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Abstract: Wind erosion is a major natural disaster worldwide, and it is a key problem in western
Rajasthan in India. The Analytical Hierarchy Process (AHP), the Geographic Information System
(GIS), and remote sensing satellite images are effective tools for modeling and risk assessment of
land degradation. The present study aimed to assess and model the land degradation vulnerable
(LDV) zones based on the AHP and geospatial techniques in the Luni River basin in Rajasthan,
India. This study was carried out by examining important thematic layers, such as vegetation
parameters (normalized difference vegetation index and land use/land cover), a terrain parameter
(slope), climatic parameters (mean annual rainfall and land surface temperature), and soil parameters
(soil organic carbon, soil erosion, soil texture, and soil depth), using the Analytical Hierarchical
Process (AHP) and geospatial techniques in the Luni River basin in Rajasthan, India. The weights
derived for the thematic layers using AHP were as follows: NDVI (0.27) > MAR (0.22) > LST (0.15) >
soil erosion (0.12) > slope (0.08) > LULC (0.06) > SOC (0.04) > soil texture (0.03) > soil depth (0.02).
The result indicates that nearly 21.4 % of the total area is prone to very high degradation risks; 12.3%
is prone to high risks; and 16%, 24.3%, and 26% are prone to moderate, low, and very low risks,
respectively. The validation of LDV was carried out using high-resolution Google Earth images and
field photographs. Additionally, the Receiver Operating Characteristic (ROC) curve found an area
under the curve (AUC) value of 82%, approving the prediction accuracy of the AHP technique in
the study area. This study contributes by providing a better understanding of land degradation
neutrality and sustainable soil and water management practices in the river basin.

Keywords: analytical hierarchical process; GIS; Google Earth imageries; land degradation; Luni
River basin; remote sensing

1. Introduction

Land is an essential part of the supportive ecosystem of the Earth. Humans and
animals are dependent on the ecosystem services, such as food, fiber, and shelter, provided
by this natural resource [1]. Resource degradation is one of the hottest topics of research
at present due to its alarming threat to biodiversity [2]. Land degradation is nothing
but the unsustainable over-exploitation of resources resulting in decreasing productivity
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and capabilities to provide a set of ecosystem services [3,4]. The international forum
United Nations Convention to Combat Desertification (UNCCD) reports the degradation
of land resources to be a challenging concern [5,6]. Moreover, increasing food demand,
anthropogenic activities, and changing climatic scenarios altogether put immense pressure
on land resources, leading to degradation [7,8].

The agriculture system is a major pillar of global food security, but its productivity
is currently threatened by various land degradation mechanisms, which are triggered
by anthropogenic activities and climate change [9,10]. The frequency of extreme events
caused by climate change is increasing the susceptibility of agricultural soils to degrading
processes [11]. Globally, about 24% (about 3500 Mha) of the land area is affected by land
degradation [12]. The severity of land degradation in India has been reported to be 94 Mha
due to water erosion, 9 Mha due to wind erosion, 14 Mha due to waterlogging, 6 Mha due
to salinity/alkalinity, and 16 Mha due to soil acidity [11,13,14]. Considering the increasing
severity of degradation, India is working to restore about 26 Mha of degraded land by
2030 in accordance with the Bonn Challenge and United Nations’ activities [15]. Rajasthan
state in western India has a hot arid climate with low rainfall and high wind speed [16],
comprising about 62% of the hot arid region of the country. Agro-climatic zones, such as
the arid western plains (Barmer and part of Jodhpur) and the hyper-arid partially irrigated
zones (Bikaner, Jaisalmer, and Churu), are the most highly prone areas to wind-erosion-
assisted land degradation due to their climatic characteristics and sandy terrain [17,18].
About 76% of the area of hot arid Rajasthan has wind erosion problems, where soil erodes
at a high rate of 1.3 t ha−1 to 83.3 t ha−1 [19].

Assessments of land degradation vulnerability play critical roles in prioritization and
planning for degradation neutrality and conservation policies [20]. Various important
factors, such as topography, climate, soil, and land use patterns, need to be determined for
the land degradation modeling and assessment of an area. Several techniques have been
developed for the evaluation of land degradation, but geospatial techniques have replaced
the time-consuming and costly traditional survey, especially in places that are difficult
to assess [21]. High-resolution satellite imageries are capable of providing reliable and
consistent insights into land degradation types, their rate, and resulting adverse impacts in
a cost-effective manner [22–26].

Land degradation is satisfactorily studied using numerous methods, such as machine
learning models [27,28], GIS-assisted spatial analyses [29], time-series and trend-based
analyses [30], universal soil loss and risk assessment models [31], and MEDALUS [32,33].
One of the most feasible options for assessing and mapping degraded land is the integration
of the multi-criterion decision analysis (MCDA) method with geospatial techniques. This
allows the complex problem to be broken down into sections followed by a solution and
then the integration of each section to obtain the final result/solution. The Analytical
Hierarchical Process (AHP), first developed by Saaty (1980), is one of the MCDA methods
used in the mapping of degradation vulnerability [34–37]. AHP is a well-structured
and widely accepted decision-making technique. Many researchers have used AHP and
geospatial techniques for assessing and mapping land degradation vulnerability [12,38].

Much research has been carried out on various land degradation, such as water erosion
and gully erosion, but limited research has been carried out on the identification of wind-
erosion-prone areas using AHP and geospatial techniques, particularly in the arid climate
of Rajasthan, India. This study area is highly vulnerable to wind erosion due to its climate,
soil, and geology. Despite this, no research has been carried out in this region to evaluate
and develop a land degradation vulnerability map. Therefore, an integrated approach
of AHP and GIS has immense potential to accurately estimate the wind-erosion-prone
areas and identification of most priority areas for suitable erosion control measures. Hence,
the objectives of the present study were as follows: (i) to characterize the vegetative, soil,
climatic, and terrain parameters of the basin and (ii) to identify the area’s most vulnerable to
land degradation using AHP along with RS and GIS techniques. The results of the present
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study help to provide important information for soil and water management practices,
land use plans, and environmental sustainability for the study area.

2. Materials and Methods
2.1. Study Area

Luni, the largest river basin in Rajasthan (India), is located between latitude 24◦30′

N to 27◦10′ N and longitude 70◦49′ E to 75◦04′ E (Figure 1). Geographically, it is located
adjacent to the western part of the Aravalli Range and occupies an area of 68,939 km2. The
basin covers the districts of Ajmer, Jodhpur, Nagaur, Barmer, Jalore, and Sirohi in part and
the district of Pali in full. The elevation ranges from −5 to 1613 m from the mean sea level
(MSL), with a decreasing gradient from the northern to the southern part of the basin. In
this basin, rainfall occurs mostly from June to September (>90%), and it ranges from as high
as ~1000 mm in the southern and eastern parts to as low as ~234 mm in the western part
of the basin [39]. The annual maximum potential evapotranspiration in the river basin is
1850 mm, and it is the highest (260 mm) in May and the lowest (77 mm) in December [39].
The study area, with the characteristics of low rainfall, high temperatures, and low relative
humidity, has an arid to hyper-arid climate [40].
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Figure 1. Location map of Luni River basin.

2.2. Data Acquisition

In the present study, nine input layers were used to identify the area most vulnerable
to land degradation, namely, the normalized difference vegetation index (NDVI) from a
moderate-resolution imaging spectroradiometer (MODIS), land surface temperature (LST)
from MODIS, mean annual rainfall from the Climate Hazards Group Infrared Precipita-
tion with Station data (CHIRPS), land use/land cover (LULC), slope, soil texture, soil
erosion, soil depth, and soil organic carbon. The United States Geological Survey (USGS)
website was used to download the shuttle radar topography mission (SRTM) DEM data
(https://earthexplorer.usgs.gov (accessed on 29 June 2022)). A land use/land cover (LULC)
map was downloaded from ESRI [41]. MODIS NDVI, MODIS LST, and CHIRPS rain-
fall were downloaded for the 21-year period of 2001–2021 using Google Earth Engine
(GEE). Land degradation, particularly wind erosion and desertification, cannot be assessed
during a short period of time, such as a few years or less; it should be evaluated over a
long period of time [42]. So, we used long-term mean data (21 years) to evaluate land
degradation vulnerability. Soil organic carbon data were downloaded from SoilGrids

https://earthexplorer.usgs.gov
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(https://soilgrids.org/ (accessed on 25 June 2022)). Additionally, data on soil texture, soil
erosion, and soil depth were collected at a scale of 1:250,000 from the ICAR-National Bureau
of Soil Survey and Land Use Planning (NBSS&LUP), Nagpur. All thematic layers were con-
verted to the WGS 1984 datum and Universal Transverse Mercator (UTM) 43N coordinate
system. Table 1 provides an overview of various datasets and their specifications.

Table 1. Specifications of various datasets used in the present study.

S.No. Data Source Variable Temporal Resolution Spatial Resolution Period

1 MODIS MOD13Q1 NDVI 16 days 250 m 2001–2021
2 MODIS MOD11A2 LST 8 days 1 km 2001–2021
3 ESRI LULC LULC - 10 m -
4 SRTM DEM Slope - 30 m -
5 SoilGrids250 m Soil organic carbon - 250 m -
6 CHIRPS Rainfall - 5 km 2001–2021

7 ICAR-NBSS &
LUP, Nagpur

Soil texture,
erosion, and depth - 1:250,000 -

2.3. Data Processing
2.3.1. Terrain Parameters

The downloaded SRTM DEM was reprojected to the UTM coordinate system (43N)
and filled in ArcGIS 10.8. A slope map of the basin was then generated using the filled DEM.

2.3.2. Climatic Parameters

Land degradation is caused by interactions between soil, climate, and land-use pat-
terns. In the present study, CHRIPS-based rainfall products (https://developers.google.
com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY (accessed on 22 April
2022) at a spatial resolution of 5 km were downloaded for the period of 2001 to 2021 using
GEE. The total annual rainfall was computed by calculating the sum of all images for the
respective year. These twenty years of annual rainfall data were used for the computation of
the long-term mean annual rainfall. The data were reprojected to the UTM 43N coordinate
system in ArcGIS 10.8. The downloaded rainfall data were resampled to a 30 m cell size by
using the bilinear interpolation method. The bilinear interpolation technique is the most
widely used interpolation technique for resampling raster images [35,38,43]. The thematic
layer of rainfall was categorized into five subclasses, namely, 234–401, 401–524, 524–685,
685–941, and 941–1654 mm, using the natural break method in ArcGIS. We used the nat-
ural break method based on previous research that used it for various hazard mapping
applications, such as [44–47].

In this study, MODIS global LST data (MOD11A2) (https://developers.google.com/
earth-engine/datasets/catalog/MODIS_006_MOD11A2 accessed on 23 April 2022) were
downloaded for 2001 to 2021 using GEE. The mean annual LST was computed by calculat-
ing the mean of all images of the respective year. These mean annual data of all years were
used for the computation of long-term (21 years) mean LST. Using Equation (1), data were
converted to degrees Celsius (◦C):

LST = 0.02× DN − 273.15 (1)

The datasets were subsequently reprojected and resampled in the ArcGIS environment.
The thematic layer was divided into five subclasses, namely, 27–34, 34–36, 36–37, 37–39,
and 39–43 ◦C, using the natural break method in ArcGIS.

2.3.3. Vegetation Parameters

In the present study, NDVI and LULC were considered important parameters for
evaluating the land degradation of the river basin. An LULC map was downloaded for the
year 2018 from ESRI and resampled to 30 m in the ArcGIS environment. NDVI data were

https://soilgrids.org/
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/UCSB-CHG_CHIRPS_DAILY
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD11A2
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obtained from NASA Land Processes Distributed Active Archive Center’s MODIS products
(MOD13Q1) (https://developers.google.com/earthengine/datasets/catalog/MODIS_00
6_MOD13Q1 accessed on 23 April 2022) at spatial and temporal resolutions of 250 m and
16 days, respectively, for a period of 21 years (2001–2021) using GEE. The mean annual
NDVI was computed from all images of a particular year. These mean annual data of all
years were used for the computation of long-term (21 years) mean NDVI. The vegetative
greenness of an area can be assessed using the NDVI, a dimensionless index that varies
from −1 to +1. A high NDVI value indicates healthy vegetation, while a low value signifies
stressed vegetation. The data were reprojected to UTM 43N as previously described and
resampled to a 30 m cell size by using the bilinear interpolation method in ArcGIS. Finally,
the layer was categorized into five subclasses, namely, −0.039–0.19, 0.19–0.24, 0.24–0.29,
0.29–0.36, and 0.36–0.60, using the natural break method in ArcGIS.

2.3.4. Soil Parameters

Soil texture, soil erosion class, and soil depth data were taken from ICAR-NBSS&LUP,
Nagpur, and resampled to 30 m in the ArcGIS environment. Seven soil texture classes were
identified, namely, clay loam, fine loam, loam, loamy skeletal, sandy, sandy skeletal, and
rock. For soil erosion, four classes were identified, namely, slight, moderate, severe, and
very severe erosion. Six classes were reported for soil depth and named, viz., rock, <25,
25–50, 50–75, 75–100, and >100 cm. Soil organic carbon data were downloaded from soil
grids and subsequently reprojected to the UTM 43N coordinate system and resampled
to a 30 m cell size. The layer was classified into five subclasses, namely, 0–52, 52–67,
67–93, 93–140, and 140–315 decigrams/kg. Prior to the AHP weightage assignment, all
input layers should have a uniform resolution. Therefore, all layers were resampled to
be comparable to DEM (30 m). A detailed flowchart of the methodology is displayed in
Figure 2.
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2.4. Analytical Hierarchical Process and Weightage Assignment

The multi-criteria decision analysis (MCDA) using the AHP technique is the most
popular and well-known method for identifying land degradation vulnerability [48]. AHP
is a pairwise comparison assessment theory, where Saaty’s scale of relative importance is
used to compare parameters to one another (Table 2) [49]. We need comparisons and a scale
of numbers that indicate how important one parameter is in comparison to another in terms
of the criterion being compared in order to draw organized conclusions about priorities.

Table 2. Saaty’s scale (1–9) for pairwise comparison in AHP.

Scale Importance

1 Equal importance
2 Intermediate between scale 1 and 3
3 Moderate importance
4 Intermediate between scale 3 and 5
5 Strong importance
6 Intermediate between scale 5 and 7
7 Very strong importance
8 Intermediate between scale 7 and 9
9 Extreme importance

The consistency ratio (CR) was used to validate the decision about the pairwise
comparison of the various thematic layers and their subclasses [50]. The following equation
was used to calculate the CR:

CR =
CI

RCI
(2)

where RCI indicates the random consistency index, and Saaty’s standard is used to calculate
its values (Table 3); CI stands for the consistency index, which was calculated using the
following equation:

CI =
(λmax − n)
(n− 1)

(3)

where λmax indicates the principal eigenvalue, and n indicates the total number of input
layers used in the LD assessment.

Table 3. Saaty’s random consistency index.

N 1 2 3 4 5 6 7 8 9 10 11

RCI 0 0 0.58 0.9 1.12 1.24 1.32 1.41 1.45 1.49 1.51

N—order of the matrix, RCI—random consistency index.

In the weighted overlay analysis using AHP, a CR value of ≤0.10 is acceptable. If
the CR is greater than 0.10, the decision must be revised to identify the source of the
inconsistency, and it must be resolved so ensure CR value below 0.10.

2.5. Generating Land Degradation Vulnerability Map

Thematic layers and their subclasses were given AHP-based weightages in ArcGIS to
delineate the land degradation vulnerability (LDV) zones. The LDV map in the current
study was generated using the following equation:

LDV = NDVICwi×NDVISCwi + MARCwi×MARSCwi + LSTCwi× LSTSCwi + SECwi× SESCwi+
SCwi× SSCwi + LULCCwi × LULCSCwi + SOCCwi× SOCSCwi + STCwi× STSCwi + SDCwi× SDSCwi

(4)

where NDVI, MAR, LST, SE, S, LULC, SOC, ST, and SD indicate the normalized difference
vegetation index, mean annual rainfall, land surface temperature, soil erosion, slope, land
use/land cover, soil organic carbon, soil texture, and soil depth, respectively; Cwi and
Scwi represent the class weight and subclass weight, respectively. Finally, the LDV map
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was categorized into five classes, viz., very low, low, moderate, high, and very high,
using the quantile breaks in ArcGIS. Using the ultra-high definition (UHD) Google Earth
imageries of 2022, the LDV map was validated at ten randomly selected sites. Moreover,
an ROC curve was generated from the fifty randomly selected sites using Google Earth to
validate the results. The ROC curve was used to estimate the area under the curve (AUC),
which has values between 0.5 and 1. AUC values closer to 1 indicate excellent model
performance whereas, values closer to 0.5 indicate poor prediction accuracy. Validation
was also performed using field photographs to determine the agreement with the AHP-
generated LDV map.

3. Result
3.1. Input Thematic Layers and Their Variabilities

The mean NDVI values of the study area range from −0.03 to 0.60, and they were
divided into five subclasses, viz., −0.03–0.19, 0.19–0.24, 0.24–0.29, 0.29–0.36, and 0.36–0.60
(Figure 3A). The highest area (27.9%) falls under subclass −0.03–0.19, followed by 0.24–0.29
(27.4%), and the lowest area falls under subclass 0.36–0.60 (4.9%). The low NDVI class
was assigned higher weights, while the high-value class was assigned lower weights. The
study of LULC established the baseline information for activities such as the thematic
mapping and change detection analysis of earth over time. The study area’s LULC map
represents cropland (46.9%), current fallow land (21.2%), land with shrub/scrub (20.3%),
forest (shrub/scrub/degraded) (1.4%), other wastelands (8.6%), built-up land (urban/rural)
(0.5%), deciduous forest (0.8%), water bodies (0.5%), and gullied/ravines (0.01%), and it
is depicted in Figure 3B. Most of the area (68.7%) is used for agriculture, which spread
acrossthe study area, mostly covering the northeastern and southeastern parts rather than
the western part. Around 2.15% area of the river basin is covered by various types of
forests, including deciduous and degraded forests, which lie in the southeastern part, and
the central part of the study area is covered by land with shrub/scrub (20.3%).

The mean annual rainfall was categorized into five subclasses, namely, very low
(234–401 mm), low (401–524 mm), moderate (524–685 mm), high (685–941 mm), and very
high (941–1654 mm) rainfall, occupying approximately 42, 30, 20, 5, and 2% of the total geo-
graphical area, respectively (Figure 3C). The study area receives very high precipitation in
a small portion of the south and southeastern parts, whereas the western part receives very
low rainfall. In the present study, the low rainfall subclass was assigned high weightage
and vice versa.

The land surface temperature of the river basin was divided into five subclasses,
namely, 27–34, 34–36, 36–37, 37–39, and 39–43 ◦C (Figure 3D). About 65 % of the area of
the basin falls under the fourth and fifth subclasses of LST (37–39, 39–43 ◦C), lying in the
western and central parts of the study area. The third class (36–37 ◦C) of LST is distributed
mostly in the northern and southeastern parts of the river basin and occupies around 23%
of the total study area. Only around 12% of the area falls under the first subclass (27–34 ◦C),
lying mostly in the eastern part of the river basin. A high LST was assigned high weights
and vice versa.

The study area was classified into five subclasses of SOC content, namely, 0–52,
52–67, 67–93, 93–140, and 141–315 decigrams/kg (Figure 4A). The maximum area (42.1%)
of the study area falls under subclass 52–67 decigram/kg, followed by subclass 67–93
(26.9%), whereas the lowest area (1.6%) falls under the 141–315 decigram/kg subclass. The
northwestern part of the study area has a low SOC as compared to the southeastern part,
which is an important factor for the stability of the soil structure. The soil erosion map
of the study area is depicted in Figure 4B, and four erosion classes were identified. The
study area is mainly composed of moderate soil erosion (56.3%), followed by severe erosion
(35.2%), and very severe erosion occurs the least (4.2%). Severe and very severe erosion
are mainly concentrated in the western part, and moderate erosion is found in the eastern
part of the study area. The soil depth map is presented in Figure 4C, and six subclasses
were identified according to the ICAR-NBSS&LUP, Nagpur, India. The highest area falls
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under subclass >100 cm (59%), and the lowest area falls under subclass <25 cm, with an
area of 1.9%. The soil in the study area was classified into different texture classes, namely,
clay/fine loam, loamy skeletal, sandy skeletal, and sandy soils (Figure 4D). The study
area is mainly composed of sandy soil (49.5%), followed by clay loam (24.4%), with loam
representing the least amount (1.1%). The western part of the study area is dominated by
sandy soil, whereas the eastern part is dominated by fine loam and clay loam texture.
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The study area’s slope was divided into six subclasses, namely, <3, 3–8, 8–15, 15–30,
30–50, and >50% (Figure 5). Almost 62% of the area of the basin falls under the slope
subclass of <3%, which is nearly flat and mainly concentrated in the northern and eastern
parts of the basin. The slope of the remaining 38% of the area falls under subclass >3%. The
eastern and southeastern parts are mainly composed of high slopes.

3.2. Land Degradation Vulnerability

Before the thematic layer integration, consistency ratios for each thematic layer
(Table 4), normalized matrix (Table 5), and thematic layer subclass (Table 6) were com-
puted. The findings show that the judgment matrices used in the analyses were reasonably
consistent and accurate (CR ≤ 0.10). The NDVI, LST, rainfall, topography, and pedologi-
cal parameters were computed and the final weightage assigned to each parameter was
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computed using the AHP model. The weighted overlay approach was used to integrate
the thematic layers according to their associated weights. AHP found that NDVI had
the highest priority in land degradation vulnerability zone (LDVZ) identification, with
a weight value of 0.27, followed by rainfall (0.22), LST (0.15), erosion (0.12), slope (0.08),
LULC (0.06), SOC (0.22), texture (0.22), and depth (0.22). In this study, with the help of the
AHP- and the GIS-based modeling approach, five LDVZs, namely, very low, low, moderate,
high, and very high, were identified (Figure 6). The findings show that 50.3% of the river
basin area (34.72 lakh ha) is highly vulnerable to land degradation, and it was classified in
the very low to low class, accounting for nearly half of the river basin (Figure 7). These very
low to low classes of LDV cover the eastern, southern, and northeastern parts of the study
area. About 11.02 lakh ha (16.0%) of the river basin area falls under the moderate class
of land degradation, mostly covering the central to southeastern parts of the study area.
The high and very high classes of land degradation vulnerability cover about 23.19 lakh ha
(33.7%) of the river basin area. The western and somewhat central portions of the study
region mostly fall under these classes. These two classes particularly indicate wind erosion,
which is one of the most severe forms of land degradation.
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Table 4. AHP-pairwise comparison matrix for thematic layers.

NDVI MAR LST SE Slope LULC SOC ST SD Normalized Weight CR

NDVI 1 2 2 3 4 5 5 7 9 0.27 0.075
MAR 0.5 1 2 3 4 4 6 6 8 0.22
LST 0.5 0.5 1 2 3 3 4 5 7 0.15
SE 0.3 0.3 0.5 1 2 3 4 5 8 0.12

Slope 0.3 0.3 0.3 0.5 1 2 3 4 5 0.08
LULC 0.2 0.3 0.3 0.3 0.5 1 2 4 5 0.06
SOC 0.2 0.2 0.3 0.3 0.3 0.5 1 2 4 0.04
ST 0.1 0.2 0.2 0.2 0.3 0.3 0.5 1 3 0.03
SD 0.1 0.1 0.1 0.1 0.2 0.2 0.3 0.3 1 0.02

NDVI, normalized difference vegetation index; MAR, mean annual rainfall; LST, land surface temperature; SE,
soil erosion; S, slope; LULC, land use/land cover; SOC, soil organic carbon; ST, soil texture; SD, soil depth.

Table 5. Normalized matrix for thematic layers.

NDVI MAR LST SE Slope LULC SOC ST SD

NDVI 0.31 0.42 0.30 0.29 0.26 0.26 0.19 0.20 0.18
MAR 0.15 0.21 0.30 0.29 0.26 0.21 0.23 0.17 0.16
LST 0.15 0.10 0.15 0.19 0.20 0.16 0.16 0.15 0.14
SE 0.10 0.07 0.07 0.10 0.13 0.16 0.16 0.15 0.16

Slope 0.08 0.05 0.05 0.05 0.07 0.11 0.12 0.12 0.1
LULC 0.06 0.05 0.05 0.03 0.03 0.05 0.08 0.12 0.1
SOC 0.06 0.03 0.04 0.02 0.02 0.03 0.04 0.06 0.08
ST 0.04 0.03 0.03 0.02 0.02 0.01 0.02 0.03 0.06
SD 0.03 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02
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Table 6. Weightages of subclasses.

Thematic Layer Subclass Weight CR

NDVI −0.03–0.19 0.521 0.093
0.19–0.24 0.271
0.24–0.29 0.107
0.29–0.36 0.066
0.36–0.60 0.035

MAR (mm) 234–401 0.498 0.091
401–524 0.267
524–685 0.125
685–941 0.075
941–1654 0.035

LST (◦C) 27–34 0.039 0.097
34–36 0.064
36–37 0.108
37–39 0.223
39–43 0.566

SE Slight 0.049 0.099
Moderate 0.103

Severe 0.222
Very severe 0.626

Slope (%) >50 0.030 0.098
30–50 0.045
15–30 0.081
8–15 0.141
3–8 0.247
<3 0.456

LULC Water bodies/built up (urban/rural) 0.025 0.097
Deciduous forest 0.033

Forest (shrub/scrub/degraded) 0.053
Cropland 0.089

Land with shrub/scrub 0.147
Current fallow land 0.236

Gullied/ravines/other wastelands 0.418

SOC (decigram/kg) 0–52 0.521 0.093
52–67 0.271
67–93 0.107
93–140 0.066

140–315 0.035

ST Loam/clay loam/fine loam 0.033 0.083
Loamy skeletal 0.067
Sandy skeletal 0.141

Sandy 0.289
Rock 0.469

SD (cm) Rock 0.433 0.095
<25 0.276

25–50 0.137
50–75 0.083
75–100 0.041
>100 0.030
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3.3. Validation of Land Degradation Vulnerability Zones

The validation of the LDVZs of the study area was conducted using two approaches,
namely, field photographs and Google Earth images. Figure 8 indicates good agreement
between the LDV map of the study area with the field photographs. In the second approach,
validation was carried out with ten randomly selected high-resolution Google Earth images
(Figure 9). In addition to this, fifty points were randomly selected in Google Earth to plot
the ROC curve, and the AUC value was found to be 82% (Figure 10). The AHP model
predicts land degradation vulnerability zones in the research area with reasonable accuracy,
as shown by the ROC curve.
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4. Discussion

Assessments of land degradation status are important for sustainable agricultural
planning and development in an ecosystem. Since land degradation has recently acceler-
ated, spatial risk mapping of land degradation is required in order to help authorities make
trustworthy and fair decisions on ecosystem rehabilitation or restoration and investment
priorities [51]. In the hot, arid western Rajasthan, wind erosion causes serious land degrada-
tion and has an impact on the crop production system [19]. For sustainable natural resource
management, the identification of areas sensitive to wind erosion is urgently required.
Therefore, using an AHP- and GIS-based modeling technique, the current research was
carried out to identify land degradation vulnerability zones in the Luni River basin.

In the present investigation, NDVI, MAR, LST, erosion class, slope, LULC, SOC, soil
depth, and soil texture were taken into consideration for land degradation vulnerability
mapping. The most important layers for assessing vulnerability to land degradation
were determined to be NDVI and MAR. It has long been known that NDVI is a valuable
tool for assessing the vegetation cover of any study area, and it is widely acknowledged
in research that a decline in NDVI is an indication of land degradation and is directly
related to climatic factors [52,53]. Rainfall is the most significant factor for wind erosion,
as low-rainfall zones are highly vulnerable to sand movement and, consequently, wind
erosion [54,55]. LST is a crucial parameter in arid and semi-arid zones due to its direct
relationship with soil moisture availability, and it is also a crucial parameter in this study
because of its indirect relationship with the vegetation cover of the research area [56,57].
Increased land degradation and decreased vegetation greenness could be the effects of
an increasing LST. LULC is a key contributor to land degradation since it indicates both
natural and manmade changes in land surfaces [58]. SOC is an important soil parameter
that acts as a binding agent and stabilizes the soil structure [59]. Therefore, the depletion of
soil organic carbon can reduce soil aggregate stability and, as a consequence, increase soil
erodibility [59,60]. Soil texture plays a significant role in the susceptibility of a soil surface
to wind erosion [61,62]. Sandy soils are intrinsically more erodible than fine-textured
soil due to the lack of clay and silt, which are necessary for physical crusting and soil
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aggregation [63,64]. Similarly, soil depth is also an important parameter, as shallow soil is
more vulnerable to soil loss than deep soil [65]. We used slope as an input in the present
study because topographic relief and surface fragmentation both increase with an increase
in slopes, which results in a significant increase in surface roughness [66]. So, high-slope
areas are less vulnerable to wind erosion.

Finally, weights were assigned to the thematic layers based on their importance, i.e.,
NDVI (0.27), MAR (0.22), LST (0.15), erosion class (0.12), slope (0.08), LULC (0.06), SOC
(0.04), soil texture (0.03), and soil depth (0.02). Since NDVI is the most significant indicator
of vegetal degradation, we identified it as the first most crucial parameter in the hierarchy.
The mean annual rainfall was selected as the second most important parameter because
low rainfall leads to a dry climate and, consequently, more wind erosion. The land surface
temperature was chosen as the third layer in the hierarchy because regions with higher
LSTs are assumed to have less vegetative cover and an arid climate compared to areas with
lower LSTs. The soil erosion class was chosen as the fourth element in the hierarchy because
soil erosion is a direct indicator of land degradation in the study area. Lower ranks in the
hierarchy were given to the remaining layers. As a result, a pairwise comparison matrix
was used to compare all layers. Before the integration of the thematic layers, consistency
ratios for each thematic layer and its subclasses were computed. The computed CR value
was ≤0.10, demonstrating the accuracy of all the parameters’ predictions regarding how
they affect soil erosion.

The land degradation vulnerability (LDV) map generated using AHP- and GIS-based
modeling was categorized into five subclasses, viz., very low, low, moderate, high, and very
high, occupying 26%, 24.3%, 16%, 12.3%, and 21.4% of the river basin area, respectively.
The result shows that the very low to low category of LDV covered half (50.3%) of the study
area, predominantly covering the eastern and southern parts of the basin. These categories
are mainly associated with high vegetative cover (NDVI >0.24), high to very high rainfall
(685–1654 mm), LST <39 ◦C, deep soils with a clay loam to loam texture and a high organic
carbon content, and slight-to-moderate soil erosion. Tolche et al. 2021 [35] also reported
that deep soils with acidic-to-neutral pH were very slightly and slightly vulnerable to LD.
High NDVI with optimized LULC can improve SOC, which acts as a binding agent and
stabilizes soil structure and reduces soil erosion losses [67]. Similarly, many researchers
have reported that very low to low categories of LDV have good vegetative coverage
with open forests, very low vegetative degradation, adequate rainfall, and well-drained
soils [38,43]. About 16% of the study area falls under moderate LDV, mainly concentrated
in the central part of the basin. This region is characterized by less vegetative coverage, the
scrub/shrub class of LULC, moderate soil erosion, medium rainfall (401–524 mm), medium
LST, and sandy soil. Mzuri et al. 2021 [68] and Tolche et al. 2021 [35] also reported that a
moderate level of LD was mainly associated with less vegetative cover, insufficient rainfall,
a moderate temperature, and sparse shrubland.

The high and very high LDV classes covered about 33.7% of the river basin area mostly
comprising the western part of the basin. These two classes showed high to very high
severity of land degradation, such as sand dunes and wind erosion, with sparse vegetation
conditions. This study area zone had very low vegetation cover (NDVI < 0.19), poor rainfall
(<400 mm), a higher LST (39–43 ◦C), and sandy to sandy skeletal texture soils with low soil
organic carbon (0–52 decigram/kg) and severe soil erosion. In the present study, NDVI and
rainfall were the most sensitive input parameters. Rukhovich et al. (2021) [69] found that
areas with low NDVI values are more prone to land degradation, where the probability
of assessing LD using indicators such as NDVI computed from Landsat imagery was
87.5%. Similar to this, it was determined that the assessment of LD was more consistent
with spatial and temporal variations in NDVI, especially in arid regions, than with other
hydro-climatic indicators [70]. Due to the high temperatures in these locations, the little
available precipitation will evaporate, preventing vegetation growth and reducing rain use
effectiveness [71,72]. Similar findings were obtained in various studies on LDV for India’s
semi-arid ecosystem, where low vegetation cover, little rainfall, and high temperatures
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make the area extremely vulnerable to LD [38,43]. The prioritization of the river basin was
carried out to identify degraded land with high erosion activity so that suitable conservation
measures can be taken to minimize LD [73]. The study area can be categorized into three
priority zones: high priority (the very high and high LDV class), medium priority (the
moderate LDV class), and low priority (the low and very low LDV class).

High-resolution Google Earth images and field photographs were used to validate the
land degradation vulnerability zones, and the results are in excellent agreement with the
model-based AHP-GIS approach. In earlier studies, similar types of validation approaches
have been used by many researchers with respect to land degradation [38,43] and soil
erosion hazards [74]. Moreover, the ROC curve has been used to assess the accuracy of
AHP models [75–77]. ROC curves are commonly used to evaluate test accuracy, as they
plot a test’s true positive rate versus its false positive rate [78,79]. Vulnerable to land
degradation and non-vulnerable areas were selected from Google Earth images and used
them to test the performance of AHP in river basins [38]. The AUC value of the ROC curve
in the current investigation was observed to be 82%. Therefore, it could be determined that
the AHP model produces satisfactory results in estimating the zones vulnerable to LD in
the river basin.

In this research, the AHP- and GIS-based modeling approach showed its usefulness
for the assessment of vulnerability to LD by combining different parameters. As expected,
arid and semi-arid terrains are generally sensitive to LD; thus, it is important to consider
both scientific and policy approaches [80]. The methodology followed in the present study
could be used as a tool to guide decision makers in the prioritization of the river basin.
The results of this study suggest that very high and high LDV zones should be considered
hotspots for initiatives suitable for soil and water conservation measures and sustainable
land resource management.

5. Conclusions

In the present study, nine thematic layers, namely, NDVI, LULC, rainfall, LST, slope,
SOC, soil erosion, soil texture, and depth, were taken into consideration for LDVZ identifica-
tion and mapping in the Luni River basin. The analysis revealed that 33.7% of the area falls
under high to very high vulnerability, followed by 16% of the area falling under moderate
vulnerability and 50.3% of the area falling under low to very low vulnerability. The valida-
tion of the LDVZ with Google Earth images and field photographs clearly showed that the
remote sensing data combined with AHP adequately distinguished the sites prone to land
degradation in the study basin in a cost-effective and time-efficient manner. Additionally,
the ROC curve analysis, with an area under the ROC curve value of 82%, validated the
AHP method’s potential to accurately estimate the LD vulnerability zones in the research
area. Soil and water conservation structures that are appropriate could be suggested for the
regions that are extremely and very highly prone to LD. Multi-criteria decision analyses
and geospatial techniques can be used as tools for prioritization management in order to
achieve LD neutrality in arid and semi-arid regions.
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Arable lands under the pressure of multiple land degradation processes. A global perspective. Environ. Res. 2021, 194, 110697.
[CrossRef]

11. Lal, R. Adaptation and Mitigation of Climate Change by Improving Agriculture in India. In Climate Change and Agriculture in
India: Impact and Adaptation; Sheraz Mahdi, S., Ed.; Springer: Cham, Switzerland, 2019.

12. Romshoo, S.A.; Amin, M.; Sastry, K.L.N.; Parmar, M. Integration of social, economic, and environmental factors in GIS for land
degradation vulnerability assessment in the Pir Panjal Himalaya, Kashmir, India. Appl. Geogr. 2020, 125, 102307. [CrossRef]

13. Bhattacharyya, R.; Ghosh, B.N.; Mishra, P.K.; Mandal, B.; Rao, C.S.; Sarkar, D.; Das, K.; Anil, K.S.; Lalitha, M.; Hati, K.M.; et al.
Soil degradation in India: Challenges and potential solutions. Sustainability 2015, 7, 3528–3570. [CrossRef]

14. Srinivasarao, C.; Chary, G.R.; Raju, B.M.K.; Jakkula, V.S.; Rani, Y.S.; Rani, N. Land use planning for low rainfall (450–750 mm)
regions of India. Agropedology 2014, 24, 197–221.

15. Singh, K.; Tewari, S.K. Does the road to land degradation neutrality in India is paved with restoration science? Restor. Ecol. 2021,
30, e13585. [CrossRef]

16. Goyal, R.K.; Saxena, A.; Moharana, P.C.; Pandey, C.B. Crop water demand under climate change scenarios for western Rajasthan.
Ann. Arid Zone 2013, 52, 89–94.

17. Kar, A.; Moharana, P.C.; Raina, P.; Kumar, M.; Soni, M.L.; Santra, P.; Ajai; Arya, A.S.; Dhinwa, P.S. Desertification and its control
measures. In Trends in Arid ZoneResearches in India; Kar, A., Garg, B.K., Singh, M.P., Kathju, S., Eds.; Central AridZone Research
Institute: Jodhpur, India, 2009; pp. 1–47.

18. Moharana, P.C.; Gaur, M.K.; Chaudhary, C.; Chauhan, J.S.; Rajpurohit, R.S. Asystem of Geomorphological mapping for western
Rajasthan with relevance foragricultural land use. Ann. Arid Zone 2013, 52, 163–180.

19. Santra, P.; Moharana, P.C.; Kumar, M.; Soni, M.L.; Pandey, C.B.; Chaudhari, S.K.; Sikka, A.K. Crop production and economic loss
due to wind erosion in hot arid ecosystem of India. Aeolian Res. 2017, 28, 71–82. [CrossRef]

20. Selmy, S.A.; Abd Al-Aziz, S.H.; Jiménez-Ballesta, R.; García-Navarro, F.J.; Fadl, M.E. Modeling and Assessing Potential Soil
Erosion Hazards Using USLE and Wind Erosion Models in Integration with GIS Techniques: Dakhla Oasis, Egypt. Agriculture
2021, 11, 1124. [CrossRef]

21. AbdelRahman, M.A.E. Estimating soil fertility status in physically degraded land using GIS and remote sensing techniques in
Chamarajanagar district, Karnataka, India. Egypt. J. Remote Sens. Space Sci. 2016, 19, 95–108. [CrossRef]

22. Sujatha, G.; Dwivedi, R.S.; Sreenivas, K.; Venkataratnam, L. Mapping and monitoring of degraded lands in part of Jaunpur
district of Uttar Pradesh using temporal spaceborne multispectral data. Int. J. Remote Sens. 2000, 21, 519–531. [CrossRef]

23. AbdelRahman, M.A.E.; Tahoun, S.A.; Abdel Bary, E.A.; Arafat, S.M. Detecting Land Degradation Processes Using Geo Statistical
Approach in Port Said, Egypt. Zagazig J. Agric. Res. 2008, 35, 1361–1379.

24. Reddy, G.P.O.; Kumar, N.; Singh, S.K. Remote Sensing and GIS in Mapping and Monitoring of Land Degradation. In Geospatial
Technologies in Land Resources Mapping, Monitoring and Management; Reddy, G.P.O., Singh, S.K., Eds.; Geotechnologies and the
Environment; Springer: Cham, Switzerland, 2018; Volume 21, pp. 401–424.

http://doi.org/10.1007/s12524-021-01349-y
http://doi.org/10.1002/ldr.2344
http://doi.org/10.1002/ldr.2272
http://doi.org/10.3390/rs12213542
http://doi.org/10.1016/j.envres.2020.110697
http://doi.org/10.1016/j.apgeog.2020.102307
http://doi.org/10.3390/su7043528
http://doi.org/10.1111/rec.13585
http://doi.org/10.1016/j.aeolia.2017.07.009
http://doi.org/10.3390/agriculture11111124
http://doi.org/10.1016/j.ejrs.2015.12.002
http://doi.org/10.1080/014311600210722


Land 2023, 12, 106 18 of 20

25. Jong, R.; Bruin, S.; Schaepman, M.; Dent, D. Quantitative mapping of global land degradation using earth observations. Int. J.
Remote Sens. 2011, 32, 6823–6847. [CrossRef]

26. Higginbottom, T.; Symeonakis, E. Assessing land degradation and desertification using vegetation index data: Current frame-
works and future directions. Remote Sens. 2014, 6, 9552–9575. [CrossRef]

27. Yousefi, S.; Pourghasemi, H.R.; Avand, M.; Janizadeh, S.; Tavangar, S.; Santosh, M. Assessment of land degradation using
machine-learning techniques: A case of declining rangelands. Land Degrad. Dev. 2021, 32, 1452–1466. [CrossRef]

28. Basu, T.; Das, A.; Pham, Q.B.; Al-Ansari, N.; Linh, N.T.T.; Lagerwall, G. Development of an integrated peri-urban wetland
degradation assessment approach for the Chatra Wetland in eastern India. Sci. Rep. 2021, 11, 1–22.

29. Chen, L.; Ren, C.; Li, L.; Wang, Y.; Zhang, B.; Wang, Z.; Li, L. A comparative assessment of geostatistical, machine learning, and
hybrid approaches for mapping topsoil organic carbon content. ISPRS Int. J. GeoInf. 2019, 8, 174. [CrossRef]

30. Li, Z.; Wang, S.; Song, S.; Wang, Y.; Musakwa, W. Detecting land degradation in Southern Africa using Time Series Segment and
Residual Trend (TSS-RESTREND). J. Arid Environ. 2021, 184, 104314. [CrossRef]

31. Waltner, I.; Saeidi, S.; Grósz, J.; Centeri, C.; Laborczi, A.; Pásztor, L. Spatial assessment of the effects of land cover change on soil
erosion in Hungary from 1990 to 2018. ISPRS Int. J. Geo-Inf. 2020, 9, 667. [CrossRef]

32. Lahlaoi, H.; Hassan, R.; Atika, H.; Said, L.; Said, M. Desertification assessment using MEDALUS model in Watershed Oued El
Maleh Morocco. Geoscience 2017, 7, 50. [CrossRef]

33. Rabah, B.; Aida, B. Adaptation of MEDALUS method for the analysis depicting land degradation in Oued Labiod Valley (Eastern
Algeria). In Advances in Remote Sensing and Geo Informatics Applications; El-Askary, H.M., Lee, S., Heggy, E., Pradhan, B., Eds.;
Springer: Dordrecht, The Netherlands, 2018.

34. Abuzaid, A.S.; AbdelRahman, M.A.; Fadl, M.E.; Scopa, A. Land degradation vulnerability mapping in a newly-reclaimed desert
oasis in a hyper-arid agro-ecosystem using AHP and geospatial techniques. Agronomy 2021, 11, 1426. [CrossRef]

35. Tolche, A.D.; Gurara, M.A.; Pham, Q.B.; Anh, D.T. Modelling and accessing land degradation vulnerability using remote sensing
techniques and the analytical hierarchy process approach. Geocarto Int. 2021, 1–21. [CrossRef]

36. Wu, Q.; Wang, M. A framework for risk assessment on soil erosion by water using an integrated and systematic approach.
J. Hydrol. 2007, 337, 11–21. [CrossRef]

37. Alexakis, D.D.; Hadjimitsis, D.G.; Agapiou, A. Integrated use of remote sensing, GIS and precipitation data for the assessment of
soil erosion rate in the catchment area of “Yialias” in Cyprus. Atmos. Res. 2013, 131, 108–124. [CrossRef]

38. Sandeep, P.; Reddy, G.P.O.; Jegankumar, R.; Arun Kumar, K.C. Modeling, and assessment of land degradation vulnerability in
semi-arid ecosystem of Southern India using temporal satellite data, AHP and GIS. Environ. Model. Assess. 2021, 26, 143–154.
[CrossRef]

39. Singh, M.; Urmila, P.S.; Yadav, K.; Bhakar, S.; Kothati, M. Site suitability analysis for groundwater management in river basin of
India. Poll Res. 2022, 41, 132–139. [CrossRef]

40. Kumar, M.D.; Bassi, N.; James, A.J. Water accounting for Luni river basin, western Rajasthan. In From Catchment Management to
Managing River Basins: Science, Technology Choices, Institutions and Policy; Reddy, R., James, A.J., Eds.; Elsevier: Amsterdam, The
Netherlands, 2019.

41. Karra, K.; Kontgis, C.; Statman-Weil, Z.; Mazzariello, J.C.; Mathis, M.; Brumby, S.P. Global land use/land cover with Sentinel 2
and deep learning. In Proceedings of the 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, Brussels,
Belgium, 1–16 July 2021; pp. 4704–4707.

42. Jiang, L.; Jiapaer, G.; Bao, A.; Kurban, A.; Guo, H.; Zheng, G.; De Maeyer, P. Monitoring the long-term desertification process and
assessing the relative roles of its drivers in Central Asia. Ecol. Indic. 2019, 104, 195–208. [CrossRef]

43. Malav, L.C.; Yadav, B.; Tailor, B.L.; Pattanayak, S.; Singh, S.V.; Kumar, N.; Reddy, G.P.O.; Mina, B.L.; Dwivedi, B.S.; Jha, P.K.
Mapping of Land Degradation Vulnerability in the Semi-Arid Watershed of Rajasthan, India. Sustainability 2022, 14, 10198.
[CrossRef]

44. Wu, H.; Guo, B.; Fan, J.; Yang, F.; Han, B.; Wei, C.; Lu, Y.; Zang, W.; Zhen, X.; Meng, C. A novel remote sensing ecological
vulnerability index on large scale: A case study of the China-Pakistan Economic Corridor region. Ecol. Indic. 2021, 129, 107955.
[CrossRef]

45. Akay, H. Flood hazards susceptibility mapping using statistical, fuzzy logic, and MCDM methods. Soft Comput. 2021, 25,
9325–9346. [CrossRef]

46. Chen, S.; Liu, W.; Bai, Y.; Luo, X.; Li, H.; Zha, X. Evaluation of watershed soil erosion hazard using combination weight and GIS:
A case study from eroded soil in Southern China. Nat. Hazards 2021, 109, 1603–1628. [CrossRef]

47. Neji, N.; Ayed, R.B.; Abida, H. Water erosion hazard mapping using analytic hierarchy process (AHP) and fuzzy logic modeling:
A case study of the Chaffar Watershed (Southeastern Tunisia). Arab. J. Geosci. 2021, 14, 1–15. [CrossRef]

48. Alam, N.M.; Jana, C.; Mandal, D.; Meena, S.K.; Shrimali, S.S.; Mandal, U.; Mitra, S.; Kar, G. Applying Analytic Hierarchy Process
for Identifying Best Management Practices in Erosion Risk Areas of Northwestern Himalayas. Land 2022, 11, 832. [CrossRef]

49. Mukherjee, I.; Singh, U.K. Delineation of groundwater potential zones in a drought-prone semi-arid region of east India using
GIS and analytical hierarchical process techniques. Catena 2020, 194, 104681. [CrossRef]

50. Saaty, T.L. How to make a decision: The analytic hierarchy process. Interfaces 1994, 26, 19–43. [CrossRef]

http://doi.org/10.1080/01431161.2010.512946
http://doi.org/10.3390/rs6109552
http://doi.org/10.1002/ldr.3794
http://doi.org/10.3390/ijgi8040174
http://doi.org/10.1016/j.jaridenv.2020.104314
http://doi.org/10.3390/ijgi9110667
http://doi.org/10.3390/geosciences7030050
http://doi.org/10.3390/agronomy11071426
http://doi.org/10.1080/10106049.2021.1959656
http://doi.org/10.1016/j.jhydrol.2007.01.022
http://doi.org/10.1016/j.atmosres.2013.02.013
http://doi.org/10.1007/s10666-020-09739-1
http://doi.org/10.53550/PR.2022.v41i01.019
http://doi.org/10.1016/j.ecolind.2019.04.067
http://doi.org/10.3390/su141610198
http://doi.org/10.1016/j.ecolind.2021.107955
http://doi.org/10.1007/s00500-021-05903-1
http://doi.org/10.1007/s11069-021-04891-7
http://doi.org/10.1007/s12517-021-07602-5
http://doi.org/10.3390/land11060832
http://doi.org/10.1016/j.catena.2020.104681
http://doi.org/10.1287/inte.24.6.19


Land 2023, 12, 106 19 of 20

51. Torabi Haghighi, A.; Darabi, H.; Karimidastenaei, Z.; Davudirad, A.A.; Rouzbeh, S.; Rahmati, O.; Sajedi-Hosseini, F.; Klöve, B.
Land degradation risk mapping using topographic, human-induced, and geo-environmental variables and machine learning
algorithms, for the Pole-Doab watershed, Iran. Environ. Earth Sci. 2021, 80, 1–21. [CrossRef]

52. Emmanuel, O. Effects of Deforestation on Land Degradation; LAP LAMBERT Academic Publishing: Ado Ekiti, Nigeria, 2017.
53. Lennart, O.; Humberto, B. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation,

Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems (Sweden: Land Degradation); Moreno,
J.M., Ed.; IPCC: Geneva, Switzerland, 2019.

54. Singh, S.; Kar, A.; Joshi, D.C.; Kumar, S.; Sharma, K.D. Desertification problem in western Rajasthan. Ann. Arid Zone 1994, 33, 191.
55. Houyou, Z.; Bielders, C.L.; Benhorma, H.A.; Dellal, A.; Boutemdjet, A. Evidence of strong land degradation by wind erosion as a

result of rainfed cropping in the Algerian steppe: A case study at Laghouat. Land Degrad. Dev. 2016, 27, 1788–1796. [CrossRef]
56. Faramarzi, M.; Heidarizadi, Z.; Mohamadi, A.; Heydari, M. Detection of vegetation changes in relation to normalized difference

vegetation index (NDVI) in semi-arid rangeland in western Iran. J. Agric. Sci. Technol. 2018, 20, 51–60.
57. Yang, L.; Sun, G.; Zhi, L.; Zhao, J. Negative soil moisture-precipitation feedback in dry and wet regions. Sci. Rep. 2018, 8, 4026.

[CrossRef]
58. Tolessa, T.; Dechassa, C.; Simane, B.; Alamerew, B.; Kidane, M. Land use/land cover dynamics in response to various driving

forces in Didessa sub-basin, Ethiopia. GeoJournal 2020, 85, 747–760. [CrossRef]
59. Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [CrossRef]
60. Mahmoodabadi, M.; Ahmadbeigi, B. Dry and water-stable aggregates in different cultivation systems of arid region soils. Arab. J.

Geosi. 2013, 6, 2997–3002. [CrossRef]
61. Belnap, J.; Phillips, S.L.; Herrick, J.E.; Johansen, J.R. Wind erodibility of soils at Fort Irwin, California (Mojave Desert), USA,

before and after trampling disturbance: Implications for land management. Earth Surf. Process. Landf. 2007, 32, 75–84. [CrossRef]
62. Pásztor, L.; Négyesi, G.; Laborczi, A.; Kovács, T.; László, E.; Bihari, Z. Integrated spatial assessment of wind erosion risk in

Hungary. Nat. Hazards Earth Syst. Sci. 2016, 16, 2421–2432. [CrossRef]
63. Chepil, W.S.; Woodruff, N.P. The physics of wind erosion and its control. Adv. Agron. 1963, 15, 211–302.
64. Colazo, J.C.; Buschiazzo, D.E. Soil dry aggregate stability and wind erodible fraction in a semiarid environment of Argentina.

Geoderma 2010, 159, 228–236. [CrossRef]
65. Frasetya, B.; Suriadikusumah, A.; Haryanto, R.; Hidayat, C. A new approach of soil degradation assessment for biomass

production in Subang District West Java Province. IOP Conf. Ser. Earth Environ. Sci. 2019, 393, 012075. [CrossRef]
66. Zhou, Y.; Guo, B.; Wang, S.; Tao, H. An estimation method of soil wind erosion in Inner Mongolia of China based on geographic

information system and remote sensing. J. Arid Land 2015, 7, 304–317. [CrossRef]
67. AbdelRahman, M.A.; Natarajan, A.; Hegde, R.; Prakash, S.S. Assessment of land degradation using comprehensive geostatistical

approach and remote sensing data in GIS-model builder. Egypt. J. Remote Sens. Space Sci. 2019, 22, 323–334. [CrossRef]
68. Mzuri, R.T.; Mustafa, Y.T.; Omar, A.A. Land degradation assessment using AHP and GIS-based modelling in Duhok District,

Kurdistan Region, Iraq. Geocarto Int. 2021, 1–19. [CrossRef]
69. Rukhovich, D.I.; Koroleva, P.V.; Rukhovich, D.D.; Kalinina, N.V. The use of deep machine learning for the automated selection of

remote sensing data for the determination of areas of arable land degradation processes distribution. Remote Sens. 2021, 13, 155.
[CrossRef]

70. Hereher, M.; El-Kenawy, A. Assessment of land degradation in northern Oman using geospatial techniques. Earth Syst. Environ.
2022, 6, 469–482. [CrossRef]

71. Hein, L. The impacts of grazing and rainfall variability on the dynamics of a Sahelian rangeland. J. Arid Environ. 2006, 64, 488–504.
[CrossRef]

72. Fensholt, R.; Rasmussen, K.; Kaspersen, P.; Huber, S.; Horion, S.; Swinnen, E. Assessing land degradation/ recovery in the african
sahel from long-term earth observation based primary productivity and precipitation relationships. Remote Sens. 2013, 5, 664–686.
[CrossRef]

73. Ambarwulan, W.; Nahib, I.; Widiatmaka, W.; Suryanta, J.; Munajati, S.L.; Suwarno, Y.; Turmudi, T.; Darmawan, M.; Sutrisno, D.
Using Geographic Information Systems and the Analytical Hierarchy Process for Delineating Erosion-Induced Land Degradation
in the Middle Citarum Sub-Watershed, Indonesia. Front. Environ. Sci. 2021, 9, 710570. [CrossRef]

74. Balasubramani, K.; Veena, M.; Kumaraswamy, K.; Saravanabavan, V. Estimation of soil erosion in a semi-arid watershed of Tamil
Nadu (India) using revised universal soil loss equation (rusle) model through GIS. Model. Earth Syst. Environ. 2015, 1, 1–17.
[CrossRef]

75. Ghosh, A.; Maiti, R. Development of new Ecological Susceptibility Index (ESI) for monitoring ecological risk of river corridor
using F-AHP and AHP and its application on the Mayurakshi river ofEastern India. Ecol. Inform. 2021, 63, 101318. [CrossRef]

76. Nikhil, S.; Danumah, J.H.; Saha, S.; Prasad, M.K.; Rajaneesh, A.; Mammen, P.C.; Ajin, R.S.; Kuriakose, S.L. Application of GIS and
AHP Method in Forest Fire Risk Zone Mapping: A Study of the Parambikulam Tiger Reserve, Kerala, India. J. Geovisualization
Spat. Anal. 2021, 5, 14. [CrossRef]

77. Senapati, U.; Das, T.K. Assessment of basin-scale groundwater potentiality mapping in drought-prone upper Dwarakeshwar
River basin, West Bengal, India, using GIS-based AHP techniques. Arab. J. Geosci. 2021, 14, 960. [CrossRef]

http://doi.org/10.1007/s12665-020-09327-2
http://doi.org/10.1002/ldr.2295
http://doi.org/10.1038/s41598-018-22394-7
http://doi.org/10.1007/s10708-019-09990-4
http://doi.org/10.1016/j.geoderma.2004.03.005
http://doi.org/10.1007/s12517-012-0566-x
http://doi.org/10.1002/esp.1372
http://doi.org/10.5194/nhess-16-2421-2016
http://doi.org/10.1016/j.geoderma.2010.07.016
http://doi.org/10.1088/1755-1315/393/1/012075
http://doi.org/10.1007/s40333-015-0122-0
http://doi.org/10.1016/j.ejrs.2018.03.002
http://doi.org/10.1080/10106049.2021.1987534
http://doi.org/10.3390/rs13010155
http://doi.org/10.1007/s41748-021-00216-7
http://doi.org/10.1016/j.jaridenv.2005.06.014
http://doi.org/10.3390/rs5020664
http://doi.org/10.3389/fenvs.2021.710570
http://doi.org/10.1007/s40808-015-0015-4
http://doi.org/10.1016/j.ecoinf.2021.101318
http://doi.org/10.1007/s41651-021-00082-x
http://doi.org/10.1007/s12517-021-07316-8


Land 2023, 12, 106 20 of 20

78. Pourghasemi, H.R.; Beheshtirad, M.; Pradhan, B. A comparative assessment of prediction capabilities of modified analytical
hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat.
Nat. Hazards Risk 2016, 7, 861–885. [CrossRef]

79. Abedi, R.; Costache, R.; Shafizadeh-Moghadam, H.; Pham, Q.B. Flash-flood susceptibility mapping based on XGBoost, random
forest and boosted regression trees. Geocarto Int. 2021, 37, 5479–5496. [CrossRef]

80. Halbac-Cotoara-Zamfir, R.; Smiraglia, D.; Quaranta, G.; Salvia, R.; Salvati, L.; Giménez-Morera, A. Land degradation and
mitigation policies in the Mediterranean region: A brief commentary. Sustainability 2020, 12, 8313. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1080/19475705.2014.984247
http://doi.org/10.1080/10106049.2021.1920636
http://doi.org/10.3390/su12208313

	Introduction 
	Materials and Methods 
	Study Area 
	Data Acquisition 
	Data Processing 
	Terrain Parameters 
	Climatic Parameters 
	Vegetation Parameters 
	Soil Parameters 

	Analytical Hierarchical Process and Weightage Assignment 
	Generating Land Degradation Vulnerability Map 

	Result 
	Input Thematic Layers and Their Variabilities 
	Land Degradation Vulnerability 
	Validation of Land Degradation Vulnerability Zones 

	Discussion 
	Conclusions 
	References

