Table 2. A well-connected
transit network encourages the commuter to use a transit system that enables easy transfer
between different transit modes (such as bus to bus, bus to metro, metro to bus, and metro
to metro). An extensive transit network was developed to capture the fine details of the
transit system. This includes a complete representation of transit lines and stations, transfer
times, transfer links, walking to and from transit stations, different transit fare systems

http://tjj.wuhan.gov.cn/tjfw/tjnj/
http://tjj.wuhan.gov.cn/tjfw/tjnj/
http://www.whtpi.com/Default.html


Land 2022, 11, 1139 8 of 31

(static fare system for bus and distance-based fare system for metro), and other relevant
information presented in Table 2. Figure 2 depicts the transit network of Wuhan, China, in
2015, including the metro, bus, and their corresponding stations.

Table 1. Road network attributes.

Road Network Description

Link Type Freeway, expressway, arterial, collector, and local roads
Distance Link distance (km)

Road Capacity Daily capacity of each link
Lanes Number of lanes in each link

AADTs Average annual daily traffic counts collected at main road corridors
Screen Lines Screen line number associated with each AADT (used for model calibration)

Speed Free flow and Congested speed

Table 2. Transit network attributes.

Name Bus Name/Metro Name

Time Congested time (minutes)
Distance Lines distance (km)
Line ID Bus and Metro line number

Fare Static fare for bus and distance-based for Metro
Waiting time Initial waiting time at and transfer waiting time at bus and metro station

Modes Metro Bus
Transfer distance allowed (meters) 550 (Metro to bus, metro to metro) 550 (bus to metro, bus to bus)
Walking distance allowed (meters) 960 650

Average Service Frequency of modes
(minutes) 5 6Land 2022, 11, x FOR PEER REVIEW 9 of 32 
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Figure 2. (a,b) Transit network of Wuhan in the year 2015: (a) bus lines and stops; (b) metro lines
and stops.

Walking and transfer distance thresholds are specified to enable transfer with the
specified distance limits. The transfer distance thresholds are used to avoid the generation
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of unnecessary non-transit legs during the route enumeration process. Two curves were
developed to calculate waiting and transfer times, as shown in Figure 3.
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Figure 3. Initial waiting and transfer waiting for curves.

The initial waiting time curves were used to calculate the initial perceived waiting
time (minutes) at bus and metro stations. The initial waiting time calculated is half of the
headway, as shown in Figure 3. Meanwhile, the transfer waiting time curve is developed to
calculate transfer waiting time at bus and metro stations. Usually, the transfer waiting time
is perceived differently compared to the initial waiting time as shown in Figure 3. Most of
the commuters prefer direct routes which involve no transfer or minimal transfer waiting
and walking times. The initial waiting time and transfer waiting time were used during the
route evaluation process to find the best path from origin ‘i’ to destination ‘j’, with minimal
walking, transfer, and travel cost.

Land Use Data

The land use data in Figure 4 shows aggregate spatial input–output data which
represents the interaction of activities and commodity flows. These input values represent
the amount of economic activity for a particular combination of sectors. The land use data
includes various industrial sectors (such as agriculture, industry, and commercial household
activities (such as urban and rural), commodity types (including agricultural products,
industrial products, commercial products, and transport products), labor types (such as
management and technical labor, retail labor and outdoor labor) and space types (such as
residential, commercial and industrial). For instance, household activity produced labor
and consumed various commodities during this process, and it also consumed residential
space during the allocation process, which could be done at either LUZ or TAZ level.
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Figure 4. Land use input data types.

4. Method

In this study, a M-TDM was developed at the TAZ level to calculate MDA to various
activity locations (such as households and commercial). Additionally, the accessibility
measures from a multimodal are input into ISE models such as the PECAS model. The ISE
model estimates the locations based on MDA measures inputs, and as a result, it influences
the location/allocation of urban activities (such as households, businesses, firms, etc.) over
time and space [47]. This study used an advanced transport modeling tool, Cube Voyager
version 6.5, and ArcGIS version 10.8 software to develop a multimodal transport system.

4.1. Multimodal Travel Demand Model

The developed M-TDM is used to calculate MDA (such as time, distance, and logsum)
to various activities located within the study area. The M-TDM for the years 2012 and 2015 is
developed using socioeconomic data (such as population, and employment). Additionally,
M-TDM is calibrated and validated for the years 2012 and 2015. The developed M-TDM
model for the years 2012 and 2015 was used to calculate MDA for goods, services, labor,
and other activities, as shown in Figure 5.

As discussed earlier, a multimodal transport model was developed for the years
2012 and 2015 using the road network, transit routes, LUZs, and TAZs. The M-TDM
development starts with the calculation of trip production and attraction rates using
population, employment, and household travel survey data. The friction factors (FF), which
are input into trip distribution, were calculated using the travel survey data. Furthermore,
the FF are smoothed using the gamma distribution approach before being input into the trip
distribution model. Trip length frequencies by trip purpose were calibrated and verified
against the observed trip lengths obtained from travel survey data. Transport utilities
by trip purpose (such as home-based work, home-based other, home-based school, and
non-home-based) and by modes (such as metro, bus, taxi, personal car, and bike) were
calculated and input into the nested logit model, as shown in Table 3. The value of α varies
depending on trip purpose and availability of a personal car. In this study, home-based
work and home-based other trips by car are considered. As mentioned in Section 3.2, the
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various modes of transportation attribute coefficients such as in-vehicle time, waiting time,
walking time, metro and bus fare, transfer time, and cost per km by different trip purpose
(HBW, HBO, HBS, and NHB) were obtained from the Wuhan Transportation Planning
Institute (WHTPI) (http://www.whtpi.com/Default.html (accessed on 10 March 2021)).
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Figure 5. Workflow of mode-dependent transport model.

Equations (1)–(5) determine the individual’s preferences for a specific transport mode
for specific trip purposes. The structure of the nested logit model is illustrated in Figure 6.

UMetro = α1 × IVT + α2 × IWT + α3 ×WT+ α4 ×MF + α5 ×MMTT+ α5 ×MTBT (1)

UBus = α1 × IVT + α2 × IWT + α3 ×WT + α4 × BF + α5 × TT (2)

UTaxi = α1× IVT + α2×WT + α3× DC (3)

UCar = α1 × IVT + α2 ×WT + α3 × DC (4)

UBike = α1× IVT + α2 ×WT (5)

where the following are defined:

http://www.whtpi.com/Default.html
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– IVT = in-vehicle time (actual time);
– IWT = initial waiting time at bus and metro station;
– WT = walking time from home to bus and metro station;
– MF = metro fare;
– MMTT = metro-to-metro transfer time;
– MTBT = metro-to-bus transfer time;
– BF = bus fare;
– TT = bus-to-bus and bus-to-metro transfer time;
– WT = waiting time (in case of taxi), access time in case of car and bike;
– DC = cost per km drive.

Table 3. Transport utilities by modes.

Home-Based Work (HBW) Car Available Home-Based Other (HBO) Car Available

Modes α1 α2 α3 α4 α5 α6 α1 α2 α3 α4 α5 α6
Metro −0.02 −0.04 −0.04 −0.039 −0.1 −0.2 −0.02 −0.04 −0.04 −0.078 −0.1 −0.2

Bus −0.02 −0.04 −0.04 −0.039 −0.2 −0.02 −0.04 −0.04 −0.078 −0.2
Taxi −0.02 −0.04 −0.039 −0.02 −0.04 −0.078
Car −0.02 −0.04 −0.039 −0.02 −0.04 −0.078
Bike −0.02 −0.04 −0.02 −0.04

Home-based school (HBS) Non-home-based (NHB)

Modes α1 α2 α3 α4 α5 α6 α1 α2 α3 α4 α5 α6
Metro −0.02 −0.04 −0.04 −0.305 −0.1 −0.2 −0.02 −0.04 −0.04 −0.114 −0.1 −0.2

Bus −0.02 −0.04 −0.04 −0.305 −0.2 −0.02 −0.04 −0.04 −0.114 −0.2
Taxi −0.02 −0.04 −0.305 −0.02 −0.04 −0.114
Car −0.02 −0.04 −0.305 −0.02 −0.04 −0.114
Bike −0.02 −0.04 −0.02 −0.04
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Figure 6. Nested logit model.

The mode choice module uses congested travel time, transport utilities, and scaling
parameters (calculated and calibrated against observed mode shares by mode type) to
split trips by different modes. Finally, network assignment (user-equilibrium) and transit
assigned (multi-routing) is calculated and calibrated against annual average daily traffic
(AADTs) counts. The M-TDM calibration was performed at trip generation, distribution,
mode choice, and assignment level. After the M-TDM was fully calibrated and converged,
the MDA measure was calculated using Equation (6).

Ai = ln
n

∑
j=1

e(φT TransportUMij)×OJ (6)

where the following are defined:
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– Ai = Utility-based accessibility measure;
– TransportUMij = Transport utility (disutility) from origin i to destination j using mode M;
– φT = Transport Coefficients (these represent the sensitivity of commuters to mode and

trip type;
– OJ = Opportunities at destination zone j (in the case of households, jobs are consid-

ered as the opportunities, while in the case of commercial services, the residential
population is considered as the opportunity).

Furthermore, the MDA (congested mode-specific skims), which is input into the
ISE model, is used to calculate the locational preferences of urban activities as shown in
Figure 5.

4.2. Multimodal Integrated Spatial Economic (ISE) Models

Several ISE models (such as auto-based, metro-based, bus-based, and transit-based)
were used in this study. The graphical representation of the ISE model framework is
depicted in Figure 7. The major components of the developed ISE models are:

1. Economic and demographic module: This module consists of economic and demo-
graphic information about the study area including population and employment.

2. Activity Allocation (AA) module: The AA module of the multimodal ISE model is
using nested and additive logit theory, for the location/allocation of urban activities.
The AA module of the ISE model is an aggregate representation of urban activities,
commodities flow between origin and destination, markets (selling and buying) with
aggregate demands and supplies, and exchange prices, which are usually determined
at the exchange locations.

3. Space development (SD) module: The SD module of the multimodal ISE represents
real-estate developer behavior (developed space based on the market demand). This
module is sensitive to market prices and developed space accordingly.

4. Transport module: The transport model was developed to calculate MDA for various
activity locations within the study area, for the years 2012 and 2015.

As mentioned earlier SD module uses the price signal (market prices sets during
location/allocation of activities) to develop the space. The formulation of the SD module is
given in Equation (7).

F = max
[

1, Fb + exp
(
(P ∗ β− Pb)

Pb

)]
(7)

where the following are defined:

– F = Factors applied to the current space;
– β = Scale factors;
– P = Current price;
– Pb = Base price.

The factors represent the growth factors applied to the current floor space, which is
further input into the next modeling yea (Year T+1).

The primary function of the M-TDM is to provide access to other people and companies
so that they can participate actively in all kinds of spatially and temporally distributed
activities (social, economic, etc.) and exchange information, goods, and services in a
physical manner [18]. The AA module represents activity locations that occur as a result of
the location choice behavior of activities based on the nested and additive logit approaches.

The locations considered for this study were TAZs which were large enough to be
distinct markets for the location/allocation of various activities over time and space. The
relation between MDA and location choice of activities is well understood using mode-
specific ISE models. To evaluate the locational choice behavior of activities using MDA, it
is important to understand which mode influences the locational preferences of activities
more. The specific modes used in the study considered the auto mode (car and taxi), metro,
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bus, and combination of bus and metro (transit) for both production and consumption of
urban activities.
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Figure 7. ISE model design diagram.

4.3. Simulating Activity Location Choices with the ISE Model

The random utility maximization approach was adopted to simulate the location
decisions of the activities (household and industrial sector). It is assumed that the agents
(such as households, businesses, and firms) assign a utility to each zone and choose the one
that maximizes it. In the ISE, joint choice utility is calculated using Equation (8).

Utilityd,k =
1
λ

ln
n

∑
z=0

eλ(φT,dTransportz,k,d,M+φp,dPricez,d+
1
λ lnSizez,d) (8)

– D = buying (consuming) or selling (producing) the commodity;
– k = index for zone of production or consumption of the commodity;
– z = index for an exchange zone;
– λ = dispersion parameter for the exchange location choice for the commodity;
– Sizez,d = an indicator of the relative amount of the commodity offered in exchange

zone z;
– φT,d = transport cost coefficient;
– Transportz,k,d,T = transport cost between z and k for d = buying and selling,

M = transporting modes;
– φp,d = price coefficient (always set to 1 for d = selling and −1 for d = buying because

the utility is in monetary units);
– Price z = price of a commodity in z;
– Ln = natural log.

The utility of transporting a unit of each commodity from origin to destination zone
was using the transport attributes from M-TDM.
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5. Results and Discussion
5.1. Results

The developed multimodal ISE models were used to determine the relationship be-
tween MDA and location preferences of urban activities within the study area. In the case of
ISE models, the households are producers of labor, and this labor is consumed by industries
and firms during the production process. Likewise, firms and industries are the producers
of jobs, and these jobs are consumed by households. The location choice behavior of
household and industrial sector activities was further classified: (i) locational preferences of
household activities; (ii) locational preferences of commercial services (household-obtained
services such as retail services).

In general, most economic activities rely on an appropriate level of accessibility to
survive and progress; hence, a variety of accessibility approaches must be considered. As
previously stated, for the years 2012 and 2015, M-TDM was built, calibrated, and validated
before being used to calculate MDA. The MDA measure is used to calculate short-term
dynamic accessibility to goods, services, and other activities located in the City of Wuhan
using different modes. The MDA considers only main modes of transport (such as auto,
bus, and metro) and excludes non-motorized modes such as walking and biking as they do
not affect traffic congestion. The flow of commodities from where they are produced to
where they are consumed influence the transport system. The location/allocation of these
activities changes the attractiveness of the location for households, businesses, and firms.
The utilities (Equation (8)) are critical in driving decisions in the ISE system. These utilities
influence the location choice behavior of households, businesses, and industries. Because
these activities are subject to commodity utilities, changes in the utility function affect
consumers and producers of the given commodity for households and other activities.

Goods and services are grouped based on their defined industry. These groups interact
with each other over time and space using a transport system. Households are social units
that typically provide labor, and consume goods and services. Meanwhile, as illustrated in
Figure 8, industries, firms, and businesses produce goods and consume labor during the
location/allocation process.
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Table 4 depicts activities, commodities, and their production and consumption process.
The connectivity between TAZs is based on the congested network (time, distance, logsum,
etc.) by different modes. The transport utilities which, in transport terms, are referred to
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as disutilities are used by the ISE model during the location/allocation process. These
disutilities influence the buying and selling of various commodities at each TAZ.

Table 4. Locational preferences of activities parameters.

Activity Type Commodity Labor, Services, and
Goods Type Consume By Transport Modes Utility (Disutility)

Households Labor

Management
and technical labor Industry

and services Auto, bus, metro,
and combinations

logsumRetail service labor
Operators labor

Other labor
Commercial

services Services Commercial services Households
and industry

The primary hypothesis is that residents prefer a location close to their job place or
prefer a place with high accessibility to their primary needs using a specific transport mode.
The results revealed that the actual influence of residential location and accessibility to the
desired job location depends primarily on the underlying geographical location (spatial)
and temporal (transport mode).

Overall, the R2 for the models show a strong relationship between MDA and residential
locations where most of the adjusted R2 value were found higher than 0.81. Results revealed
that there is a significant improvement in the residual square from the year 2012 to 2015,
due to the improved level of transit accessibility in the year 2015, as shown in Table 5.

Table 5. Results for the MDA to household activities.

Year 2012 2015

Auto
Residual Squares 23.79 59.16

R2 0.71 0.79
Adjusted R2 0.63 0.75

Bus
Residual Squares 49.72 102.50

R2 0.46 0.64
Adjusted R2 0.32 0.62

Metro
Residual Squares 49.98 102.06

R2 0.46 0.64
Adjusted R2 0.32 0.63

Transit
Residual Squares 21.34 43.77

R2 0.77 0.85
Adjusted R2 0.70 0.81

Table 6 presents the results for the MDA to commercial activities. Overall, the results
showed that there is a strong relationship between MDA and commercial locations. For
the years 2012 and 2015, the adjusted R2 value for transit was 0.81 and 0.89, respectively.
Additionally, the results indicated that transit accessibility to commercial locations had a
high R2 value as compared to auto, bus, and metro.

Accessibility indexes (AI) provide a synthetic measurement of the ability to reach a
particular type of opportunity from a place of origin using a particular type of mode used
to present the MDA levels at each TAZ. For instance, higher values of AI represent high
accessibility using specific transport modes. Meanwhile, the household location index (HLI)
and commercial location index (CLI) terms are used to represent the ISE model estimated
household and commercial locations. For instance, higher values of HLI and CLI represent
a high density of household and commercial locations in each TAZ, while low HLI and CLI
represent the low density of household and commercial locations in each TAZ.



Land 2022, 11, 1139 17 of 31

Table 6. Results for the MDA to commercial activities.

Year 2012 2015

Auto
Residual Squares 493.37 142.87

R2 0.72 0.84
Adjusted R2 0.69 0.80

Bus
Residual Squares 550.60 137.70

R2 0.50 0.53
Adjusted R2 0.49 0.49

Metro
Residual Squares 547.63 136.73

R2 0.70 0.70
Adjusted R2 0.63 0.63

Transit
Residual Squares 35.52 2.52

R2 0.81 0.91
Adjusted R2 0.81 0.89

5.1.1. Locational Preferences for Household Activities

Labor is produced by households and consumed by businesses, firms, and other
industries. The industry sectors including import and export, labor wages, production,
and consumption are defined in terms of the (Chinese Renminbi—RMB) and households
are defined in terms of household numbers. The commuting costs between origin and
destination for commodity flows are calculated during the model run, and wages of labor
are adjusted to match the supply and demand in each location for each occupation. The
occupation in each industry was used to categorize employment by industry.

Figure 9a,b shows the result of AI to household activities (such as accessibility to
work and other activities) for the years 2012 and 2015 using auto (car and taxi) mode. The
results revealed that most of the study area was accessible using auto as a commuting
mode. Additionally, it was found that the AI, especially in the downtown areas where most
households lives and work, were high (AI ranges between 12–16), as shown in Figure 9a,b.
However, this result is intuitive that a majority of households living in the downtown
area prefer other modes such as metro and bus for their daily commute. In Figure 9a,b,
the ranges of AI values indicate the following: low accessibility (0~8.0); low–medium
accessibility (8.1~10); medium accessibility (10.1~12); medium–high accessibility (12.1~14);
high accessibility (14.1~16).

As indicated earlier, auto as a commuting mode provides accessibility to the entire
study area; as a result, it was found that households with private cars prefer locations
with high auto accessibility. The household location index (HLI), which is the result of
the allocation process (Equation (8)), is adopted to indicate the location choice behavior of
urban activities. Figure 9c,d presents the range of HLI as a result of ISE estimations using
auto-based accessibility for the years 2012 and 2015. The HLI ISE-estimated value ranges
using auto mode are as follows: low level of household locations (0.0~1.0); low–medium
level of household locations (1.1~1.5); medium level of households location (1.6~2.0);
medium–high level of household locations (2.1~2.5); high level of household location
(2.6~4.0).

Figure 10a,b shows accessibility to household activities (such as accessibility to work
and other activities) using the metro for the years 2012 and 2015. In 2012, there were only
two metro lines; however, in 2015, there were three metro lines with limited stations, which
only provided access to a limited area. In Figure 10a,b, the range of AI values represents
no accessibility (0.0), low–medium accessibility (0.1~10), medium accessibility (10.1~12),
medium–high accessibility (12.1~14), and high accessibility (14.1~16).
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Figure 10. (a–d) Accessibility to household activities and ISE household locations: (a) accessibility
using metro for the year 2012; (b) accessibility using metro for the year 2015; (c) household locations
using metro during 2012; (d) household locations using metro during 2015.

Figure 10c,d presents the range of HLI as a result of ISE estimations using metro-
based accessibility for the years 2012 and 2015. The HLI ISE-estimated value ranges using
metro mode are as follows: no household locations (0.0); low–medium level of household
locations (0.84~0.90); medium level of households location (0.91~0.95); medium–high level
of household locations (0.96~0.99); high level of household location (1.0~1.15).

Compared to the metro, bus services covered most of the downtown area during the
years 2012 and 2015. The bus provides accessibility to most of the household activities
located in the downtown area and its surrounding areas. Figure 11a,b indicates the acces-
sibility to household activities using bus mode for the years 2012 and 2015. The range of
AI values represents the following: no accessibility (0.0); low–medium accessibility (0.1~10);
medium accessibility (10.1~12); medium–high accessibility (12.1~14); and high accessibility
(14.1~16).



Land 2022, 11, 1139 20 of 31

Land 2022, 11, x FOR PEER REVIEW 21 of 32 
 

(0.1~10); medium accessibility (10.1~12); medium–high accessibility (12.1~14); and high 

accessibility (14.1~16).  

 

Figure 11. (a–d) Accessibility to household activities and ISE household locations: (a) accessibility 

using bus for the year 2012; (b) accessibility using bus for the year 2015; (c) household locations 

using bus during 2012; (d) household locations using bus during 2015. 

Meanwhile, accessibility to household activities using bus mode and the ISE-esti-

mated household locations results indicate that areas with a high level of bus accessibility 

showed a high level of household location and most of the values were related to house-

hold locations. Figure 11c,d presents the range of HLI as a result of ISE estimations using 

bus-based accessibility for the years 2012 and 2015. The HLI ISE-estimated value ranges 

using bus mode are as follows: no household locations (0.0); low–medium level of house-

hold locations (0.1~0.92); medium level of households location (0.93~1.0); medium–high 

level of household locations (1.01~1.11); high level of household location (1.12~1.33). 

Transit (metro and bus) provide interconnected services which provide transfer be-

tween these modes. To make this an attractive commuting mode, a discount fare policy is 
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Meanwhile, accessibility to household activities using bus mode and the ISE-estimated
household locations results indicate that areas with a high level of bus accessibility showed
a high level of household location and most of the values were related to household
locations. Figure 11c,d presents the range of HLI as a result of ISE estimations using bus-
based accessibility for the years 2012 and 2015. The HLI ISE-estimated value ranges using
bus mode are as follows: no household locations (0.0); low–medium level of household
locations (0.1~0.92); medium level of households location (0.93~1.0); medium–high level of
household locations (1.01~1.11); high level of household location (1.12~1.33).

Transit (metro and bus) provide interconnected services which provide transfer be-
tween these modes. To make this an attractive commuting mode, a discount fare policy
is introduced by the local government to encourage the transfer between bus and metro.
Transit accessibility results indicate that accessibility to household activities using transit
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significantly increased during the year 2015, and most of the AI values are in the range
10–16, especially during the year 2015, due to the updated transit system. Figure 12a,b
indicates the accessibility to household activities using transit for the years 2012 and 2015.
The range of AI values represents the following: no accessibility (0.0); low–medium accessi-
bility (0.1~10); medium accessibility (10.1~12); medium–high accessibility (12.1~14); high
accessibility (14.1~16).
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Figure 12. (a–d) Accessibility to household activities and ISE household locations: (a) accessibility
using transit for the year 2012; (b) accessibility using transit for the year 2015; (c) household locations
using transit during 2012; (d) household locations using transit during 2015.

Meanwhile, the ISE-estimated household locations using transit accessibility indicated
that areas with a high level of transit accessibility showed high household locations. During
2015, most of the household location values are in the range 1.01–3.5, due to improved
transit accessibility. Figure 12c,d indicates the range of HLI as a result of ISE estimations
using transit-based accessibility for the years 2012 and 2015. The HLI ISE-estimated
value ranges using transit are as follows: no household locations (0.0); low–medium
level of household locations (0.1~0.92); medium level of households location (0.93~1.0);
medium–high level of household locations (1.01~1.40); high level of household location
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(1.41~3.50). These results indicate that transit accessibility to household activities has a
strong relationship with household locations.

The household locations of the ISE model results showed the same trend, namely,
as accessibility increases, household activity locations increase, which is presented in
Figures 9a–d and 12a–d.

5.1.2. Locational Preferences of Commercial Activities

Commercial activities or services (such as information, retail, hospitality, real estate,
technical services, environmental services, and private services), such as household ac-
tivities, are vital in any economic system. However, in the ISE system, an aggregate
‘commercial activity’ phrase is employed to represent commercial services.

Figure 8 depicts the commercial activity buying and selling procedure process. Com-
mercial activities typically buy labor and sell services to other activities, including house-
holds, and in the process consume a variety of other commodities and services. The
enhancement of the road network and transit services increases accessibility and the lo-
cation choice behavior of commercial services, with better accessibility attracting more
commercial activity. Commercial activities (services obtained by households) prefer lo-
cations with low transport costs. However, it may vary depending on the nature of the
commercial activity; some services are sensitive to auto accessibility, while others are sen-
sitive to accessibility via other modes. It was revealed that the level of auto accessibility
to household activities in 2015 was considerably high compared to 2012. Figure 13a,b
indicates the range of auto accessibility to commercial activities for the years 2012 and 2015.
The AI represents the following: low accessibility (0~8); low–medium accessibility (8.1~10);
medium accessibility (10.1~12); medium–high accessibility (12.1~14); high accessibility
(14.1~16).

Meanwhile, the ISE-estimated commercial locations are presented in Figure 13c,d.
The results revealed that areas with high auto accessibility to commercial services showed
a high level of commercial locations. Figure 13c,d shows the range of CLI as a result of
ISE estimations using auto-based accessibility for the years 2012 and 2015. The CLI ISE-
estimated value ranges using auto are as follows: low commercial locations (0.0~1.0); low–
medium level of commercial locations (1.1~1.50); medium level of commercial locations
(1.60~2.0); medium–high level of commercial locations (2.1~2.50); high level of commercial
locations (2.6~3.0).

Figure 14a,b presents the result of metro accessibility to commercial services during
2012 and 2015. In 2015, metro accessibility to commercial services was relatively high
compared to 2012, because of the new metro line, and most of the AI values are in the range
10–14. Figure 14a,b indicates the range of metro accessibility to commercial activities for
the years 2012 and 2015: low accessibility (0.0); low–medium accessibility (0.1~8); medium
accessibility (8.1~10); medium–high accessibility (10.1~12); high accessibility (12.1~14).

Meanwhile, Figure 14c,d results also reveal that areas with high metro accessibility to
commercial services showed a high level of commercial locations, especially in the year
2015. The CLI ISE-estimated value ranges using metro are as follows: no commercial
locations (0.0); low–medium level of commercial locations (1.78~1.85); medium level of
commercial location (1.86~1.92); medium–high level of commercial locations (1.93~1.98);
high level of commercial location (1.99~2.50).

Figure 15a,b presents the results of bus accessibility to commercial services located
within the study area. In 2015, new bus lines introduced were added, which eventually
provided bus accessibility to a wider area. Results revealed that during 2015, the AIs
increased significantly, and most of the AI values are in the range 10–14. Figure 15a,b
indicates the range of bus accessibility values for commercial activities for 2012 and 2015:
no accessibility (0); low–medium accessibility (5~8); medium accessibility (8.1~10); medium–
high accessibility (10.1~12); high accessibility (12.1~14).
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Meanwhile, the ISE-estimated commercial location using bus-dependent accessibility
during the years 2012 and 2015 is presented in Figure 15c,d. The results revealed that areas
with a high level of bus accessibility to commercial services showed a high level of commer-
cial locations, especially during the year 2015. The CLI ISE-estimated commercial locations
ranges are as follows: no commercial locations (0.0); low–medium level of commercial
locations (0.77~0.92); medium level of commercial location (0.93~0.99); medium–high level
of commercial locations (1.02~1.5); high level of commercial location (1.51~2.5).

Accessibility to commercial services using transit as a combined mode is presented
in Figure 16a,b for the years 2012 and 2015. Results indicated that areas with a high
density of transit lines showed high transit accessibility to commercial services, especially
during the year 2015, which was relatively high compared to 2012 because of new bus
lines and metro lines introduced in the year 2015. Results revealed that during 2015, the
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AIs increased significantly. The range of transit AI to commercial activities in 2012 and
2015 were: low accessibility (0), low–medium accessibility (0.1~10), medium accessibility
(10.1~12), medium–high accessibility (12.1~14), and high accessibility (14.1~16).
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Meanwhile, the ISE-estimated commercial locations for the years 2012 and 2015 are
presented in Figure 16c,d. Results revealed that areas with high transit accessibility to
commercial services showed a high level of commercial locations estimated by the ISE
model, and most of the CLI values were in the range 2.0–6. The results indicate the
following: no commercial locations (0.0); low–medium level of commercial locations
(0.1~1.5); medium level of commercial location (1.6~2.0); medium–high level of commercial
locations (2.1~3.0); and high level of commercial location (3.1~6.0).
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The ISE commercial services model activity locations results revealed that commercial
services were susceptible to MDA rather than static accessibility measure.

5.2. Discussion

Accessibility plays a vital role in the social and environmental aspects. The impact
of location rents is poorly known. Activities tend to be located close to high accessibility
locations (which in turn influences rents as well). However, it is crucial to understand the
actual effect of MDA on location choice behavior of activities and decisions of where to live,
where to shop, and where to work. The MDA index provides a synthetic measurement
of the ability to reach a particular type of opportunity within a specific time from a place
of origin to a specific destination over time and space. Thus, accessibility is defined as
a measurement of the capacity to communicate between human activities or settlements
using a determined transport system. The usual measurement units are distance, time,
mode, and the number of opportunities (activities) available at the destination. These
opportunities include jobs, services, etc.; accessibility measures represent the impact that
land use distribution and transport systems have on users. It indicates that both concepts,
land use and transport, should be related because they allow individuals to participate
in activities that take place in different locations. The utility of purchasing a commodity
will influence the location utility of an activity that consumes a substantial amount of
that commodity.

To understand and distinguish the location choice of various activities, the following
two models are developed using ISE models: (i) Household activity location model; (ii)
Commercial services activity location model. Location choice behavior of household
activities depends on the nature of employment type and access to specific employment
locations by a specific time of the day using specific modes. The location preference of
household activities may vary depending on the household decision. Working households
with no other priorities preferred location, which is within the range of adequate transport
accessibility by a specific mode to their job location.

The ISE results revealed that urban households living in the downtown area of the City
of Wuhan were sensitive to MDA offered by transit. It also revealed that urban households
in the year 2015 showed high household activities estimated by transit-based ISE. This
means urban households living in the downtown area are susceptible to MDA offered by the
transit system. The results indicated that commercial activities were sensitive to MDA using
transit during the years 2012 and 2015. Meanwhile, in the year 2015, when the new transit
routes were added and improved the transit accessibility to commercial activities, it was
found that commercial activities relocate to a location that offers high transit accessibility.
The results also indicated that location decisions of commercial activities are influenced by
MDA offered by transit. Nevertheless, the results indicate that commercial and household
activities prefer locations with high accessibility offered by different modes.

The static and ISE–MDA models result revealed that household and commercial
activities prefer locations that offer high MDA rather than the static accessibility offered, as
shown in Table 7. The auto-based ISE–MDA showed an R2 value of 0.793, and the R2 value
for the static model was lower than 0.727. Meanwhile, transit-based ISE–MDA showed
an R2 value of 0.905 for commercial services, while the static logsum model showed an
R2 value of 0.485. The ISE–MDA models result indicates that location choice behavior of
activities has a strong relationship with MDA and has weak relation or causal relationship
with static accessibility models. The behavior point, the combined mode (all modes), is not
usually considered when choosing the location. Instead, activities are sensitive to specific
modes. It is concluded that MDA and ISE models affect the location choice behavior
of activities rather than the static logsum models. Hence, for long-term and short-term
urban planning exercises, planners and policymakers should consider MDA rather than
static logsums.
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Table 7. Comparison between static and ISE–MDA models.

Static Logsum Model (R2) ISE–MDA (R2)

Activities Combined-Mode Auto Bus Metro Transit

Households 0.727 0.793 0.642 0.642 0.845
Commercial 0.485 0.842 0.530 0.698 0.905

6. Conclusions

This study analyzed the impact of short-term spatial accessibility through Mode-
Dependent Accessibility (MDA) on the location choice behaviors of urban activities such as
households and commercialin the City of Wuhan, China. This study used auto (private cars
and taxis) and public transit (metro, and bus) for measuring MDA. To comprehensively
capture accessibility and location choice behaviors of urban activities, this study explicitly
analyzed the effects of the metro and bus, as well as their combined effects. The current
study used the data from the years 2012 and 2015. These data sets contained household
travel survey data, transportation network, transit network, mobile phone signals, and
land use data used to develop the land use and transportation interaction model. The study
employed the M-TDM model to measure the impact of short-term MDA on household and
commercial activities for the years 2012, and 2015. In addition, an advanced integrated
spatial economic (ISE) models, i.e., PECAS (Production, Exchange, Consumption, Allo-
cation, System) in order to investigate location preferences of urban activities over space
and time. The PECAS approach imitates the spatial economic systems under consideration
and has been improved with several distinct features such as an improved representation
of socioeconomic systems through a social accounting matrix and microsimulation-based
space development. Although locational model methodologies are based on a variety of
attributes or characteristics, they all share a common theoretical background based on
the random utility theory maximization. Moreover, location models do not function in
an isolated way; rather, they are integrated into larger modeling systems such as land
use—transport interaction (LUTI) modeling. It is crucial to recognize that the location
selection of activities has a strong relationship with the transport system and is influenced
by mode-specific accessibility. Accessibility is a dynamic feature of locations that varies
in time and mode due to the changes in the transport network and changing patterns of
activity distribution at different times of the day.

This study’s contribution was to evaluate the short-term MDA for the locational
preference of household and commercial urban activities, which could help to capture the
effect of MDA under diverse temporal and transport network impedance conditions on the
location choice of urban activities. However, the traditional accessibility parameters do not
adequately account for the short- and long-term requirements of urban activities. Therefore,
it is crucial to create a solution that might provide a more effective planning tool for a
thorough understanding of the urban system. This study examined the dynamic short-term
accessibility of urban activities, which could be a more effective planning tool than typical
“static” accessibility terms. Regarding household and commercial location choice, the ISE
modeling results revealed that households and commercial activities are sensitive to MDA,
especially using transit. In addition, their findings suggest that highly accessible locations
that are well served by automobiles are more appealing for household and commercial
activities. The ISE model results estimated that household and commercial location choice
models show R2 of 0.84–0.90 for transit-based accessibility, whereas the logsum-based static
models show R2 of 0.48–0.72. These results from the ISE models revealed that there was a
strong relationship between the MDA and the location choice behavior of urban activities.

This study contributes to the existing body of literature with insightful findings,
but there are a few limitations that must be acknowledged. This study assessed the
short-term MDA for locational preference behaviors for urban activities. However, future
studies should examine MDA over various time periods. The current study did not
account for nonmotorized modes, which do not affect congestion time but can affect the
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accessibility of the first and last miles. Future studies must include nonmotorized modes to
comprehensively capture the location choice behaviors. It is believed that data limitations
pose the greatest hindrance to the development of such a complex model, especially in
developing countries, because it requires large data sets such as economic and demographic
data, household travel data, real state data, rent, occupancy, floorspace data, AADT, and
mobile phone signal data. Due to the lack of self-reported travel data in developing
countries, it is recommended that a survey is conducted to collect the necessary recent
data for the model, which may yield useful findings. As time progresses, developments in
information technology have provided new opportunities for data and tools to extract the
required data. Our forthcoming research aims to address the above inadequacies when the
necessary and most current data becomes available.
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