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Abstract: Urban form is closely related to CO2 emissions and the accurate estimation of the impact
of urban form on CO2 emissions plays an important role in tackling climate change caused by the
emission of greenhouse gases. In this paper, we quantitatively investigate the effects of urban form
on CO2 emission and its efficiency from three perspectives: urban expansion, compactness, and
complexity. By using panel quantile regression with fixed effects, we show that: (1) The estimation
results about the relationship between urban form and CO2 emission and its efficiency are consistent
with the literature. (2) The partial effects of urban form without controlling for socioeconomic
factors are heterogeneous throughout the conditional distribution of CO2 emission and its efficiency.
(3) Taking into consideration that the partial effects of urban form on CO2 emission and its efficiency
might depend on the magnitude of socioeconomic factors, we include interaction terms into our model
and find that the interaction effects between socioeconomic factors and urban form are heterogeneous
across cities with different levels of CO2 emission and its efficiency. Our empirical findings shed light
on the optimization of urban form in improving the CO2 emission efficiency, providing policy makers
with effective ways of reducing CO2 emissions across cities with different levels of CO2 emissions.

Keywords: CO2 emissions; urban form; panel data quantile regression; heterogeneous interaction effect

1. Introduction

Global warming, which refers to a gradual increase in the Earth’s temperature, is
associated with the frequency of catastrophic weather events that pose a severe threat to
humanity. Excessive emission of carbon dioxide (CO2) is believed to be closely related
to climate change, especially global warming. Since the launch of reform and opening
up, China has achieved remarkable economic growth and become the world’s second-
largest economy. This miraculous economic development, however, is coupled with
environmental degradation, particularly an intensification of the greenhouse effect caused
by CO2 emissions in urban areas [1]. Being the largest energy consumer and CO2 emitter
since 2009, China has committed to achieving peak CO2 emissions by 2030, reducing CO2
emissions per unit GDP by 60% to 65% compared with the level in 2005, increasing the share
of non-fossil energy consumption in total energy consumption to 20%, and targeting carbon
neutrality by 2060 [2–4]. Although the Chinese government has proposed various policies
to reduce CO2 emissions, more effort is needed, especially since China is still in the process
of urbanization. Urbanization is closely related to urban form, which refers to the physical
characteristics of a city, such as its size, shape, and arrangement of buildings, streets, open
spaces, and transportation systems, and how they interact with each other. Urban form
can significantly impact a city’s social, economic, and environmental aspects [5], and is
widely considered to be closely related to CO2 emissions. Accurately estimating the impact
of urban form on CO2 emissions plays a crucial role in addressing climate change caused
by greenhouse gas emissions.
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In this paper, we quantitatively investigate the effects of urban form on CO2 emission
and its efficiency from three perspectives: urban expansion, urban compactness, and urban
complexity. By using the panel quantile regression method with fixed effects, we show that:
(1) The estimation results about the relationship between urban form and CO2 emission
and its efficiency are consistent with the literature. (2) The partial effects of urban form
without controlling for socioeconomic factors are heterogeneous throughout the conditional
distribution of CO2 emission and its efficiency. (3) Taking into consideration that the partial
effects of urban form on CO2 emission and its efficiency might depend on the magnitude
of socioeconomic factors, we include interaction terms into our model and the interaction
effects between socioeconomic factors and urban form are heterogeneous across cities with
different levels of CO2 emission and its efficiency.

Our study contributes to the literature in two important ways. The first contribution
relates to the application of the methodology, namely, the panel quantile regression with
fixed effects model, which makes our paper, to our knowledge, the first one to provide
the heterogeneous effects of urban form on CO2 emission and its efficiency. Secondly, our
paper not only focuses on the heterogeneous effects of urban form but also explores the
heterogeneous impact of the socioeconomic factors on the correlation between urban form
and CO2 emission and its efficiency. These contributions of our paper vis-à-vis the existing
literature can be summarized as follows.

Our paper is related to the literature on the factors associated with CO2 emission and
its efficiency. Related studies demonstrate that the process of urbanization, which can be
proxied by various spatial patterns and traditional factors such as socioeconomic factors,
plays a major role in impacting CO2 emissions.

A strand of literature which focuses on spatial planning, has recently received more
attention. The authors show that the urban form plays an important role in mitigating CO2
emissions. Urban form, which involves spatial patterns and organization of urban landscape
elements, reflects the temporal and spatial interaction between human socioeconomic activities
and natural environment in urban areas [6–8]. It can influence CO2 emission and its efficiency,
directly or indirectly, through impacting the structure of land use, urban infrastructure, urban
transportation, urban heat island effects, household energy demand and efficiency, and carbon
sinks [9–13]. Urban form does not usually change rapidly once formed, and its impact on CO2
emissions is long-lasting and prominent. Salat and Bourdic [14] suggested that the energy
consumption of suitable urban form is 50–60% less than that of undesirable urban form. In
addition, CO2 emissions of well-established but undesirable urban form are difficult to curb
by conventional measures applied in the reduction of CO2 emissions [15]. Thus, a better
understanding of the connection between urban form and CO2 emissions is required to keep
a long-lasting, low-carbon, and sustainable path of development.

To investigate the effects of urban form on CO2 emissions, the recent literature explores
the impact of urban form from three aspects—urban expansion or size, urban compact-
ness, and urban complexity—examining the relationship between urban form and CO2
emissions. Being a carrier for urbanization, urban expansion or sprawl is depicted by the
increase of urban build-up areas. Urban expansion is positively linked to CO2 emissions
under a background of population growth, increasing commuting distances, or increasing
urban household energy consumption [16–18]. Urban compactness , which is an urban
form of high density with mixed land uses, is designed with an efficient public transporta-
tion system to provide an urban layout with less need to travel by car, to support walking
and cycling, giving citizens convenient access to services and facilities, and thus inducing
low energy consumption [19,20]. A high level of urban compactness is found to effectively
reduce CO2 emissions [21–24]. Urban complexity refers to the irregularity of the shape of
urban patches and is generally believed to have a positive impact on CO2 emissions. Com-
plex and irregular boundaries of urban land patches could increase the time and distance
of common commuting, causing more energy consumption and CO2 emissions [21]. Vice
versa, less urban complexity tends to lower residential CO2 emissions [25]. Accordingly,
our paper concentrates on explaining the effects of urban form on CO2 emission and its
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efficiency measured by CO2 emissions per capita and per unit (CNY 104) GDP across cities
and through time. The existing literature only considers the mean effects of urban form on
CO2 emissions. Little is known about their distributional effects or heterogeneous effects,
which is proved to be critical for policy makers to design precise solutions to approach the
task of reducing CO2 emissions across cities with different levels of CO2 emissions [18].

In addition to the contributions to the literature on the correlation of urban form
and CO2 emissions, as outlined above, we also extend the literature on the impact of
socioeconomic factors on CO2 emissions and on its relationship with urban form. Liu
and Bae [1] analyzed the impact of energy intensity, real GDP, industrialization, and
the proportion of renewable energy in energy usage on CO2 emissions for China over
the period from 1970 to 2015. They found that energy intensity, industrialization, and
real GDP are positively related to CO2 emissions whereas the impact of the proportion
of renewable energy on CO2 emissions is negative. Wang et al. [26] used global and
local regression models to study the effects of different socioeconomic factors on CO2
emissions. The estimation results of both models showed that the economic growth and
energy consumption caused positive effects on CO2 emissions. Pao and Tsai [27], however,
found that the connection between economic growth and CO2 emissions supports the
Environmental Kuznets Curve (EKC) hypothesis. Other factors which were found to
be relative to CO2 emissions include technology, foreign direct investment (FDI), fiscal
decentralization, and energy consumption structure [28–30].

Besides showing that socioeconomic factors, such as the growth of economy and the
level of industrialization, are important determinants of CO2 emissions and its efficiency,
as mentioned above, we also extend this literature into the study of the heterogeneous
interaction effects of socioeconomic factors. Specifically, unlike the current literature, our
work looks at not only the mean (overall) effect of these social economic factors on CO2
emissions, but also their heterogeneous impact on the correlation between urban form and
CO2 emissions. It is reasonable to consider that the effects of urban form on CO2 emissions
depend on the value of socioeconomic factors. In other words, these interaction effects
might exert an opposite force which is large enough to change the direction of the effects of
urban form on CO2 emissions [31].

There is also a strand of literature focusing on the original definition of urbanization,
i.e., the population shift from rural to urban areas, and exploring the effects on CO2
emissions of various indicators which are associated with the increasing demand of energy
caused by the increasing of urban population. For instance, Liu and Bae [1] showed
that CO2 emission is positively correlated with urbanization by raising the demand for
transportation, building energy consumption, and infrastructure that uses carbon-intensive
materials. Senbel and Church (2010) concluded that vehicle travel and buildings’ energy
consumption are the two main contributors to CO2 emissions. Xu and Xu [32] pointed out
that the transportation sector is a major contributor to global CO2 emissions and accounted
for 24.34% of the total CO2 emissions in 2016. Li and Yu [33] showed that CO2 emission
from the transportation sector accounted for about 14% of the national CO2 emissions
in China in 2014. It is obvious that the demand for transportation in a city is positively
correlated with the number of populations. In addition, urbanization usually promotes the
construction of buildings to accommodate more population. The increase in the demand for
carbon-intensive materials such as cement and steel during construction and heating and
cooling of buildings contributes more CO2 emissions [34]. Our paper, accordingly, includes
the population density as a control and investigates the impact from the population density
on the relationship between urban form and CO2 emission and its efficiency with the panel
quantile regressions.

The remainder of this paper is organized as follows. The next section presents the
study area. Section 3 provides details of the steps for data preparation and introduces the
fixed effects model of quantile regression. Section 4 collects the estimation results for the
baseline and alternative regressions. Section 5 gives a discussion of the policy implication.
The last section concludes the paper.
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2. Study Area

Our study focuses on cities at prefecture level and above in China over five periods:
2000, 2005, 2010, 2015, and 2018. The number of cities varies across different years. This is
because the values of CO2 emissions are missing for some cities in a specific year. After
removing cities with missing values, we have 103 cities in 2000, 154 cities in 2005, 236 cities
in 2010, 231 cities in 2015, and 178 cities in 2018. According to the social and economic
development status, the traditional geographical divisions divide China into four regions,
which are the Northeast, East, Central part, and West.1 Figure 1 displays the spatial and
temporal distribution of cities studied in our paper and shows that all regions have been
spatially covered by these cities in each year, although the number of cities varies temporally.
Furthermore, compared with the literature which only studies provincial capitals [21] or
medium and small-sized cities in a specific region [35], we include cities with different
sizes, which makes our research more general. Hence, the study area constituted by these
cities can give us a general picture of the effects of urban form on CO2 emissions or CO2
emission efficiency. In particular, a better understanding of the relationship between CO2
emissions and urban form can be achieved through analyzing the heterogeneous effects of
how urban forms vary across not only different levels of CO2 emissions but also different
regions and sizes, which enables policy makers and urban planners to create sustainable
and low-carbon cities.

(a) (b)

(c) (d)

(e)
Figure 1. The Spatial and Temporal Distribution of CO2 Emissions. (a) CO2 Emissions in 2000,
(b) CO2 Emissions in 2005, (c) CO2 Emissions in 2010, (d) CO2 Emissions in 2015, (e) CO2 Emis-
sions in 2018. Note: The data for CO2 emissions are from the Carbon Emission Accounts and
Datasets (CEADs).
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3. Data and Method

Our paper focuses on exploring the heterogeneous effects of urban form on CO2
emissions and the CO2 emission efficiency from three perspectives—urban expansion,
urban compactness, and urban complexity. For this purpose, we use data on CO2 emissions,
the CO2 emissions per capita, the CO2 emissions per unit GDP, the urban form metrics
measuring the dynamics of urban form, and other socioeconomic factors measuring the
level of industrialization, economic development, and the population density. The data on
CO2 emissions are from the Carbon Emission Accounts and Datasets (CEADs) for emerging
economies, ranging from 2000 to 2018 annually. Metrics used to quantify the urban form
are calculated with ArcGIS and FRAGSTATS 4.2, based on the information of 255 cities from
the Science Data Bank.2 The information of the population density, GDP, and industrial
structure is from the China City Statistical Yearbook (2000–2018). Our sample consists
of 255 cities over five periods: 2000, 2005, 2010, 2015, and 2018. In the following three
subsections, we outline the details for the dependent variables, CO2 emissions and the
CO2 emission efficiency, the main independent variables—urban form metrics, and control
variables—socioeconomic factors.

3.1. CO2 Emissions and CO2 Emissions Efficiency

The Carbon Emission Accounts and Datasets (CEADs) for emerging economies con-
tains the data of CO2 emissions at country, province, city and county level, respectively. As
cities in China are at different stages of industrialization and have their distinctive paths of
development, we focus on the inventories of cities’ CO2 emissions to explore the different
patterns of cities’ CO2 emissions, and provide reasonable policy suggestions according to
the cities’ specific conditions. This paper uses the data on city-level CO2 emissions calcu-
lated by Shan et al. [38–41]. The city-level CO2 emissions are the sum of the energy-related
CO2 emissions and the process-related CO2 emissions. Using the Intergovernmental Panel
Climate Change (IPCC) territorial emission accounting approach, the information about
the energy-related emissions are calculated based on 17 fuels and 47 socioeconomic sectors
by Equation (1). The information about the process-related CO2 emissions are calculated
based on seven industrial processes by Equation (2). The energy-related emissions are
calculated as follows:

∑
i

∑
j

CEij = ∑
i

∑
j

ADij × NCVij × CCi ×Oij (1)

where CEij is the CO2 emissions induced by the combustion of fuel i in sector j and ADij
(activity data) is the fossil fuel combustion by fuel and sector. NCVij is the heat value
produced per physical unit of fossil fuel i combusted, CCi is the carbon emissions per
unit heat value when combusting per physical unit of fossil fuel i, and Oij stands for the
oxidation ratio of the fossil fuel combusted. The equation below is used to estimate the
process-related CO2 emissions.

∑
t

CEt = ∑
t

ADt × EFt (2)

where ADt and EFt refer to industrial process t and its corresponding emission factor,
respectively.

Besides using the quantity of CO2 emissions, which is a direct measure employed
in the literature, as the dependent variable, we include CO2 emissions per capita and
CO2 emissions per unit GDP as dependent variables to proxy the CO2 emission efficiency.
Although economic development is typically associated with the improvements of living
standards and well-being of people, it induces a very large amount of energy consumption
and consequently causes environmental issues which in turn degrade the living environ-
ment and risk people’s lives. Hence, it is of great importance to examine the effects on
CO2 emission efficiency with respect to urban form [22]) and make policies to reduce
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CO2 emissions without sacrificing economic development. Based on the demographic
information and the levels of economic development of cities studied here, we use the
data on CO2 emissions of the years 2000, 2005, 2010, 2015, and 2018 to compute the CO2
emissions per capita and CO2 emissions per unit GDP, respectively.

Figures 1–3 plot the spatial and temporal distribution of CO2 emissions, CO2 emissions
per capita, and CO2 emissions per unit GDP, respectively, to show their spatial changes
from the year of 2000 to the year of 2018. As shown in the three figures, the study area
covers the four regions of China. In particular, most of the cities for which we have data
on CO2 emissions are located in the central, east, and northeast areas of China. For the
Western region, we have the information of Urumqi, the capital of Xinjiang autonomous
region. Two facts of the spatial and temporal distribution of the dependent variables are
summarized as follows: (1) For cities with data available, the CO2 emissions and CO2
emissions per capita are generally increasing over 2000–2018. In particular, for cities in the
northeast, Inner Mongolia, the region of Beijing–Tianjin–Hebei, Shanxi Province, Shandong
Province, and the region of Jiangsu–Zhejiang–Shanghai, as well as the municipality of
Chongqing and the Great Bay Area of Guangdong–Hong Kong–Macau, the magnitude of
the increase is much larger. (2) In contrast, the CO2 emissions per unit GDP are generally
decreasing over time while this decreasing has less spatial discrepancy.

(a) (b)

(c) (d)

(e)
Figure 2. The Spatial and Temporal Distribution of CO2 Emissions per Capita. (a) CO2 Emissions
per Capita in 2000, (b) CO2 Emissions per Capita in 2005, (c) CO2 Emissions per Capita in 2010,
(d) CO2 Emissions per Capita in 2015, (e) CO2 Emissions per Capita in 2018. Note: The data for CO2

emissions per capita are from the Carbon Emission Accounts and Datasets (CEADs) and the China
City Statistical Yearbook (2000–2018).
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(a) (b)

(c) (d)

(e)
Figure 3. The Spatial and Temporal Distribution of CO2 Emissions per Unit GDP. (a) CO2 Emissions
per Unit GDP in 2000, (b) CO2 Emissions per Unit GDP in 2005, (c) CO2 Emissions per Unit GDP in
2010, (d) CO2 Emissions per Unit GDP in 2015, (e) CO2 Emissions per Unit GDP in 2018. Note: The
unit of measurement shown in this picture is CNY. The data for CO2 emissions per unit GDP are
from the Carbon Emission Accounts and Datasets (CEADs) and the China City Statistical Yearbook
(2000–2018).

3.2. Urban Form Metrics

In order to quantify the relationship between urban form and CO2 emissions, we choose
ten metrics shown in Tables 1 and 2 to proxy the urban form from three perspectives: urban ex-
pansion, urban compactness, and urban complexity. In align with Fang et al. [21], Li et al. [22],
we choose total area (TA) to describe urban expansion. TA equals the total area (m2) of all
patches of an urban area, divided by 10,000 (to convert to hectares), which indicates the overall
size and the expansion of the urban area.

Urban compactness refers to the degree of aggregation of an urban area and is repre-
sented by patch density (PD), landscape division index (DIVISION), splitting index (SPLIT),
the percentage of like adjacencies (PLADJ), and patch cohesion index (COHESION). PD
equals the number of patches of the corresponding patch type divided by TA and reflects
the fragmentation of an urban area. DIVISION, whose value lies in the range [0, 1], equals
the possibility that two randomly selected cells are not located in the same patch. SPLIT
refers to the sparsity of urban patches. Specifically, the more compact the urban landscape,
the lower the values of PD, DIVISION, and SPLIT. PLADJ, taking values between 0 and
100, is the percentage of cells adjacencies in a single patch type (cells bordering cells of the
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same patch type). The increase in PLADJ implies greater aggregation of the patches within
the same patch type and across all patch types. COHESION measures the connectedness of
patches in an urban area and takes value between 0 and 100 when there is only one patch
type. Patch cohesion increases as the patches becomes more clustered within the same
patch type and across patch types. The closer the values of both PLADJ and COHESION
are to 100, the more compact an urban area is.

Urban complexity refers to the degree of irregularity of the perimeter of a specific
patch type and is measured by landscape shape index (LSI), area-weighted mean shape
index (SHAPE_AM), perimeter-area fractal dimension (PAFRAC), and area-weighted mean
contiguity index (CONTIG_AM). Both LSI and SHAPE_AM measure the perimeter-to-area
ratio for the urban area as a whole [42] and function as the measure of overall geometric
complexity of urban area. The values of both LSI and SHAPE_AM are greater than or
equal to 1. The urban area has the most regular shape when LSI or SHAPE_AM equals 1.
PAFRAC, whose value lies between 1 and 2, equals 2 divided by the slope of regression line
obtained by regressing the logarithm of patch area (lnaij) against the logarithm of patch
perimeter (lnpij). PAFRAC approaches 1 for a simple shape and approaches 2 for a complex
shape. CONTIG_AM (the range is between 0 and 1) measures the spatial connectedness
of cells in patches to reflect the shape complexity of an urban area. Higher values of LSI,
SHAPE_AM, PAFRAC, and CONTIG_AM are associated with greater irregularity of the
shape of an urban area.

The ten metrics used here are calculated by using ArcGIS and FRAGSTATS 4.2, based
on the information obtained from the Science Data Bank. Following the rules accepted
by the United Nations (UN), this dataset is constructed by using the remote sensing
technology to process the Landsat and Sentinel images, which covers urban built-up areas
for 433 Chinese cities at five-year interval from 1990 to 2020. More details of the process of
extracting urban built-up data can be found in Sun et al. [36], Jiang et al. [37].

Table 1. The Description of Urban Metrics.

Category Landscape Metric Abbreviation Equation

Urban
expansion

Total area TA ∑m
i ∑n

j=1 aij(
1

10,000 )

Patch density PD n
A

Urban compactness

Landscape division index DIVISION 1−∑m
i=1 ∑n

j=1(
aij

10,000A )2

Splitting index SPLIT (A)2

∑m
i=1 ∑n

j=1 a2
ij

Percentage of like adjacencies PLADJ ∑m
i=1 gii

∑m
i=1 ∑m

k=1 gik
(100)

Patch cohesion index COHESION
[

1− ∑m
i=1 ∑n

j=1 P∗ij
∑m

i=1 ∑n
j=1 P∗ij
√

a∗ij

] [
1− 1√

Z

]−1
(100)

Urban complexity

Landscape shape index LSI 0.25 ∑m
k=1 e∗ik√
A

Area-weighted mean shape index SHAPE_AM ∑m
i=1 ∑n

j=1

[
(

0.25pij√aij
)(

aij
A )
]

Perimeter-area fractal dimension PAFRAC 2
[N ∑m

i=1 ∑n
j=1(lnpij lnaij )]−[(∑

m
i=1 ∑n

j=1 lnpij )(∑
m
i=1 ∑n

j=1 lnaij )]

(N ∑m
i=1 ∑n

j=1 lnp2
ij )−(∑

m
i=1 ∑n

j=1 lnpij )
2

Area-weighted mean contiguity index CONTIG_AM ∑m
i=1 ∑n

j=1

 ∑x
r=1 Cijr

a∗ij
−1

v−1

( aij
A

)
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Table 2. Notation used in FRAGSTATS algorithms.

Subscripts Definition Symbols Definition

i 1, · · · , m or m′ patch types (classes) aij the area (m2) of patch ij
j 1, · · · , n patches pij perimeter of patch ij
k 1, · · · , m or m′ patch types (classes) gik the number of adjacencies between patch types i and k
q 1, · · · , p disjunct core areas gii the number of like adjacencies between pixels of patch type i
s 1, · · · , n patches, within specified neighborhood cijr contiguity value for pixel r in patch ij
n number of patches of a class e∗ik total length of edge in landscape between classes i and k
m number of patch types Z total number of cells in an urban area
r 1, · · · , x pixels P∗ij the perimeter of patch ij in terms of number of cell surfaces
v sum of the values in a 3× 3 moving window a∗ij the area of patch ij in terms of number of cells
A the total area (m2) of an urban area

In Figure 4, we show an example of the expansion of urban built-up areas over time.
We first use the Google Earth Engine (GEE) to process and export the raw images of cities
from Landsat 5, 7, and 8. Specifically, we obtain the images in 2005 and 2010 from Landsat 5,
images in 2000 from Landsat 7, and images in 2005 and 2018 from Landsat 8. The cloud-free
raw image for a city is composed of different raw images depicting different parts of the
same city. After the composites were generated, we exported those images to Google Drive,
from which we can download. Then we obtained the false color composite images with
Band 5 (Red), 4 (Green), and 3 (Blue), as shown in Figure 4. The bluish-violet areas within
the red rectangles indicate urban built-up areas. Based on the geographic information,
we selected seven provincial capital cities in different parts of China to show the changes
in urban built-up areas over time. Specifically, we chose Changchun and Xi’an as two
representative cities in the Northeast and West parts of China, respectively. Jinan, Nanjing,
and Shijiazhuang represent cities in the East part of China. Wuhan and Zhengzhou were
chosen for the Central part. Figure 4 shows that the built-up areas have a tendency to
expand over time along with the increase in CO2 emissions shown in Figure 1. This reveals
a close connection between urban form and CO2 emissions.

Figure 4. The Urban Expansion of Seven Representative Cities. Note: The images are composites of
Band 5 (Red), 4 (Green), 3 (Blue). The bluish-violet areas within the red rectangles represent urban
built-up areas. The names of representative cities are shown in the top-left corners of the images in
the first row. The time of images are in the bottom-left corners in the first column. The raw images
are downloaded from Landsat 5, 7, and 8 by using Google Earth Engine.
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3.3. Socioeconomic Factors

Socioeconomic factors are believed to be not only closely related to CO2 emissions
but also urban form. We select the population density, the share of second industry
in GDP, and the GDP per capita as the representative socioeconomic factors, which are
thought to have significant impacts on CO2 emissions and urban form [35,43,44]. In
order to analyze the causal effects of urban form on CO2 emissions across cities with
different socioeconomic characteristics, we need to disentangle the pure effects of urban
form on dependent variables mentioned in Section 3.1 from the effects of socioeconomic
factors. Under the ceteris paribus assumption, we can sort out the causal effects by adding
socioeconomic factors and their interaction term into our model.

3.4. Panel Quantile Regression with Fixed Effects Model

As mentioned earlier, the existing literature only considers the mean (overall) effects
of driving factors on CO2 emissions ([22,35]). Little is known about their distributional
effects or heterogeneous effects which are the effects of the driving factors on the entire
distribution of CO2 emissions. For example, for two cities’ urban planning policies with
the same mean impact on CO2 emissions, policymakers are likely to prefer a policy that
tends to reduce CO2 emissions in the higher tail of the distribution of the CO2 emissions to
one that tends to decrease CO2 emissions in the middle or lower tail of the distribution of
CO2 emissions. Moreover, there exist some unobserved time-constant city-specific effects
αi that could not otherwise be controlled for by other explanatory variables in the model.
Geographical features and city-specific culture can be included in the fixed effects.

To explore the heterogeneous effects of urban form on CO2 emissions and CO2 emission
efficiency, we use the panel data quantile regression method proposed by Koenker [45]. Let
i denote the cross section unit and t denote the time period. We can write the conditional
quantile regression function as follows:

Qyit(µ|xit) = xT
it β(µ) + αi (3)

where yit and xit are dependent and independent variables for city i at time t, respec-
tively. αi is an unobserved effect for city i which is correlated with independent variables.
Suppose µ|xi, αi ∼ U[0, 1] with xi = [x′i1, · · · , x′iT ]

′. Treating {αi}n
i=1 as parameters to be

jointly estimated with β(µ) for q different quantiles, the penalized estimators are proposed
as follows:

(β̃, {α̃i}n
i=1) = argmin

q

∑
k=1

n

∑
i=1

T

∑
t=1

wkρµk

[
yit − αi − xT

it β(µk)
]
+ λ

n

∑
i=1
|αi| (4)

where ρµ(u) = u(µ− I(u < 0)) denote the check function in Koenker and Bassett Jr [46],
and I{·} is the indicator function and equals one if the condition in the parentheses is
satisfied. The weights wk control the relative importance of the q quantiles {µ1, · · · , µq} on
the estimation of the {αi}n

i=1. The fixed effects estimators α can be obtained when λ→ 0
and equal to zero when λ→ ∞.

4. Results

The existing empirical work ([22,35]) finds urban form to be an important determinant
of the CO2 emissions. However, few studies document how it impacts the CO2 emissions
from an aspect of the quantile analysis. Our paper, accordingly, fills this gap by examining
the effects of changing in the urban expansion, urban compactness, and urban complex-
ity on CO2 emissions, CO2 emissions per capita, and the economic efficiency, i.e., CO2
emissions per unit (CNY 104) GDP, respectively.

4.1. The Distributions of CO2 Emissions and CO2 Emission Efficiency

In this subsection, we give the basic facts associated with the CO2 emissions, the CO2
emissions per capita, and the CO2 emissions per unit GDP, respectively. Table 3(a)–(c)
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summarize the essential statistics, the number of observations, mean, standard deviation,
and the minimum and maximum of the three dependent variables in our study. The
following three features of our dependent variables deserve mention: (1) The mean as well
as the standard deviation values of CO2 emissions are increasing over time, indicating a
general economic development but an increasing discrepancy of this development among
different cities. The average quantity of CO2 emissions increased from 19.14 million
tonnes in 2000 to 47.42 million tonnes in 2018, with standard deviations of 20.59 million
tonnes in 2000 and 56.32 million tonnes in 2018, respectively. (2) Unlike the quantity of
CO2 emissions, the CO2 emissions per capita show a pattern of first increasing and then
decreasing. It increased, on average, from 0.04 tonnes in 2000 to 0.13 tonnes in 2015 while
slightly dropping to 0.12 tonnes in 2018. (3) The emissions per unit GDP exhibits a similar
pattern that the CO2 emissions per capita has. However, the inflection point appeared
at an earlier time, the year of 2005. From 2005 to 2018, the CO2 emissions per unit GDP
decreased from 4.14 × 10−2 tonnes to 1.81 × 10−2 tonnes.

Table 3. Summary Statistics.

(a) CO2 Emissions

Year Number of Obs. Mean Std. Dev. Min Max

2000 103 19.14 20.59 1.35 117.97
2005 154 29.27 26.77 1.70 158.94
2010 236 34.99 32.58 1.34 195.50
2015 231 42.01 43.30 1.99 337.45
2018 178 47.42 56.32 1.76 415.98

(b) CO2 Emissions Per Capita

Year Number of Obs. Mean Std. Dev. Min Max

2000 103 0.04 0.04 0.00 0.27
2005 154 0.08 0.14 0.00 1.56
2010 236 0.10 0.13 0.01 1.23
2015 231 0.13 0.21 0.01 2.14
2018 178 0.12 0.18 0.00 1.56

(c) CO2 Emissions Per Unit GDP

Year Number of Obs. Mean Std. Dev. Min Max

2000 103 0.0385 0.0337 0.0036 0.2460
2005 154 0.0414 0.0370 0.0040 0.2280
2010 236 0.0284 0.0230 0.0039 0.1470
2015 231 0.0217 0.0238 0.0017 0.2150
2018 178 0.0181 0.0193 0.0019 0.1040

Note: The units of measurement for the three dependent variables are displayed in the parentheses: CO2 Emissions
(Million Tones); CO2 Emissions Per Capita (Tones per Capita); CO2 Emissions Per Unit GDP (Tonnes/CNY 104)

In one word, as we can observe, the quantity of CO2 emissions increases along time,
and it becomes much more volatile. In addition, the process of CO2 emissions has become
much more efficiency as the CO2 emissions per unit GDP started to decrease since 2005.

Moreover, our dependent variables are also featured by their characteristics of the
dynamic distribution. Figure 5 displays the kernel density of the natural logarithm of CO2
emissions, CO2 emissions per capita, and CO2 emissions per unit GDP by year, respectively.
The short dash lines represent the mean values of each subsample sorted by year. (1) For
the CO2 emissions, the distribution of the sample shifts from the left to the right over time
period 2000–2018, but the process of distribution shifting slows down in recent years, as
we can see the distance between two consecutive vertical line of mean values becomes
shorter. (2) The distribution of the CO2 emissions per capita also shifts from the left to the
right over time. However, this process looks like it has been at a standstill since 2015. (3)
The distribution of the sample of the CO2 emissions per unit GDP shifts from the right to
the left, indicating a significant improvement of CO2 emission efficiency. By looking at
the kernel density of dependent variables, we draw the same conclusion as Table 3 that,
though the quantity of CO2 emissions increases along time, the process of CO2 emissions
has become much more efficient.
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Figure 5. The Kernel Density of the Natural Logarithm of CO2 Emissions, CO2 Emissions per Capita,
and CO2 Emissions per Unit GDP. Note: The data for CO2 emissions in the period 2000-2018 are
from “The Carbon Emission Accounts and Datasets”. The data for CO2 emissions per capita and
CO2 emissions per unit GDP are from the Carbon Emission Accounts and Datasets (CEADs) and the
China City Statistical Yearbook (2000–2018).

4.2. The Estimation Results of Panel Quantile Regression with Fixed Effects

For the main explanatory variable, urban form, we select one representative metric for
each categorical map pattern. We use the total area (TA) in urban expansion as the first main
explanatory variable. Then we conduct a correlation analysis to select metrics representing
the other two categorical map patterns, urban compactness and urban complexity, to avoid
a multicollinearity issue in the panel regression.

The results of the correlation analysis are presented in Figure 6. In the second map
pattern, urban compactness, landscape division index (DIVISION), and splitting index
(SPLIT) have insignificant correlation coefficients with TA, where the correlation coefficients
are −0.05 and 0.04, respectively. As DIVISION and SPLIT are highly correlated (with a
correlation coefficient 0.70), we choose DIVISION to represent urban compactness. In
the third map pattern, urban complexity, perimeter-area fractal dimension (PAFRAC) has
an insignificant correlation coefficient −0.09 with TA. Thus, we use TA, DIVISION, and
PAFRAC to conduct the panel regressions in the following subsections. All the variables of
urban form metrics, as well as the dependent variables, are in the form of natural logarithm.

Figure 6. The Correlation Coefficients of the Urban Form Metrics.

4.2.1. The Empirical Analysis of Distributional Effects of Urban Form

We estimate a fixed effects model of quantile regression described in the previous
section for selected metrics. For the purpose of comparison, we also provide the results of a
fixed effects model, with mean (overall) estimated effects.
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Table 4(a)–(c) contains the estimates with the results of the mean effects in the second
column of each panel and with the results of quantile analysis in columns three to five,
for the CO2 emissions, the CO2 emission per capita, and the CO2 emission per unit GDP,
respectively. The results show the directions as well as the magnitudes of the impacts of
each urban form variable.

In Column 2 of Table 4(a), both TA and DIVISION have significant, positive ef-
fects on CO2 emissions, with coefficients 0.75 and 0.06, respectively. Consistent with
the literature [16–18], as the urban area expands, the quantity of CO2 emissions increases.
In general, the higher the values of DIVISION, the less compact the spatial pattern of urban
landscape. Thus, our estimates can be interpreted as that less compact urban landscape
pattern results in higher CO2 emissions [21–24]. PAFRAC has a negative but insignificant
effect on the CO2 emissions, which suggests urban complexity has no impact on the CO2
emissions when urban expansion and compactness are included.

The estimation results of quantile regression in Table 4(a) yield the same conclusion
as the mean regression: both TA and DIVISION have significant, positive effects on CO2
emissions while PAFRAC has a negative but insignificant effect on CO2 emissions. More-
over, the estimation results of quantile regression show a significant monotonicity of the
effects of TA and DIVISION on CO2 emissions. The magnitude of the impact from TA
decreases when the level of the CO2 emissions increases (from 0.80 to 0.70). So does the
impact of DIVISION (from 0.08 to 0.04). In particular, the impact of DIVISION becomes
less significant at high levels of CO2 emissions.

Table 4(b) presents the CO2 estimations results for the emissions per capita in the
same way as Table 4(a). In the second column of the mean effects, both TA and DIVISION
have significant, positive effects on the CO2 emissions per capita, with coefficients 0.66
and 0.06, respectively. As the urban area expands, CO2 emissions per capita increases,
and less compact urban landscape pattern results in higher CO2 emissions per capita.
PAFRAC has a positive but insignificant effect on CO2 emissions per capita, which means
urban complexity has no impact on CO2 emissions per capita when urban expansion and
compactness are included.

The estimation results of quantile regression in Table 4(b) provide the same conclusion
as the overall regression in the second column: both TA and DIVISION have significant,
positive effects on the CO2 emissions per capita while PAFRAC has a positive but insignif-
icant effect. Moreover, the estimation results of quantile regression show a significant
monotonicity of the effects of TA and DIVISION on the CO2 emissions per capita. The
magnitude of the impact from TA (urban expansion) decreases when the level of the CO2
emissions per capita increases (from 0.73 to 0.60), and so does the impact of DIVISION
(from 0.09 to 0.04). However, the impact of DIVISION becomes insignificant at high levels
of the CO2 emissions per capita (at the third quantile in our regression).

The last panel of Table 4, Table 4(c), shows the estimation results for CO2 emissions per
unit (CNY 104) GDP in the same way as Table 4(a). The overall impacts of TA, DIVISION, as
well as PAFRAC on the economic efficiency of CO2 emissions, i.e., CO2 emissions per unit
GDP, are significant with coefficients −0.70, 0.04, and 1.25, respectively. As the urban area
expands, CO2 emissions per unit GDP decreases. Less compact urban landscape pattern
results in higher CO2 emissions per unit GDP. By comparing the estimated coefficients,
PAFRAC has a much stronger impact on CO2 emissions per unit GDP, which means
compared with urban expansion and urban compactness, urban complexity has much
larger influence on the economic efficiency of CO2 emissions.

The estimation results of quantile regression in Table 4(c) draw the similar conclusion
as the mean regression: both DIVISION and PAFRAC have positive effects on the CO2
emissions per unit GDP while TA has a negative effect. Moreover, the estimation results of
quantile regression show a significant monotonicity of these impacts. The magnitude of the
negative impact of TA increases (from −0.68 to −0.71) when the level of CO2 emissions per
unit GDP increases, and so does the impact of PAFRAC (from 1.04 to 1.46). However, the
magnitude of the impact of DIVISION decreases and becomes insignificant at high levels
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of CO2 emissions per unit GDP. For a low economic efficiency of CO2 emissions, urban
complexity has a much stronger impact than urban compactness.

Table 4. The Heterogeneous Effects of Urban Form on Dependent Variables.

(a) Dependent Variable: CO2 Emissions

Mean 0.25 0.50 0.75

TA 0.75 *** 0.80 *** 0.74 *** 0.70 ***
(0.04) (0.06) (0.04) (0.05)

DIVISION 0.06 *** 0.08 *** 0.06 *** 0.04 *
(0.02) (0.03) (0.02) (0.02)

PAFRAC −0.11 −0.08 −0.11 −0.14
(0.50) (0.76) (0.47) (0.60)

Obs. 817 817 817 817

(b) Dependent Variable: CO2 Emissions per Capita

Mean 0.25 0.50 0.75
TA 0.66 *** 0.73 *** 0.66 *** 0.60 ***

(0.04) (0.06) (0.04) (0.05)
DIVISION 0.06 *** 0.09 *** 0.06 *** 0.04

(0.02) (0.03) (0.02) (0.02)
PAFRAC 0.28 0.35 0.27 0.21

(0.49) (0.78) (0.48) (0.60)
Obs. 817 817 817 817

(c) Dependent Variable: CO2 Emissions per Unit GDP

Mean 0.25 0.50 0.75

TA −0.70 *** −0.68 *** −0.70 *** −0.701 ***
(0.04) (0.06) (0.04) (0.06)

DIVISION 0.04 * 0.05 * 0.04 * 0.02
(0.02) (0.03) (0.02) (0.03)

PAFRAC 1.25 ** 1.04 1.24 ** 1.46 *
(0.56) (0.79) (0.56) (0.79)

Obs. 817 817 817 817
Note: All variables listed in the table are converted into natural logarithmic forms. The estimated coefficients
at each of the quantiles are given in the columns labeled by the corresponding quantiles. Standard errors are
reported in the parentheses. ∗ indicates statistically significant at the 10% level, ∗∗ indicates statistically significant
at the 5% level, and ∗∗∗ indicates statistically significant at the 1% level.

4.2.2. The Empirical Analysis of Distributional Interaction Effects between Urban Form
and Socioeconomic Factors

In our regressions, we examine other determinants of the CO2 emission and its ef-
ficiency to isolate the effect of our main explanatory variables of urban form. In this
subsection, we include three socioeconomic factors as controls. They are the population
density, the value share of industry in GDP, and the GDP per capita. We allow for the
possibility that the impact of urban form on the CO2 emission and its efficiency depend on
these socioeconomic variables. In particular, our regressions allow for the interaction of
urban form metrics with each control variable, respectively. Except GDP per capita, the
other two variables are in the form of natural logarithm.

The Heterogeneous Effects of Urban Form after Controlling for Socioeconomic Factors

Table 5(a)–(c) summarizes the estimation results of the fixed effects model and of
the fixed effects model of quantile regression, when all control variables—population
density (Pop_density), the industry share in GDP (Ind_GDP), and the GDP per capita
(PGDP)—are included. We interpret our results by comparing them with the results of the
impacts of urban form variables in Table 4(a)–(c). In Table 5 (a), both TA and DIVISION
have positive effects on the CO2 emissions, with a monotonicity of such effects along the
distribution of the CO2 emissions, which is consistent with the findings of Table 4(a). For
the socioeconomic variables, the population density does not have a significant effect on
the total amount of the CO2 emissions. Although the industry share in GDP and the GDP
per capita are positively correlated with the total amount of the CO2 emissions, which is
consistent with Liu and Bae [1], the effects are monotonically decreasing with respect to
the level of CO2 emissions. Table 5(b) shows the estimated results for the CO2 emissions
per capita. Compared with Table 4(b), both TA and DIVISION consistently have positive
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and decreasing effects. However, the impact from DIVISION becomes less significant for
cities with high CO2 emissions per capita. The industry share in GDP and the GDP per
capita are consistently the two important determinants of CO2 emissions per capita, with
positive but decreasing effects along the distribution of CO2 emissions per capita. For
the CO2 emissions per unit GDP, the effect of TA is consistently negative. However, the
direction of the monotonicity of this effect is changed to decreasing and the magnitude of
the overall effect shrinks to −0.32, over 50% less than that in Table 4(c). The correlations
between DIVISION and the CO2 emissions per unit GDP, and between PAFRAC and the
CO2 emissions per unit GDP are affected by including variables related to the process of
industrialization and GDP. In the following paragraphs, we look into details of the impact
from the socioeconomic variables on the relationship between urban form and the variables
related to CO2 emissions.

Table 5. The Heterogeneous Effects of Urban Form on Dependent Variables after Controlling for
Socioeconomic Factors.

(a) Dependent Variable: CO2 Emissions
Mean 0.25 0.50 0.75

TA 0.71 *** 0.73 *** 0.71 *** 0.69 ***
(0.05) (0.09) (0.06) (0.08)

DIVISION 0.07 ** 0.09 ** 0.06 ** 0.04
(0.03) (0.04) (0.03) (0.04)

PAFRAC −0.43 −0.63 −0.40 −0.23
(0.54) (0.71) (0.48) (0.64)

Pop_density −0.06 −0.07 −0.07 −0.13
(0.19) (0.26) (0.17) (0.23)

Ind_GDP 1.06 *** 1.03 *** 0.024 *** 0.89 ***
(0.12) (0.19) (0.13) (0.17)

PGDP 3.85 × 10−6 *** 3.87 × 10−6 *** 3.85 × 10−6 *** 3.84 × 10−6 ***
(5.95 × 10−7) (1.24 × 10−6) (8.34 × 10−7) (1.13 × 10−6)

Obs. 650 650 650 650

(b) Dependent Variable: CO2 Emissions per Capita

Mean 0.25 0.50 0.75

TA 0.66 *** 0.70 0.66 *** 0.63 ***
(0.05) (0.09) (0.06) (0.09)

DIVISION 0.07 ** 0.11 ** 0.07 ** 0.04
(0.03) (0.05) (0.03) (0.05)

PAFRAC −0.19 −0.40 −0.16 0.01
(0.53) (0.73) (0.51) (0.70)

Pop_density 0.10 0.20 0.08 −0.002
(0.18) (0.25) (0.17) (0.24)

Ind_GDP 0.99 *** 1.13 0.97 *** 0.86 ***
(0.12) 0.19 0.13 0.18

PGDP 2.75 × 10−6 *** 2.80 × 10−6 ** 2.75 × 10−6 *** 2.71 × 10−6 **
(5.87 × 10−7) (1.14 × 10−6) (7.92 × 10−7) (1.09 × 10−6)

Obs. 650 650 650 650

(c) Dependent Variable: CO2 Emissions per Unit GDP

Mean 0.25 0.50 0.75

TA −0.32 *** −0.33 ** −0.32 *** −0.30 **
(0.06) (0.14) (0.09) (0.12)

DIVISION 0.04 0.07 0.04 0.01
(0.04) (0.05) (0.03) (0.05)

PAFRAC 0.71 0.37 0.72 1.06
(0.61) (0.98) (0.65) (0.88)

Pop_density −0.10 −0.01 −0.10 −0.19
(0.21) (0.31) 0.20 0.27

Ind_GDP −0.19 −0.01 −0.20 −0.38 *
0.14 0.23 0.16 0.21

PGDP −6.68 × 10−6 *** −6.48 × 10−6 *** −6.68 × 10−6 *** −6.88 × 10−6 ***
(6.74 × 10−7) (1.60 × 10−6) (1.06 × 10−6) (1.43 × 10−6)

Obs. 650 650 650 650

Note: All variables tabulated in the table are converted into natural logarithmic forms except PGDP. The estimated
coefficients at each of the quantiles are given in the columns labeled by the corresponding quantiles. Standard
errors are reported in the parentheses. ∗ indicates statistically significant at the 10% level, ∗∗ indicates statistically
significant at the 5% level, and ∗∗∗ indicates statistically significant at the 1% level.



Land 2023, 12, 981 16 of 24

The Heterogeneous Interaction Effects between Urban Form and Population Density

Table 6(a)–(c) lists the estimation results of the quantile regressions with interactions
of the population density for the CO2 emissions, the CO2 emissions per capita, and CO2
emissions per unit GDP. In Table 6(a), as expected, both TA and DIVISION have positive
effects on the CO2 emissions, with a decreasing monotonicity of the impacts. However,
those impacts are not significant due to the interaction with the population density. On
the other hand, when considering the population density, PAFRAC becomes significantly,
positively, correlated with the medium and low level CO2 emissions, and this impact is
negatively affected by the population density. The two impacts, which the urban complexity
imposes on CO2 emissions and which the population density imposes on the former one,
are decreasing when CO2 emissions increases.

Table 6. The Heterogeneous Effects of Urban Form on Dependent Variables after Controlling for
Population Density.

(a) CO2 Emissions (b) CO2 Emissions per Capita (c) CO2 Emissions per Unit GDP

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

TA 0.62 0.48 0.38 0.77 0.69 * 0.63 0.34 0.74 1.06
(0.61) (0.40) (0.53) (0.66) (0.41) (0.52) (0.81) (0.59) (0.83)

DIVISION 0.49 0.29 0.15 0.19 0.10 0.04 −0.06 −0.27 −0.45
(0.46) (0.30) (0.40) (0.50) (0.31) (0.40) (0.57) (0.41) (0.58)

PAFRAC 10.34 * 9.04 ** 8.18 9.02 7.27 ** 6.06 7.80 6.39 5.22
(5.75) (3.76) (4.99) (6.21) (3.83) (4.90) (9.21) (6.62) (9.40)

Pop_density 0.51 0.28 0.12 1.02 0.75 0.56 1.37 1.97 ** 2.47 *
(1.05) (0.69) (0.91) (1.11) (0.68) (0.88) (1.32) (0.95) (1.34)

TA × Pop_density 0.05 0.07 0.08 0.01 0.02 0.02 −0.16 −0.23 ** −0.29 **
(0.10) (0.06) (0.09) (0.11) (0.07) (0.08) (0.13) (0.09) (0.13)

DIVISION × Pop_density −0.06 −0.03 −0.01 −0.001 −0.01 0.01 0.02 0.05 0.07
(0.07) (0.05) (0.06) (0.08) (0.050) (0.06) (0.09) (0.06) (0.09)

PAFRAC × Pop_density −1.86 * −1.65 *** −1.51 * −1.61 −1.31 ** −1.10 −1.23 −0.94 −0.70
(0.98) (0.64) (0.85) (1.06) (0.66) (0.84) (1.55) (1.11) (1.58)

Obs. 650 650 650 650 650 650 650 650 650

Note: All variables except the interaction terms in the table are in natural logarithmic forms. The interaction term
is the multiplication of two independent variables after being converted into natural logarithmic forms. The
estimated coefficients at each of the quantiles are given in the columns labeled by the corresponding quantiles.
Standard errors are reported in the parentheses. ∗ indicates statistically significant at the 10% level, ∗∗ indicates
statistically significant at the 5% level, and ∗∗∗ indicates statistically significant at the 1% level.

Table 6(b) presents the estimation results for the CO2 emissions per capita in the
same way. When CO2 emissions per capita is low, urban form has no significant impacts.
However, the estimates still show suggestive evidence that both TA and DIVISION have
positive and decreasing effects on the CO2 emissions per capita. Again, PAFRAC’s effect
becomes more significant when considering the population density, though the impact of
population density on the relationship between PAFRAC and CO2 emissions per capita is
negative. Table 6(c) shows the estimation results for the CO2 emissions per unit GDP. With-
out exception, when considering the population density, the impact of urban form becomes
less significant, and the impact of the population density affects the correlation of TA most.
However, a monotonicity of the estimates can be observed with the quantile analysis. In
summary, the population density can significantly affect the relationship between urban
complexity and CO2 emissions, and the relationship between urban complexity and CO2
emissions per capita. In addition, the population density can also monotonically alter the
impact of urban expansion on the economic efficiency of the CO2 emissions and for itself,
and high population density will reduce the economic efficiency of the CO2 emissions.

The Heterogeneous Interaction Effects between Urban Form and Share of Industry

Table 7 presents the estimation results for the impact of the value share of industry in
GDP in the same way as Table 6 does. Table 7(a) shows the estimated coefficients for the
CO2 emissions. Except observing a decreasing, positive effect of TA (from 1.45 to 0.84), we
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find that the development of industry can significantly, positively, affect the correlation of
DIVISION and the CO2 emissions. Moreover, compared with the results in Table 4(a), the
impact of DIVISION alters the direction, from positive to negative. In Table 7(b), we show
the results when considering the impact of the value share of industry in GDP on the effect
of urban form on the CO2 emissions per capita. Both TA’s positive effects and DIVISION’s
negative effects have the property of monotonicity. Moreover, the value share of industry in
GDP increasingly, positively, affects the correlation between DIVISION and CO2 emissions
per capita (from 0.22 to 0.23). In Table 7(c), we find that the value share of industry in GDP
increasingly, positively affects both the correlation between TA and CO2 emissions per
unit GDP and the correlation between DIVISION and CO2 emissions per unit GDP. In one
word, the share of industry in GDP can significantly affect the relationship between urban
compactness and CO2 emissions, and the relationship between urban compactness and
CO2 emissions per capita. In addition, the share of industry in GDP can also monotonically,
significantly affect the correlation between urban expansion and the economic efficiency
of the CO2 emissions and for itself, a well-developed industrial city usually have a high
economic efficiency of CO2 emissions.

Table 7. The Heterogeneous Effects of Urban Form on Dependent Variables after Controlling for
Share of Industry.

(a) CO2 Emissions (b) CO2 Emissions per Capita (c) CO2 Emissions per Unit GDP

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

TA 1.45 *** 1.12 *** 0.84 ** 1.08 ** 0.77 *** 0.54 −2.22 *** −2.40 *** −2.63 ***
(0.41) (0.28) (0.38) (0.44) (0.28) (0.36) (0.44) (0.39) (0.68)

DIVISION −0.68 −0.73 ** −0.77 * −0.77 −0.83 *** −0.87 ** −0.52 −0.64 −0.79
(0.43) (0.30) (0.40) (0.49) (0.31) (0.40) (0.44) (0.39) (0.68)

PAFRAC −0.80 −4.38 −7.49 0.12 −2.60 −4.62 6.12 0.60 −6.51
(10.45) (7.15) (9.70) (11.71) (7.50) (9.71) (11.62) (10.20) (17.86)

Ind_GDP 2.66 * 1.51 0.51 2.01 1.04 0.32 −2.59 −3.65 ** −5.03 **
(1.59) (1.09) (1.48) (1.73) (1.11) (1.43) (1.81) (1.59) (2.78)

TA × Ind_GDP −0.17 −0.09 −0.03 −0.09 −0.02 0.02 0.41 *** 0.45 *** 0.51 ***
(0.11) (0.07) (0.10) (0.12) (0.07) (0.10) (0.12) (0.11) (0.19)

DIVISION × Ind_GDP 0.19 * 0.20 ** 0.21 ** 0.22 * 0.23 *** 0.23 ** 0.15 0.18 ** 0.21
(0.12) (0.08) (0.11) (0.13) (0.08) (0.11) (0.12) (0.10) (0.18)

PAFRAC × Ind_GDP 0.15 1.05 1.83 0.01 0.67 1.17 −1.42 0.08 2.00
(2.67) (1.82) (2.48) (2.99) (1.91) (2.48) (3.02) (2.65) (4.65)

Obs. 817 817 817 817 817 817 817 817 817

Note: All variables except the interaction terms in the table are in natural logarithmic forms. The interaction term
is the multiplication of two independent variables after being converted into natural logarithmic forms. The
estimated coefficients at each of the quantiles are given in the columns labeled by the corresponding quantiles.
Standard errors are reported in the parentheses. ∗ indicates statistically significant at the 10% level, ∗∗ indicates
statistically significant at the 5% level, and ∗∗∗ indicates statistically significant at the 1% level.

The Heterogeneous Interaction Effects between Urban Form and GDP per Capita

In Table 8(a)–(c), we use the original form of per capita GDP and do not take the
natural logarithm of this socioeconomic variable. As for the distributional interaction
effects of GDP per capita, we find that the estimated coefficients of CO2 emissions per
unit GDP with respect to all independent variables, except GDP per capita, are almost
the same as those of CO2 emissions per capita. This is caused by the natural logarithmic
properties and linearity of the function specified in this paper. For more details, please see
Appendix A.

Table 8(a) shows the estimated coefficients for CO2 emissions. Consistent with the
results mentioned above, TA has a decreasing, positive effect (from 0.60 to 0.54). We also find
that TA’s impact on CO2 emissions is significantly, negatively, affected by per capita GDP,
i.e., the living standard in one city. Moreover, the per capita GDP can impact the correlation
between PAFRAC and CO2 emissions at its median and lower levels. In Table 8(b), we
show the results when considering the impact of the per capita GDP on the effect of
urban form on CO2 emissions per capita. TA’s positive effects consistently have a property
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of decreasing monotonicity. Moreover, the per capita GDP near constantly, negatively,
affects the correlation between TA and CO2 emissions per capita, as well as the correlation
between PAFRAC and CO2 emissions per capita. In Table 8(c), both TA and DIVISION
have the consistent impacts (increasing negative and decreasing positive, respectively) on
the CO2 emissions per unit GDP, as shown in Table 4(c). We also find that the per capita
GDP increasingly, positively, affects the correlation between TA and the CO2 emissions
per unit GDP and decreasingly, negatively affects the correlation between DIVISION
and CO2 emissions per unit GDP. In sum, the per capita GDP can significantly affect the
relationship between urban expansion and CO2 emissions, and the relationship between
urban complexity and CO2 emissions. It can also affect the relationship between urban
expansion and CO2 emissions per capita, and the relationship between urban complexity
and CO2 emissions per capita. In addition, the per capita GDP can also monotonically,
significantly affect the correlation between urban expansion and CO2 emissions per unit
GDP, and the correlation between urban compactness and CO2 emissions per unit GDP.

Table 8. The Heterogeneous Effects of Urban Form on Dependent Variables after Controlling for GDP
per Capita.

(a) CO2 Emissions (b) CO2 Emissions per Capita (c) CO2 Emissions per Unit GDP

0.25 0.50 0.75 0.25 0.50 0.75 0.25 0.50 0.75

TA 0.60 *** 0.57 *** 0.54 *** 0.56 ** 0.51 *** 0.47 *** −0.32 *** −0.34 *** −0.35 ***
(0.09) (0.06) (0.07) (0.08) (0.06) (0.07) (0.08) (0.07) (0.12)

DIVISION 0.06 0.04 0.03 0.04 0.03 0.02 0.12 *** 0.08 ** 0.04
(0.04) (0.03) (0.04) (0.04) (0.03) (0.04) (0.04) (0.04) (0.06)

PAFRAC −1.46 −0.85 −0.46 −1.20 −0.76 −0.44 1.05 1.44 * 1.90
(0.96) (0.62) (0.80) (0.89) (0.59) (0.78) (0.90) (0.80) (1.40)

PGDP 2.14 × 10−6 7.12 × 10−6 0.10 × 10−4 4.89 × 10−6 8.45 × 10−6 1.10 × 10−5 −1.17× 10−5 −1.17× 10−5 * −1.16× 10−5

(0.11× 10−4) (7.12× 10−6) (9.24× 10−6) (1.07× 10−5) (7.08× 10−6) (9.38× 10−6) (7.86× 10−6) (7.03× 10−6) (1.23× 10−5)
TA × PGDP −1.07× 10−6 −1.10× 10−6 **−1.12× 10−6 * −1.44× 10−6 * −1.44× 10−6 **−1.44× 10−6 ** 7.16× 10−7 * 8.98× 10−7 ** 1.11× 10−6 *

(7.58× 10−7) (4.89× 10−7) (6.36× 10−7) (7.55× 10−7) (4.98× 10−7) (6.60× 10−7

) (4.28× 10−7) (3.83× 10−7) (6.67× 10−7)

DIVISION × PGDP 1.67 × 10−7 1.17 × 10−7 8.47 × 10−8 4.42 × 10−7 2.70 × 10−7 1.44 × 10−7 −7.82× 10−7 **−6.14× 10−7 ** -
4.17 × 10−7

(3.37× 10−7) (2.18× 10−7) (2.83× 10−7) (3.36× 10−7) (2.22× 10−7) (2.94× 10−7) (3.31× 10−7) (2.96× 10−7) (5.15× 10−7)
PAFRAC × PGDP 3.64× 10−5 ** 2.16× 10−5 ** 1.20 × 10−5 3.79× 10−5 *** 2.65× 10−5 *** 1.81 × 10−5 −7.15× 10−6 −1.37× 10−5 −2.14× 10−5

(1.62× 10−5) (1.05× 10−5) (1.36× 10−5) (1.42× 10−5) (9.38× 10−6) (1.24× 10−5) (1.45× 10−5) (1.30× 10−5) (2.27× 10−5)
Obs. 817 817 817 817 817 817 817 817 817

Note: All variables except PGDP and interaction terms in the table are in natural logarithmic forms. The interaction
term is the multiplication of two independent variables after being converted into natural logarithmic forms. The
estimated coefficients at each of the quantiles are given in the columns labeled by the corresponding quantiles.
Standard errors are reported in the parentheses. ∗ indicates statistically significant at the 10% level, ∗∗ indicates
statistically significant at the 5% level, and ∗∗∗ indicates statistically significant at the 1% level.

5. Discussion

Our study on the relationship between urban form and CO2 emissions, CO2 emissions
per capita, and CO2 emissions per unit GDP sheds light on the complex interplay between
urbanization and environmental sustainability. As the world becomes increasingly urban-
ized, understanding the impact of urban form on carbon emissions is crucial for designing
effective policies to mitigate climate change.

The estimation results in Section 4, find weak (i.e., not statistically significant) evidence
that urban complexity decreases CO2 emissions and increases CO2 emissions per capita.
We find strong evidence to support the following results: (1) Urban expansion increases the
CO2 emissions and CO2 emissions per capita while decreases CO2 emissions per unit GDP.
This is in line with the commonly known fact that the external form of urban expansion
involves large-scale construction of buildings and infrastructure to accommodate more
population, thereby stimulating a surge in demand for not only the construction materials,
the production of which emits a huge amount of CO2 emissions but also the energy for
household usage. The negative correlation between urban expansion and CO2 emissions
per unit GDP suggests that the expansion of urban built-up areas increases GDP more
than CO2 emissions and thus leads to the improvement of CO2 emission efficiency through
achieving the economies of scale. (2) Urban complexity increases CO2 emissions per unit
GDP. Urban complexity measures the irregularity of the shape of the land patches which
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could increase the time and distance of common commuting and the frequency of traffic
congestion. The inefficiency of transportation will raise the cost of the production of goods
and services, which means more CO2 emissions are required for one unit of GDP and thus
lower the CO2 emission efficiency. (3) Urban compactness decreases CO2 emissions, CO2
emissions per capita and CO2 emissions per unit GDP. This is consistent with the idea
that urban compactness could potentially reduce CO2 emissions by encouraging mixed
land use. Mixed land use refers to a combination of residential, commercial, cultural, and
institutional functions into a block or neighborhood accessible by walking and cycling.
Thus, urban compactness can decrease the transportation CO2 emissions by choosing low
carbon travel modes and reducing heating-associated energy consumption in buildings by
affecting the heat island effect [35]. Furthermore, compact urban form could promote the
CO2 emission efficiency through agglomeration economies [47].

To provide a more comprehensive understanding of the relationships between urban
form and the dependent variables, we analyze the heterogeneous effects of urban metrics
at different quantiles of the conditional distributions of the three dependent variables,
respectively. We find strong evidence that the effects of TA are positive and monotonically
decreasing as the levels of CO2 emissions and CO2 emissions per capita increase and
negative and monotonically decreasing as the levels of CO2 emissions per unit GDP increase.
The urban compactness displays a similar pattern to TA except that urban compactness
has a positive and monotonic decreasing impact as CO2 emissions per unit GDP increases.
For urban complexity, we find weak evidence that its impacts on CO2 emissions and CO2
emissions per capita both are monotonically decreasing. The impacts on CO2 emissions
are positive across the distribution of CO2 emissions per capita and negative across the
distribution of CO2 emissions. Our results also show a positive and monotonic increase
(statistically significant) in the effect on CO2 emissions per unit GDP with respect to the
urban complexity, implying that urban complexity plays an important role in improving
CO2 emission efficiency for cities with high level of CO2 emissions inefficiency. In sum,
we find strong evidence that the effects of TA and urban compactness on CO2 emissions,
CO2 emissions per capita, and CO2 emissions per unit GDP are heterogeneous and display
monotonicity across the conditional distributions of these three dependent variables. The
impacts of urban complexity on CO2 emissions per unit GDP increase monotonically over
the distribution of CO2 emissions per unit GDP.

As previous research has shown that socioeconomic factors are closely related to
changes in urban form [35], we analyzed the partial effects of urban form on dependent
variables by controlling for the interaction terms between urban form and three key socioe-
conomic factors: the population density, the share of industry in GDP, and GDP per capita.
However, unlike the study by Guo et al. [35], we believe that the effects of socioeconomic
factors on the partial effects of urban form are not constant and may vary with the mag-
nitude of the dependent variables. To account for this, we also examined the interaction
effects between urban form and socioeconomic factors across the conditional distributions
of the dependent variables, including CO2 emissions, CO2 emissions per capita, and CO2
emissions per unit GDP.

Our study on the interaction effects between population density and urban metrics
reveals that the magnitude of interaction effects between urban complexity and population
density is monotonically decreasing with the increase in the levels of CO2 emissions. The
interaction effects between TA and population density are statistically significant at 0.50
and 0.75 quantiles and are monotonically decreasing with the increase in the quantiles of
the conditional distribution of CO2 emissions per unit GDP. These findings highlight the
importance of considering the interaction effects between population density and urban
metrics when designing policies to mitigate carbon emissions in urban areas. By under-
standing how these factors interact, policymakers can develop more effective strategies to
promote sustainable urban development and reduce the negative impact of urbanization
on the environment, especially for cities with high level of CO2 emissions.
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Then we examine the heterogeneous interaction effects between the share of industry
in GDP and urban form variables. Our analysis reveals compelling evidence that the inter-
action effects between urban compactness and the share of industry in GDP are consistently
increasing as the levels of CO2 emissions and CO2 emissions per capita increase. However,
the differences among these effects at different quantiles of the conditional distributions
of CO2 emissions and CO2 emissions per capita are negligible, allowing us to consider
these effects as homogeneous. Additionally, we have found strong evidence supporting the
conclusion that the interaction effects between TA and the share of industry in GDP are
monotonically increasing along the distribution of CO2 emissions per unit GDP. Overall,
these findings suggests that, as the share of industry in GDP increases, it becomes increas-
ingly important to consider the expansion and compactness of urban areas in order to
mitigate the negative environmental impacts of industrial activity, especially for cities at
high tail of the distribution of CO2 emissions.

Moreover, we turn to the GDP per capita and find that the effects of TA are statistically
significant at 0.25, 0.5, and 0.75 quantiles and monotonically decreasing along the distribu-
tions of the three dependent variables, respectively. We also find that the interaction effects
of GDP per capita on the partial effects of urban compactness are statistically significant
at 0.25 and 0.5 quantiles and monotonically increasing with the increase in the levels of
CO2 emissions per unit GDP while the interaction effects between urban complexity and
GDP per capita are statistically significant at 0.25 and 0.5 quantiles and monotonically
increasing as the levels of the distributions of CO2 emissions and CO2 emissions per capita
rise, respectively.

Finally, our study could be extended by considering more socioeconomic characteris-
tics to alleviate omitted variable bias and developing comprehensive indicators for each
categorical map pattern of urban form to avoid multicollinearity without losing important
information embedded in other metrics which are not selected in our paper. For example,
principal component analysis, entropy evaluation methods, or other methods could be
used to construct such comprehensive indicators by either extracting main characteristics
of the urban form or taking the weighted average of urban metrics (proposed in this paper)
in each aspect of urban form. By doing so, we can obtain a more complete picture of the
relationships between urban form and carbon emissions and provide more robust evidence
to inform policy-making for sustainable urban development.

6. Conclusions

Urban form is closely related to CO2 emissions. In this paper, we use a panel quantile
regression with fixed effects model to analyze the heterogeneous effects of urban form
on CO2 emission and its efficiency. It is commonly admitted that socioeconomic factors
can affect the dependent variables—CO2 emissions and CO2 emission efficiency as well
as these dependent variables’ relationships with urban form.Accordingly, this paper
also investigates the heterogeneous effects and the heterogeneous interaction effects of
a socioeconomic factor by adding into the model this variable and the interaction terms
between this variable and urban form variables.

We analyze the effects of urban form from three dimensions—urban expansion, urban
compactness, and urban complexity, which are indexed by ten metrics and quantified by
ArcGIS and FRAGSTATS. To avoid an issue of multicollinearity, we select three indexes—
total area (TA), landscape vision index (DIVISION), and perimeter-area fractal dimension
(PAFRAC), to represent urban expansion, urban compactness, and urban complexity,
respectively. Our quantitative estimates from a panel of 255 cities over five periods 2000,
2005, 2010, 2015, and 2018, show that both TA and DIVISION can monotonically, positively,
affect the CO2 emissions and CO2 emissions per capita, i.e., as the urban total area expands
and becomes less compact, the CO2 emissions and CO2 emissions per capita increase, while
these impacts are less strong for cities with an large amount of CO2 emissions or cities
in which citizens enjoy a high level of development measured by CO2 emissions. Our
results also show that TA has a monotonically negative impact on the economic efficiency
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of CO2 emissions: urban expansion can significantly reduce the CO2 emissions per unit
GDP, thus improving the economic efficiency. On the other hand, PAFRAC, compared with
TA, has a much stronger impact on the CO2 emissions per unit GDP. As the CO2 emissions
per unit GDP increases, the impact of PAFRAC increases and becomes more significant.
Specifically, a city with a more complex urban form usually has a low economic efficiency
of CO2 emissions.

In addition to the main results for the indices of urban form, our results for the impacts
of socioeconomic factors are also statistically significant: The impacts of industry share
in GDP and the GDP per capita are monotonically decreasing and positively correlated
with the total amount of CO2 emissions and the CO2 emissions per capita. For the CO2
emissions per unit GDP, the effect of TA is consistently negative but decreasing along the
distribution of the CO2 emissions per unit GDP, when considering socioeconomic factors.
The impacts of DIVISION and PAFRAC are affected by the process of industrialization and
living standard measured by per capita GDP. Industrialization and higher living standards
imply higher economic efficiency of CO2 emissions, which is specifically true for cities with
high CO2 emissions per unit GDP.

Our paper further looks into details of the impacts of socioeconomic variables on the
relationship between urban form and the dependent variables related to CO2 emissions.
Our estimation results show that, for CO2 emissions and CO2 emissions per capita, their
relationships with urban expansion and urban complexity are significantly affected by per
capita GDP. Moreover, their relationships with urban compactness are affected by the level
of industrialization. The relationship between CO2 emissions per unit GDP and urban
expansion is significantly influenced by all socioeconomic factors in this paper.

Overall, our findings are fairly robust in the sense that all results are consistent with
urban planning intuition. Our approach of the quantile analysis, which is for the correlation
between CO2 emissions and urban form, sheds light on the optimization of urban form in
improving the CO2 emission efficiency and provides policy makers with effective ways to
reduce CO2 emissions across cities with different levels of CO2 emissions.

While our paper has comprehensively investigated the effects of urban form on the
distribution of CO2 emission and its efficiency, it is important to acknowledge its limitations
where further research is needed. First, our paper only examines three socioeconomic
factors: industrial structure, population density, and GDP per capita. However, there may
be other omitted variables that could cause bias in our estimation. Therefore, future research
should consider additional socioeconomic characteristics to obtain a more comprehensive
understanding of the effects of urban form on dependent variables. Additionally, while
our paper proposes ten metrics, only three were selected due to multicollinearity issues. To
address this, future research could develop comprehensive indicators for each categorical
map pattern of urban form by utilizing methods such as principal component analysis,
entropy evaluation, or weighted averaging of urban metrics in each aspect of urban form.
This would help avoid multicollinearity while preserving important information embedded
in other metrics that were not selected in our paper.
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Appendix A
Without loss of generality, we omit unobserved effects, error terms, and the indicators

of urban form for simplicity. Define yit as the dependent variables ln
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)
it

or

ln
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)
it

, and set xit =
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the check function in Equation 4 as follows:
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Then the summation and difference of natural logarithmic properties give
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Applying the same mathematical manipulation to the check function of ln
(
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)
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gives
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=ρµk (ln(CO2)it − ln(GDP)it − β1(µk)(ln(GDP)it − ln(population)it)− β2(µk)(ln(population)it − ln(area)it)

−β3(µk)(ln(Industry)it − ln(GDP)it))

=ρµk (ln(CO2)it − ln(population)it − (β1(µk) + 1)(ln(GDP)it − ln(population)it)

−β2(µk)(ln(population)it − ln(area)it)) (A2)

The apparent discrepancy between Equations (A1) and (A2) is the difference in
the coefficients of GDP per capita which are β1(µk) in Equation (A1) and β1(µk) + 1 in
Equation (A2) respectively.

Notes
1 For details about provinces included in each region, please refer to the website of National Bureau of Statistics of China:

http://www.stats.gov.cn/zt_18555/zthd/sjtjr/dejtjkfr/tjkp/202302/t20230216_1909741.htm, accessed on 1 January 2022
2 The dataset of built-up areas from 1990 to 2020 is obtained from these two papers: Sun et al. [36] and Jiang et al. [37].
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