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Abstract: This study assesses the impacts of climate variability on surface runoff generation in the
Mouhoun River Catchment (MRC) in Burkina Faso, in the West African Sahel. The study uses a
combination of observed and reanalysis data over the period 1983–2018 to develop a SWAT model
(KGE = 0.77/0.89 in calibration/validation) further used to reconstitute the complete time series for
surface runoff. Results show that annual rainfall and surface runoff follow a significant upward
trend (rainfall: 4.98 mm·year−1, p-value = 0.029; runoff: 0.45 m3·s−1·year−1, p-value = 0.013). Also,
rainfall appears to be the dominant driver of surface runoff (Spearman’s ρ = 0.732, p-value < 0.0001),
leading surface runoff at all timescales. Surface runoff is further modulated by potential evapotran-
spiration with quasi-decadal timescales fluctuations, although being less correlated to surface runoff
(Spearman’s ρ = −0.148, p-value = 0.386). The study highlights the added value of the coupling of
hydrological modeling and reanalysis datasets to analyze the rainfall–runoff relationship in data-
scarce and poorly gauged environments and therefore raises pathways to improve knowledge and
understanding of the impacts of climate variability in Sahelian hydrosystems.

Keywords: climate variability; hydrological response; Mouhoun River Catchment; surface runoff;
SWAT model; West African Sahel

1. Introduction

Water is generally regarded as a fundamental natural resource underpinning economic
and social development trajectories. This is particularly underscored by its inclusion in
the Sustainable Development Goals (SDGs), which envision the universal access and the
sustainable management of water resources by the year 2030. Yet, over the past few decades,
numerous countries worldwide, notably those in semi-arid and arid regions, have grappled
with an escalating series of water shortage issues, further heightened by the recent global
climate crisis [1–5].

Extensive investigations in previous studies [2,6] have unveiled a disquieting portrait
of climate change, characterized by substantial and significant changes in precipitation,
increasing temperatures and water losses through evapotranspiration in West Africa. More-
over, the increase in hydrometeorological extremes, ranging from inundating floods to
severe droughts and so-called compound risks, is consistently being reported [7–9]. In
the Sahelian context, where rivers are the predominant water supply source while being
primarily driven by rainfall, the impacts of climate change are alarming and therefore call
for urgent assessment of appropriate management strategies [3,10–15].
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Burkina Faso, like many other Sahelian countries, is peculiarly exposed to the repercus-
sions of climate change. This vulnerability arises from the heavy reliance on water resources
to sustain vital sectors such as agriculture and livestock husbandry and the indispensable
provision of potable water to local populations [2,3,16,17]. Within the Mouhoun River
Catchment (MRC), located in the south-western region of the country, 14,900 km

2
in size,

the situation is further compounded by the escalating impact of climate change on water
resources [18,19]. The MRC is of specific importance in Burkina Faso for several reasons: in
terms of water supply, the Mouhoun River is the largest in Burkina Faso, and the catch-
ment provides drinking water (to over 10 million people), irrigation (over 200,000 ha), and
livestock. It is used to generate hydropower, which provides almost 20% of the country’s
electricity needs. The MRC is also a major agricultural region, home to over 50% of the
agricultural lands in the country and producing crops such as cotton, rice, and sorghum.
Additionally, it is home to a variety of plant and animal life estimated at 1000 species,
including some endangered species [18]. In addition to its importance to Burkina Faso, the
MRC is also transboundary to neighbouring countries, such as Mali and Niger, therefore
providing water and associated ecosystem services to their populations [18,20–24].

The MRC is already grappling with pronounced climatic fluctuations, including
drought spells and episodes of extreme rainfall, affecting water provision to local popu-
lations [21–24]. Yet, the context is also depicted by the lack of long-term and consistent
climate and hydrology data records, rarely gap-free, since gauging equipment is seldom
and poorly maintained [15,19,23,25]. This further hinders the understanding of the rainfall–
runoff relationship, the assessment of the available water resource, and the development of
well-informed and adapted water management policies.

In this study, we aim to contribute to understanding the impacts of climate variability
as a driver of surface runoff generation mechanisms in the MRC in Burkina Faso. In this
regard, the study makes use of the agro-eco-hydrological Soil and Water Assessment Tool
(SWAT) model [26,27], which has been extensively used in previous studies in various
contexts in the study area, mostly because of its relative ability to accommodate data-scarce
environments and its robustness in simulating the hydrological cycle [14,15,28–31]. The
study focuses on the previous 1983–2018 period, upon which observation records for
hydrometeorological variables are relatively abundant and of quality, therefore leveraging
the opportunity for hydrological modeling. The objectives of the study are three-fold: (i) to
characterize climate variability over the 1983–2018 period in the MRC; (ii) to reconstitute
a complete time series for surface runoff in the MRC over the period 1983–2018 through
hydrological modeling; and (iii), to analyze the temporal dynamics of surface runoff as
affected by climate variables at various timescales.

The study not only proposes valuable insights into the specific challenges faced by
the MRC but also offers a methodological contribution that has relevance and applicability
in addressing global gaps in understanding climate-driven surface runoff in data-scarce
environments globally.

2. Materials and Methods
2.1. Study Area

The MRC is located in the Upper Mouhoun, in the extreme south-western region of the
country. The catchment lies within latitudes 10◦46’ and 12◦32′ North and longitudes 5◦21′

and 3◦24′ West (Figure 1). The catchment outlet is located at the gauging station of Nowkuy
(12◦31′ North and 3◦33′ West), which drains a total area of 14,900 km

2
, covering the Hauts-

Bassins and Boucle du Mouhoun regions. The MRC is highly anthropized and the dominant
land use/land cover (LULC) type consists of hydro-agricultural developments [18].
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Figure 1. Location of the Mouhoun River Catchment (MRC) in Burkina Faso, West Africa. Elevation 
data are provided by FABDEM [32]. 

The increasing north–south rainfall gradient divides the catchment into three climatic 
zones: the Sudanian zone (over 900 mm of annual rainfall), the Sudano-Sahelian zone 
(600–900 mm of annual rainfall), and the Sahelian zone (less than 600 mm of annual rain-
fall). Rainfall is concentrated in June to September (i.e., four months) with an average cu-
mulative rainfall of 960 mm per year, while the rest of the year (the months of October to 
May, i.e., 8 months) is characterized by a long dry period. The temperatures are increasing 
from south to north. On average, the daily temperatures range from 15 °C in December to 
40 °C in April [18,25]. 

From a geological perspective, two geological units are found within the catchment, 
which are the basement and the sedimentary. The basement is made up of a wide range 
of rocks, from very acidic (granites) to very basic (amphibolites, greenstone, dolerites). 
The sedimentary catchment is mainly made of primary and infracambrian formations and 
clay alluvium of fluvial-lacustrine origin from the terminal continental period. The nature 
of the topsoil follows closely the geology, geomorphology, and climate patterns, resulting 
in six major types of soil in the catchment: arenosols, leptosols, lixisols, nitisols, plin-
thosols, and regosols [33–35]. The catchment is mainly dominated by lixisols, with 
arenosols representing only a tiny fraction of the catchment [36,37], as shown in Figure 
2a. 

The vegetation formations in the catchment are essentially composed of wooded sa-
vannahs, open forests, and deciduous forest galleries (Figure 2b) mainly concentrating 
along the Mouhoun River [36]. The dominant slope gradients fall within the 0–2% range, 
while a smaller portion of the catchment has a terrain slope above 2% (Figure 2c). 

Figure 1. Location of the Mouhoun River Catchment (MRC) in Burkina Faso, West Africa. Elevation
data are provided by FABDEM [32].

The increasing north–south rainfall gradient divides the catchment into three climatic
zones: the Sudanian zone (over 900 mm of annual rainfall), the Sudano-Sahelian zone
(600–900 mm of annual rainfall), and the Sahelian zone (less than 600 mm of annual rainfall).
Rainfall is concentrated in June to September (i.e., four months) with an average cumulative
rainfall of 960 mm per year, while the rest of the year (the months of October to May, i.e.,
8 months) is characterized by a long dry period. The temperatures are increasing from
south to north. On average, the daily temperatures range from 15 ◦C in December to 40 ◦C
in April [18,25].

From a geological perspective, two geological units are found within the catchment,
which are the basement and the sedimentary. The basement is made up of a wide range
of rocks, from very acidic (granites) to very basic (amphibolites, greenstone, dolerites).
The sedimentary catchment is mainly made of primary and infracambrian formations
and clay alluvium of fluvial-lacustrine origin from the terminal continental period. The
nature of the topsoil follows closely the geology, geomorphology, and climate patterns,
resulting in six major types of soil in the catchment: arenosols, leptosols, lixisols, nitisols,
plinthosols, and regosols [33–35]. The catchment is mainly dominated by lixisols, with
arenosols representing only a tiny fraction of the catchment [36,37], as shown in Figure 2a.

The vegetation formations in the catchment are essentially composed of wooded
savannahs, open forests, and deciduous forest galleries (Figure 2b) mainly concentrating
along the Mouhoun River [36]. The dominant slope gradients fall within the 0–2% range,
while a smaller portion of the catchment has a terrain slope above 2% (Figure 2c).
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Figure 2. Physical characterization of the Mouhoun River Catchment (MRC). (a) Soil types. (b) Land 
use/land cover (LULC) types. (c) Slope classes, calculated from the FABDEM dataset [32] used in 
this study. 
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data cover the period 1983–2018 and are provided by the National Meteorology 
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• Meteorological reanalysis data, which includes daily rainfall and daily maximum 
and minimum temperature data for the period 1983–2018. The data are provided by 
the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-
2 [38]), provided at a spatial resolution of nearly 50 km. The data were downloaded 
from the NASA Power platform through the nasapower R package [39]. The data were 
extracted at eight (08) locations within the catchment considered as dummy or ficti-
tious stations; 

• Digital elevation data, collected from the global Forest And Buildings removed Coper-
nicus Digital Elevation Model (FABDEM), providing 30 by 30 m resolution elevation 
data [32,40]; 

• Soil map, collected from the Food and Agriculture Organization (FAO) soil database, 
commonly referred to as the Harmonized World Soil Database (HWSD) version 1.2 
[37]. The map was resampled to 30 by 30 m through bilinear interpolation. 
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base inventory in 2012 [36], derived from remote sensing analysis and aerial maps 
and validated with field surveys at the national scale. The map was also resampled 
to 30 by 30 m through bilinear interpolation. 

  

Figure 2. Physical characterization of the Mouhoun River Catchment (MRC). (a) Soil types. (b) Land
use/land cover (LULC) types. (c) Slope classes, calculated from the FABDEM dataset [32] used in
this study.

2.2. Hydroclimatic Data Pre-Processing
2.2.1. Presentation of Data Used in This Study

The following data have been collected for use in this study:

• Daily discharge data at the Nowkuy station, obtained from the Water Information
Division (DEIE) for the period 1983–2018;

• Meteorological observation data, including daily rainfall, daily maximum and min-
imum temperature data at the synoptic stations at Bobo-Dioulasso (WMO Code:
1200004000, Latitude: 11.1667◦ North, Longitude: 4.3167◦ West) and Dédougou (WMO
Code: 1200007900, Latitude: 12.4667◦ North, Longitude: 3.4667◦ West). The data
cover the period 1983–2018 and are provided by the National Meteorology Agency in
Burkina Faso (ANAM-BF);

• Meteorological reanalysis data, which includes daily rainfall and daily maximum
and minimum temperature data for the period 1983–2018. The data are provided by
the Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-
2 [38]), provided at a spatial resolution of nearly 50 km. The data were downloaded
from the NASA Power platform through the nasapower R package [39]. The data
were extracted at eight (08) locations within the catchment considered as dummy or
fictitious stations;

• Digital elevation data, collected from the global Forest And Buildings removed Coper-
nicus Digital Elevation Model (FABDEM), providing 30 by 30 m resolution elevation
data [32,40];

• Soil map, collected from the Food and Agriculture Organization (FAO) soil database,
commonly referred to as the Harmonized World Soil Database (HWSD) version 1.2 [37].
The map was resampled to 30 by 30 m through bilinear interpolation.

• Land use/land cover (LULC) map, taken from the national land use/land cover
database inventory in 2012 [36], derived from remote sensing analysis and aerial
maps and validated with field surveys at the national scale. The map was also resam-
pled to 30 by 30 m through bilinear interpolation.

2.2.2. Gap-Filling of Observations, Spatial Interpolation, and Bias Correction of Reanalysis Data

The synoptic stations closest to the MRC are the stations of Bobo-Dioulasso and
Dédougou. However, relying only on these single locations limits the consideration of the
spatial variability of climate variables. Therefore, to increase the density of observation
stations within the MRC, we created 8 fictitious (or dummy) stations, evenly spaced in the
catchment area, at which daily MERRA-2 reanalysis data were collected over the study
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period 1983–2018. The location of these fictitious stations is given in Figure 1. MERRA-2
is a global gridded assimilation model, consistently providing daily estimates for most of
the meteorological variables since 1980, with a spatial resolution of nearly 50 km [38]. In
Burkina Faso, MERRA-2 has been used in many previous impact studies [15,31,41,42].

However, despite the relatively good accuracy shown by MERRA-2 in reproducing
observation data, there are still biases which could be further treated. In this study, we
used the daily observation data at the Bobo-Dioulasso and Dédougou synoptic stations to
develop bias-correction transfer functions and further adjust MERRA-2 data in the same
locations. Then, MERRA-2 data extracted at fictitious stations are bias-adjusted by referring
to the bias-correction function of the nearest synoptic station.

The bias-correction approach used in this study is the univariate Cumulative Distribu-
tion Function transform (CDFt), which is an extension of the popular quantile mapping
method [43,44]. The CDFt method accounts for the changes in CDF from reference to
simulated (here, reanalysis) data through the construction of a transfer function, expressed
as in Equation (1).

FD f (x) = FOh

(
F−1

Mh

(
FM f (x)

))
(1)

where FD f is the downscaled CDF for bias correction of the univariate distribution of the

variable x, FOh is the CDF of the observed data over the reference period, F−1
Mh

is the inverse
CDF of the simulated (reanalysis) data over the reference period, and FM f is the CDF of
the simulated data over a projection period, which in this case refers to the same historical
period. The bias-correction procedure was carried out with the R package CDFt [45].

2.2.3. Estimation of Potential Evapotranspiration (PET)

Potential evapotranspiration (PET) is a major component of the water balance, which
represents the evaporative water demand in the hydrological system and therefore con-
trols the surface runoff and the water availability [25]. This study estimates daily PET
using the Hargreaves and Samani (HS) method [46,47]. The HS method is an empiri-
cal approach commonly used to estimate daily PET only from temperature data while
accounting for extraterrestrial radiation, hence explaining its popular use in data-scarce en-
vironments. Previous studies reported the reliability of the HS equation for PET estimation
in Burkina Faso [6,14,15,25,48]. The mathematical expression of the HS method is given in
Equation (2):

PET = 0.0135× kRS × (Ra/λ)× (Tmax − Tmin)
n × (Tm + b) (2)

where Ra is the extraterrestrial radiation (MJ·m−2·d−1), λ the latent heat of vaporization
(= 2.45 MJ·kg−1), Tmax, Tmin, and Tm are the daily maximum and minimum and average
temperatures (◦C), respectively, and kRS, n, and b are coefficients originally defined as 0.17
(for interior locations), 0.5, and 17.8, respectively [47].

2.3. Hydrological Modeling
2.3.1. Definition of Warm-Up, Calibration, and Validation Periods

For the hydrological modeling step, a warm-up period of two years (1983–1984) is
defined. The remaining years are further divided into a calibration and validation period
following the standard single split-sampling procedure, with the period 1985–2008 (i.e.,
26 years) for model calibration and the period 2009–2018 for validation (i.e., 10 years).
Figure 3 shows the distribution of gaps in the daily discharge data, with three years of
completely missing observed data: 1989, 1995 (in the calibration period), and 2012 (in the
validation period).
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2.3.2. The SWAT Model

The Soil and Water Assessment Tool (SWAT) is an agro-eco-hydrological model de-
veloped in 1999 by the United States Department of Agriculture (USDA). It is a widely
adopted modeling tool for hydrological modeling and the assessment of external stressors
on water resources at the watershed scale [26,27]. The SWAT model is physically based and
semi-distributed. It operates through the discretization of the watershed into spatially con-
nected sub-catchments through a hydrographic drainage network. The sub-catchments are
further sub-divided into hydrologic response units (HRUs), which correspond to lumped
homogeneous units in terms of land use, soil type, and slope class. Hydrological processes
are evaluated at the scale of HRUs and summed up at the sub-catchment level. The sur-
face runoff is then routed to the watershed global outlet through the channel network.
The hydrological balance at the scale of HRUs in the SWAT model is calculated based on
Equation (3) [27]:

SWt = SW0 + ∑t
i=0

(
Pi + Qs,i + ETi + wi + Qgw,i

)
(3)

where SWt and SW0 are the soil water content and the initial soil water content at the
beginning of day i, t is the elapsed time (in days), Pi is the daily rainfall, Qs,i is the daily
surface runoff, ETi is the daily actual evapotranspiration, wi is the daily seepage loss
entering the vadose zone under the soil profile, and Qgw,i is the return flow from the aquifer.
All these quantities are expressed in millimeters (mm). Surface runoff is estimated in this
study through the Soil Conservation Service Curve Number (SCS-CN) method [26,27,49],
given by Equation (4):

Qs,i = (Pi − Ia)
2/(Pi − Ia + S), S = 245× (100/CN − 1) (4)

where Ia (in mm) is the initial abstraction defined as the amount of rainfall interception by
plant canopy or to fill in soil surface depression storage, occurring at the onset of a rainfall
event, S is the soil water retention parameter (in mm), defined as a function of soil, slope,
and LULC type, and the CN parameter relates to S.

The surface runoff obtained at the sub-basin level is transmitted to the watershed
outlet using the variable travel time method [26,27,50] and converted to discharge.
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2.3.3. Selection of Model Parameters

In this study, based on a screening of previous SWAT model applications in the West
African Sahel [14,15,28–31,51], a set of 28 model parameters are selected for sensitivity
analysis. Table 1 provides the definition, update mode, and range for the different parame-
ters. Overall, 1 parameter affects the surface runoff generation mechanism, 14 parameters
control runoff routing, 10 parameters control infiltration and groundwater recharge, and
3 parameters control soil surface hydraulic properties [27].

Table 1. SWAT Model parameters were selected for global sensitivity analysis in this study.

Parameter Name Description Initial Range Unit

Soil management, runoff generation parameters (1)

CN2 SCS runoff curve number 35–98 -

Groundwater control parameters (10)

ALPHA_BF Baseflow alpha factor 0–1 days−1

GW_DELAY Groundwater delay 0–500 days
SHALLST Initial depth of water in the shallow aquifer 0–50,000 mm
DEEPST Initial depth of water in the deep aquifer 0–50,000 mm

GWQMN Depth of water (in the shallow aquifer) triggering return flow 0–5000 mm
GW_REVAP Groundwater re-evaporation coefficient 0.02–0.20 -
REVAPMN Water depth (in the shallow aquifer) triggering re-evaporation 0–500 mm
RCHRG_DP Deep aquifer percolation fraction 0–1 -

GWHT Initial groundwater height 0–25 m
GW_SPYLD Specific yield of the shallow aquifer 0.0–0.4 m3 m−3

Soil parameters (3)

SOL_Z Depth from the soil surface to the bottom of the layer 0–3500 mm
SOL_AWC Available water capacity of the soil layer 0–1 mm·m−1

SOL_K Saturated hydraulic conductivity 0–2000 mm h−1

Channel and flow routing parameters (14)

CH_N2 Manning’s roughness for the main channel 0.01–0.3 s·m−1/3

CH_K2 Effective hydraulic conductivity in main channel alluvium 0.01–500 mm·h−1

ALPHA_BNK Baseflow alpha factor for bank storage 0–1 days
CH_N1 Manning’s roughness for tributary channels 0.01–30 s·m−1/3

CH_K1 Effective hydraulic conductivity in tributary channel alluvium 0–300 mm·h−1

OV_N Manning’s roughness for overland flow 0.01–30 s·m−1/3

LAT_TTIME Lateral flow travel time 0–180 days
CANMX Maximum canopy storage 0–100 mm

ESCO Soil evaporation compensation factor 0–1 -
EPCO Plant uptake compensation factor 0–1 -

MSK_CO1 Storage time constant for normal flow 0–10 -
MSK_CO2 Storage time constant for low flow 0–10 -

MSK_X Inflow/outflow rate in reach segment control weighting 0–0.3 -
TRNSRCH Loss fraction from the main channel entering the deep aquifer 0–1 -

The model parameter description is provided by [27,52].

2.3.4. Sensitivity Analysis

The global sensitivity analysis (GSA) procedure is used to assess the sensitivity of
surface runoff to each of the considered model parameters while accounting for the possible
interaction with the others [52]. The parameter sensitivities are determined through multi-
ple regression of Latin hypercube sampling of parameters against an objective function,
followed by a Student t-test to identify the relative significance of each parameter. In
this study, the level of significance of 5% was initially applied and 500 simulations were
run. The GSA procedure was carried out using the SWAT-CUP (Calibration Uncertainty
Program) software, version 5.1.6.2 [52]. However, some parameters above the 5% signifi-
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cance level were later found to be useful since they were critical for the proper adjustment
of specific processes, such as groundwater flow or surface channel routing. Therefore,
these parameters were included in the calibration step which, definitively, used a total of
15 parameters.

2.3.5. Calibration, Validation, and Evaluation of Model Performance

The model calibration over the period 1985–2008 is carried out under the SWAT-
CUP calibration software using the Sequential Uncertainty Fitting (SUFI-2) algorithm,
with Latin Hypercube sampling for the generation of random sets of parameters at each
simulation [52]. The objective function used in this study is the Kling–Gupta Efficiency
(KGE) metric [53], defined as in Equation (5):

KGE = 1−
√
(r− 1)2 + (µs/µ0 − 1)2 + (CVs/CV0 − 1)2 (5)

where r is the product-moment Pearson’s correlation coefficient between observed and
simulated values, µs/µ0 is the ratio of the averages of simulated and observed values, and
CVs/CV0 is the ratio of coefficients of variations of simulated and observed values. The KGE
is bounded and ranges between−∞ (poor performance) and 1 (perfect model). The KGE as
an objective function is advantageous in that it simultaneously optimizes correlation, bias,
and variability. The performance of a hydrological model operating at the daily timestep is
considered poor if 0.00 ≤ KGE ≤ 0.50, satisfactory when 0.50 ≤ KGE ≤ 0.75, good when
0.75 ≤ KGE ≤ 0.90, and excellent when 0.90 ≤ KGE ≤ 1.00 [14,53,54].

Additionally, we used some other criteria to assess the model performance, namely
the coefficient of determination (R2, Equation (6)), the Nash–Sutcliffe Efficiency (NSE,
Equation (7)), the percentage of bias (PBIAS, Equation (8)), the r_factor (Equation (9)), and
p_factor. R2 refers to the amount of variation in observations explained by the model
and is bounded within 0 (poor model) and 1 (perfect model). The NSE is a popular
predictive skill measure, bounded between −∞ (poor model) and 1 (perfect model), which
determines the relative magnitude of the residual of simulated variance as compared to the
observed data variance. PBIAS shows the average tendency of the model to underestimate
(PBIAS > 0) or overestimate (PBIAS < 0) observations, the optimal value being 0. The
r_factor measures the thickness of the 95% uncertainty prediction band (95PPU) around
the simulated value, while the p_factor represents the percentage of observations which
fall within the 95PPU envelope. Guidelines suggest satisfactory watershed-scale model
performance at the daily timestep when R2 > 0.60, NSE > 0.50, PBIAS ≤ ±15% (Moriasi
et al., 2015) and r_factor < 1.50, p_factor > 0.70 [55–57].

R2 =

[
∑i
(
Qo,i −Qo

)
×
(
Qs,i −Qs

)]2
∑i
(
Qo,i −Qo

)2 ×∑i
(
Qs,i −Qs

)2 (6)

NSE = 1− ∑i(Qo −Qs)
2
i

∑i
(
Qo,i −Qo

)2 (7)

PBIAS =
∑i(Qo −Qs)i

∑i Qo,i
× 100 (8)

r_ f actor =
1
n
×

∑n
i=1

(
Q97.5%

s,i −Q2.5%
s,i

)
σ0

(9)

where Qo,i and Qs,i refer to the observed and simulated discharges on day i, Qo and
Qs are the average of observed and simulated values, Q97.5%

s,i and Q2.5%
s,i are the higher

and lower limits (respectively) of the 95PPU band on day i across all simulations. In
this study, a total of 5 iterations of 500 simulations each were needed to reach optimal
results. The model validation over the period 2009–2018 is carried out through a single
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iteration of 500 simulations following the guidelines in [52]. The model performance is
also evaluated using the same performance metrics. Also, a graphical evaluation of the
simulated discharges is carried out using time series plots and flow duration curve plots.

2.4. Analysis of Hydrological Response to Climate Variability
2.4.1. Annual Trends and Correlation Analyses in P, PET, and Q

The trends in annual P, PET, and simulated Q values are evaluated using the non-
parametric Mann–Kendall (M-K) trend test at a 5% significance level [58,59]. To account
for autocorrelation, which is often present in hydrometeorological time series, a modified
version of the M-K test including a trend-free serial correlation prewhitening correction [60]
is applied using the tfpwmk function in the modifiedmk R package [61]. The magnitude of
trend slopes is evaluated using the non-parametric Theil–Sen slope estimator, as given in
Equation (10).

β = Median
( xj − xi

j− i

)
, ∀i < j (10)

where xi and xj are sequential values in a time series at times i and j, respectively, β is a
robust unbiased estimate of the trend slope magnitude [62,63]. To further assess the level
of association between P and Q and PET and Q, the non-parametric Spearman’s correlation
test at a 5% significance level is applied [64].

2.4.2. Sensitivity of Surface Runoff to P, PET, and Environmental Conditions (n)

To further explore how surface runoff is sensitive to P, PET, and environmental
conditions (n), we used the concept of elasticity [65], as shown in the total differential
Equation (11):

dQ = εQ
P

dP
P

+ εQ
PET

dPET
PET

+ εQ
n

dn
n

(11)

where εQ
P , εQ

PET , and εQ
n are P, PET, and n elasticities to surface runoff (Q), assuming that

these variables are independent [66,67]. These elasticities are expressed as in Equation (12):

εQ
P =

∂Q/Q
∂P/P

, εQ
PET =

∂Q/Q
∂PET/PET

and εQ
n =

∂Q/Q
∂n/n

(12)

The elastic coefficients were therefore determined in this study from the linear re-
gression between the partial derivatives. For a given variable, the higher the value of its
elastic coefficient is, the more sensitive surface runoff is to the variable. In other terms, the
elastic coefficient represents the rate of change in surface runoff for a 1% increase in a given
causing variable.

Following [31,66,67], the environmental conditions parameter (n), representing the
soil surface conditions characteristics, is determined for each year by solving a simplified
Budyko–Mezentsev–Choudhury–Yang model [68–70], as given in Equation (13):

Q = P− P× PET

(Pn + PETn)1/n (13)

2.4.3. Modes of Variability in P, PET, and Q

To investigate the variability in P, PET, and Q at various timescales (annual, decadal,
and above) over the analysis period and investigate how short- to longer-term fluctuations
in P and PET are further propagated to surface runoff, we use a continuous wavelet trans-
form (CWT). The process entails the use of a non-orthogonal Morlet mother wavelet of
order 6 to generate local wavelet spectra. Morlet wavelets are suitable for such transfor-
mations as they offer a good balance between time and frequency localization, therefore
giving a good definition of the signal in the spectral space [71]. These wavelet spectra,
in turn, enable us to discern the prevailing timescales of variability and their temporal
progression [5,14,72,73].
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The statistical significance of wavelet power can be assessed relative to the null
hypotheses that the signal is generated by a stationary process with a given background
power spectrum [71]. In this research, we calculated the CWTs for P, PET, and Q time
series at a 10% significance level with the biwavelet R package [74]. Additionally, wavelet
coherence plots were generated using 1000 Monte Carlo randomizations and used to
analyze the time-phase correlation between P-Q signals and P-PET signals.

3. Results
3.1. Bias Correction of Meteorological Data over the Study Period 1983–2018

Figure 4 shows the empirical cumulative distribution plots for the meteorological
variables analyzed in this study (rainfall, maximum and minimum temperature) over
the period 1983–2018 at the synoptic stations of Bobo-Dioulasso and Dédougou between
daily observations and MERRA-2 reanalysis estimates. It appears that discrepancies in
distribution quantiles occur, especially a severe underestimation of rainfall, because of
the so-called drizzle effect [75]. Also, MERRA-2 underestimates the highest values of
daily maximum temperatures but underestimates the lowest values of daily minimum
temperatures. The mismatch between the observations and reanalysis is adjusted through
the CDFt bias-correction method, resulting in similar distributions.
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Figure 4. Empirical cumulative distribution functions showing bias-correction adjustment through
the CDFt method for MERRA-2 reanalysis and observed data. The top panels are for the synoptic
station of Bobo-Dioulasso, while the bottom panels are for the station of Dédougou. On each row,
panels show, left to right, daily rainfall, maximum temperature (Tmax), and minimum temperature
(Tmin) over the period 1983–2018.

The bias-correction transfer functions established are further used to adjust MERRA-2
estimates at the fictitious weather stations within the watershed, based on the proximity to
the synoptic stations.

3.2. Modeling the Surface Runoff Response
3.2.1. Parameter Sensitivity

The model parameters retained through the GSA analysis procedure screening, their
optimal fitted values, and uncertainty ranges are presented in Table 2.
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Table 2. Model parameters’ sensitivity ranking, fitted values, and uncertainty ranges.

Sensitivity Rank Parameter Fitted Value Uncertainty Range

1 r__CN2 0.265 [0.101. . .0.464]
2 v__GW_DELAY 56.649 [0.000. . .112.623]
3 v__GWQMN 1833.929 [33.210. . .2110.164]
4 v__SHALLST 14,511.832 [13441.771. . .30983.770]
5 v__GW_REVAP 0.195 [0.143. . .0.196]
6 v__GWHT 6.017 [3.230. . .9.695]
7 v__GW_SPYLD 0.117 [0.087. . .0.195]
8 r__SOL_AWC −0.841 [−0.891. . .−0.293]
9 v__CH_N2 0.173 [0.005. . .0.218]
10 v__CH_K2 374.704 [289.448. . .452.462]
11 v__ALPHA_BNK 0.799 [0.509. . .0.846]
12 v__CH_K1 154.571 [100.138. . .162.205]
13 v__EPCO 0.359 [0.036. . .0.372]
14 r__MSK_CO1 −0.661 [−0.690. . .−0.368]
15 v__TRNSRCH 0.550 [0.422. . .0.597]

The prefix before each parameter name describes how the parameter is updated during the calibration process in
SWAT-CUP: the relative mode (r__), in which the current value of the parameter is multiplied at each simulation
by 1 + x, x being the given value; the value mode (v__), in which the current value of the parameter is replaced
by a new value taken in a given interval. The uncertainty range around each parameter defines the uncertainty
band (95PPU) around the simulated values [52]. The 15 parameters are ranked out in a decreasing order of global
sensitivity, ranging from 1 (more sensitive) to 13 (less sensitive).

The most sensitive parameter is CN2, which controls surface runoff generation, highlight-
ing that soil surface conditions are quite deterministic in surface runoff production in the MRC,
as picture in the calibrated SWAT model. Following are the GW_DELAY, GWQMN, SHALLST,
GW_REVAP, GWHT, and GW_SPYLD parameters which control groundwater processes, fur-
ther suggesting that according to the model, groundwater/surface water interactions are
important in the MRC. This finding seems accurate since the Mouhoun River is permanent
throughout the year, with a low-flow period probably sustained by groundwater. Next,
soil hydraulic properties (SAL_AWC) and runoff routing parameters (CH_N2, CH_K2,
ALPHA_BNK, CH_K1, EPCO, MSK_CO1, and TRNSRCH) appear to be effective for model
adjustment, which could be related to the elongated shape of the catchment, suggesting
that surface runoff transfer time is important in explaining discharge values at Nowkuy
outlet downstream.

3.2.2. Model Calibration and Validation

The model performance on both calibration and validation periods is evaluated accord-
ing to performance metrics presented in Table 3. The calibrated model shows satisfactory
performance in the period 1983–2008, which is further superior during the validation pe-
riod, probably because this latter period is shorter. Nevertheless, it appears that the model
is successful at simulating surface runoff in the MRC. The average value of the observed
daily discharge is 31.94 ± 32.27 m3·s−1 (45.41 ± 29.78 m3·s−1), while the simulated value
average is 32.59 ± 29.23 m3·s−1 (47.43 ± 28.59 m3·s−1), respectively, on the calibration and
validation periods. It should also be noted that the r_factor and p_factor on both calibration
and validation periods are optimal, meaning that the uncertainty 95PPU band around the
simulated values is not significantly larger than the variability in observations and that a
significant portion of those observations are captured within this envelope [52,55].
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Table 3. Model performance on calibration and validation periods.

Performance Metric Calibration
(1983–2008)

Validation
(2009–2018)

Observed/simulated mean Q (m3·s−1) 31.94/32.59 45.41/47.43
Observed/simulated standard deviation Q (m3·s−1) 32.27/29.23 29.78/28.59

KGE (objective function) 0.77 0.89
R2 0.63 0.82

NSE 0.54 0.80
PBIAS 2.00% 4.30%
r_factor 1.43 1.27
p_factor 0.83 0.89

Figure 5 shows the time series of daily simulations over the study period 1983–2018,
which further highlights the model performance at reproducing observed patterns
in streamflow.
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Figure 5. Observed and simulated discharge of the calibrated SWAT model in the MRC over the
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Figure 6 shows the Flow Duration Curve (FDC) for simulated and observed daily
discharges, over the period 1983–2018, which shows that the model overall reproduces
well the quantile distribution of daily values. However, it could be further noted that the
high flows (having the lowest exceedance probabilities, <40%) are overestimated, while
low flows (having the highest exceedance probabilities, >60%) are underestimated.
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3.3. Hydrological Balance of the MRC

Table 4 shows the average annual values of the main hydrologic processes in the
MRC as represented by the calibrated SWAT model. The average annual rainfall and PET
are 952.1 ± 130.4 mm and 1940.4 ± 51.1 mm (respectively), of which 199.1 ± 72.2 mm
are converted to surface runoff (i.e., a surface runoff coefficient of 20.91%). The actual
evapotranspiration ET is estimated at 459.6 ± 33.6 mm on an annual average (i.e., 48.27%
of the annual rainfall). Also, the average annual groundwater recharge (DEEPAQ) reaches
23.3 ± 5.6 mm, i.e., 2.44% of the annual rainfall.

Table 4. Average annual values of the hydrological processes simulated in the MRC over the period
1983–2018.

Hydrological Process Average Annual Values
(±Standard Deviation)

Annual rainfall (P, mm) 952.1 (±130.4)
Potential evapotranspiration (PET, mm) 1940.4 (±51.1)

Actual evapotranspiration (ET, mm) 459.6 (±33.6)
Surface runoff (Q, mm) 199.1 (±72.2)

Soil water content (SW, mm) 5.2 (±1.0)
Lateral flow (LATQ, mm) 0.9 (±0.1)

Deep aquifer recharge (DEEPAQ, mm) 23.3 (±5.6)

Figure 7 shows the spatial variation of average annual rainfall, actual evapotranspira-
tion ET, and surface runoff within the catchment. An increasing rainfall gradient (north to
south) is observed (Figure 7a). ET follows the same gradient (Figure 7b), indicating that ET
is mostly conditioned by available water excess in different sub-catchments in the MRC.
The highest annual surface runoff amounts (Figure 7c) are generated in the north-western
sub-catchments followed by the southernmost sub-catchments, where soil surface condi-
tions are mostly barren or degraded and less natural vegetation is found, indicating that
the rainfall–runoff generation is sensitive to soil surface conditions in the MRC.
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3.4. Effects of Climate Variability on Surface Runoff
3.4.1. Correlation and Trends

The Spearman rank correlation analysis reveals that at the annual scale, rainfall is
significantly and positively correlated with surface runoff (ρ = 0.732, p-value < 0.0001).
On the other hand, PET shows a negative association with surface runoff, although not
statistically significant (ρ = −0.148, p-value = 0.386). This could further be explained by
the fact that evapotranspiration is a latent hydrological process, mostly active during dry
periods between successive rainfall events, while rainfall is the major process providing
entering flux in the hydrological system and responsible for the onset of surface runoff.

The trends in annual rainfall, ET, and surface runoff are presented in Figure 8.
The trend in annual rainfall in the MRC is significant (p-value = 0.029), with an increase

of 4.98 mm·year−1 over the period 1983–2018. Annual PET, however, appears to be stationary
(p-value = 0.307, not significant), with a slope of increase of about 1.55 mm·year−1. Annual
surface runoff shows a significant increasing trend of 0.45 m3 s−1·year−1 (p-value = 0.013),
largely caused by the trend observed in rainfall over the study period.

Figure 9 further highlights the patterns of increase in surface runoff over successive
decades, from the 1980s to 2010s on both monthly averages (Figure 9a) and flow duration
curves (Figure 9b). A decrease is observed from the 1980s to the 1990s, then an increase in
average monthly surface runoff and high-to-median quantiles is observed from the 1990s
onwards. This also highlights implications for the sizing of future hydraulic infrastructures,
especially check dams [8].

3.4.2. Elasticity of P, PET, and Environmental Conditions in the MRC

Figure 10 shows the elasticities of P, PET, and environmental conditions to surface
runoff in the MRC.

The analysis shows that surface runoff is highly sensitive to rainfall (R2 = 0.54), as
given by the elastic coefficient εQ

P of 2.002, suggesting that an increase of 1% in the annual
rainfall results in an increase of 2% in annual surface runoff. Also, surface runoff is less
sensitive to PET, with an elasticity εQ

PET of −1.804, suggesting that an increase in annual
PET results in drier catchment conditions, causing a decrease in annual surface runoff.
Finally, surface runoff is also less sensitive to environmental conditions, with an elasticity
εn

PET of 0.270, which outlines that the catchment evolution tends towards an increase in
annual surface runoff. Also, it should be noted that the sensitivities of surface runoff to
PET and environmental conditions are not significant (R2 = 0.022 and 0.012, respectively).
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Figure 10. Elastic coefficients of rainfall (in (a)), PET (in (b)), and environmental conditions (in (c)) to
surface runoff in the MRC over the period 1983–2018 in the MRC.

3.4.3. Modes of Variability in P, PET, and Surface Runoff

Figure 11 shows the modes of variability in rainfall, PET and surface runoff, as de-
picted by wavelet power spectra shown in Figure 10d–f. The annual rainfall wavelet
power spectrum shows high and significant fluctuations in 2007–2012 in the 2–4-year
band (Figure 10d). The annual PET wavelet power spectrum shows a hint of significant
fluctuations in 1997–1998 and in 2010 in the 2–4-year band and strong quasi-decadal sig-
nificant fluctuation in 1997–2008 in the 4–8-year band (Figure 10e). The annual surface
runoff wavelet power spectrum shows only significant fluctuations in 2010–2012 in the
2–4-year band (Figure 10f), which appears to be related to rainfall fluctuations at the
same timescale, although being further modulated by external factors, probably catchment
properties [14,73].
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Figure 11. Modes of variability in rainfall, PET, and surface runoff over the period 1983–2018 in the
MRC. (a–c) show the standardized values of rainfall, PET, and runoff, respectively. (d–f) show the
continuous wavelet power spectra of rainfall, PET, and runoff, respectively. The thick black contour
lines delimit the cone of influence (COI) outside which edge effects distort the signal and, therefore,
are not considered in the analysis. Within the COI, significant fluctuations at a 10% level against red
noise are outlined in thick black contour lines [14,72–74].

Figure 12 further investigates the multiscale phase–antiphase relationship between
rainfall and surface runoff and between PET and surface runoff through the analysis of
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wavelet coherence transform (WCT). The arrows indicate the phase relationship between
the two variables: arrows point to the right (left) when the time series are in phase (anti-
phase) or when they are positively (negatively) correlated. Also, arrows pointing up mean
that the first variable leads the second by 90◦, whereas arrows pointing down indicate that
the second variable leads the first by 90◦ [5,73,74]. In Figure 11a, continuously over the
1983–2018 period in the 2–16-year band, the phase relationship reveals that rainfall is the
primary driver of surface runoff at all timescales, with the two series being in phase (highly
correlated). In Figure 11b, it appears that PET is significantly in phase from 2003–2012
with surface runoff, however, being led by 90◦ in the 2–4-year band. Also, a significant
quasi-decadal zero-phase from 1993–2007 is observed, indicating that the two variables
move together over this sub-period.
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(P-Q) relationship and (b) PET–surface runoff (PET-Q) relationship. The thick black contour lines
delimit the cone of influence (COI) outside which edge effects distort the signal and, therefore, are
not considered in the analysis. Within the COI, significant fluctuations at a 10% level against red
noise are outlined in thick black contour lines. Arrow line orientation indicates the phase relationship
between the variables: pointing to the right indicates in-phase (0◦) relationship, pointing to the left is
out of phase (180◦) relationship; pointing upward (downward) indicate that Q is led (Q is leading)
by 90◦ the other variable.Overall, it appears that rainfall is the primary driver of surface runoff, at
small to quasi-decadal timescales, and is leading surface runoff [76,77]. However, at quasi-decadal
timescales, part of the variability in surface runoff is explained by PET. Finally, a significant portion
of the variability in surface runoff remains unexplained by rainfall and PET, indicating that external
factors, most likely changes in catchment properties (i.e., changes in LULC, [78]), are also affecting
surface runoff generation mechanisms in the MRC.

4. Discussion and Conclusions

This study analyzed the impact of climate variability on hydrological processes in the
MRC in Burkina Faso, in the West African Sahel, with a focus on surface runoff response.
Hydrological modeling is used to reconstitute complete and gap-free records of surface
runoff and further analyze the various components of the hydrological balance over the
period 1983–2018. Overall, it appears that rainfall is the dominant driver of surface runoff,
further modulated to a lesser extent by potential evapotranspiration at a quasi-decadal
timescale. Also, the findings suggest that catchment properties may also play a role in
the variability of surface runoff in the MRC, considering that a significant proportion of
variability in surface runoff remains unexplained by rainfall and PET, and that the evolution
in environmental changes tends towards a higher surface runoff potential generation.
However, the study did not address the quantification of the isolated contribution of these
sources of variation.
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The West African Sahel in general is already acknowledged in the literature as one of
the regions marked by extreme climate variability, which has profound implications for
the regional hydrology [13,18,73,79]. This further explains why populations in the region
are particularly vulnerable to climate stress since the water availability is mostly driven
by rainfall. Recent climate changes, including erratic rainfall patterns and temperature
increases, have created significant challenges for the region’s hydrological response. Yet,
the hydrology in the region, in terms of quantification, understanding of the processes
operating at various timescales and interactions between such processes, and direct and
indirect implications on the availability of water resources remain understudied [12]. This
further creates severe impediments to the development of well-informed, adapted, and
resilient water management policies.

The integration of hydrological modeling, as carried out in this study, coupled with the
use of global gridded datasets can help alleviate the knowledge gap [14,31]. These models
help researchers and policymakers understand how changes in precipitation and tempera-
ture affect water resources and runoff patterns but also soil erosion [80]. In this study, it was
shown that the MRC at Nowkuy gauging station is characterized by a significant upward
trend in cumulative rainfall and potential evapotranspiration (to a lesser extent), which is
further propagated to surface runoff showing an increase over the period 1983–2018. These
findings are in line with previous observations [10,11,14,15,81–83], which also highlighted
the important role of climate in surface runoff generation, especially in West African en-
vironments. In this regard, it should be outlined that the use of the MERRA-2 reanalysis
data helped in representing spatial patterns in the rainfall over the catchment, which was
certainly critical in attaining optimal model calibration. Therefore, the potential of using
reanalysis datasets in hydrological modeling should be further explored as a potential and
viable pathway to improve hydrological modeling efforts in data-scarce, poorly gauged, or
even ungauged catchments, which are quite common in the West African Sahel [19,42].

Finally, since surface runoff response is acknowledged to be mainly driven by rainfall
patterns in the MRC in this study, implications for future water availability should be ex-
plored through climate models. Previous studies analyzing the future projections of climate
consistently highlight the increase in temperature and, therefore, potential evapotranspira-
tion, but also changes in rainfall patterns, which are likely to result in a decrease in surface
water availability [1,2,84]. This has been highlighted in local assessments in the region,
especially with the recent launch of the CMIP6 global gridded climate projections [15].
However, in-depth and large-scale studies are essential to bridging the knowledge gap
regarding the impacts of climate variability on surface runoff in Burkina Faso and the
wider West African Sahel. This will further enable researchers and policymakers to better
understand and anticipate the hydrological consequences of climate change, facilitating the
development of targeted adaptation strategies to address water resource challenges and
enhance resilience in the face of a globally changing climate.
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