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Abstract: The development of differentiated emission reduction strategies plays an important role in
achieving carbon compliance targets. Each city should adopt carbon reduction strategies according
to its carbon emission characteristics. China is a vast country, and there are significant differences
between cities. Therefore, this study classifies 340 Chinese cities according to their carbon emission
characteristics since 2020 and proposes differentiated emission reduction strategies accordingly. The
results of the research show that Chinese cities can be divided into four categories, and they can
strive to achieve their carbon peak targets by adopting differentiated emission reduction strategies.
In the baseline scenario, Chinese cities will not be able to meet the peak carbon target by 2030. In
the differentiated scenario, eco-agricultural cities, industry-led cities, and high-resource-availability
cities will be able to achieve peak carbon by 2030. Unfortunately, resource-poor cities will not reach
their peak. However, the extent to which their total carbon emissions contribute to the achievement
of national goals is low, and their carbon emissions can be traded off for economic development by
appropriately relaxing the constraints on carbon emissions. Therefore, in order to achieve China’s
peak carbon goal, this study proposes emission reduction recommendations that should be adopted
by different types of cities to form differentiated emission reduction strategies.

Keywords: STIRPAT model; k-means clustering algorithm; carbon peak; differentiated scenario
setting; policy tool

1. Introduction

Carbon emissions are a significant factor in the economic downturn, resource deple-
tion, and extreme weather with which humans are faced [1,2]. The Chinese government
recognizes the need to control carbon emissions and is committed to reaching the nation’s
carbon peak by 2030 and finally becoming carbon neutral by 2060 [3]. In order to achieve
this goal, each city needs to develop measures to limit local carbon emissions. In addition
to technology upgrades, differentiated carbon control is important. Differentiated carbon
control is the idea that carbon control emission reduction should be oriented toward the
problem of differences in urban development and the complexity of governance. It is
considered to have an important role in proposing precise response strategies. For exam-
ple, differentiated carbon control can help to propose more precise, synergistic, regional
approaches to emissions reduction based on the characteristics of total carbon emissions
and efficiency [3]. The resource endowments of individual cities vary significantly, and all
cities cannot be required to adopt the same mitigation strategies. Therefore, each city needs
an abatement strategy that fits its characteristics. City classification studies can categorize
cities with similar carbon emission characteristics and, thus, help to propose more precise
and differentiated emission reduction strategies.

Chinese cities are of particular interest in the study of differentiated carbon control.
Chinese cities have significant differences in terms of population, economic development,
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and carbon emissions [4–6]. Therefore, Chinese policymakers must have a deeper under-
standing of the differentiated characteristics of urban carbon emissions. This is because
it is necessary to develop differentiated emission reduction strategies. China has made
great progress in reducing carbon emissions [7–10]. Cities are the basic administrative unit
for implementing mitigation strategies. As efforts to reduce carbon emissions continue to
intensify, policymakers need new, more specific, and detailed measures to address climate
change. Given the variability among cities, such strategies are much more complex to
propose than macro-level formulations at the national and provincial levels. Therefore,
it is necessary to develop more precise strategies in terms of city characteristics to help
policymakers provide ideas for reducing emissions.

There are a large number of studies in the field of low-carbon cities, and some of
them have proposed drivers that influence urban carbon emissions [11,12]. They provide
a taxonomic basis for the study of the classification of Chinese cities. Moreover, some
studies have improved the precision of research results through work on differential
carbon control [6,13]. These studies clarify the need for differentiated carbon control. The
combination of city classification and differentiated carbon control can improve the level
of accuracy in emission reduction strategy development. This has important implications
for differential carbon control research. However, relevant studies do not address the
city level, and national- and provincial-level studies only propose macroscopic emission
reduction targets based on potential spatial heterogeneity [3,14]. Since carbon reduction
strategies need to be tailored to different city characteristics, these studies can help develop
overall reduction targets but not specific reduction strategies. In addition, these studies
ignore numerous differences between regions, such as the topographic setting and spatial
structure. It is unrealistic to directly propose abatement strategies without classifying cities
with similar characteristics in the study.

The purpose of this paper is to propose differentiated emission reduction strategies
based on city characteristics. To this end, this paper focuses on answering a research ques-
tion: how can we classify cities according to their characteristics and propose differentiated
mitigation strategies based on this classification? This was also the innovation of this paper.
This study contributes to the field in the following two ways: (1) the driving factors influ-
encing the characteristics of urban carbon emissions are clarified and cities are classified
accordingly; and (2) considering the differences in the carbon emission characteristics of
cities, emission reduction strategies for their characteristics are proposed. This can help
policymakers formulate reasonable emission reduction measures.

The rest of this paper is organized in the following way. Section 2 reviews the related
literature. Section 3 describes the methodology in detail. Section 4 presents the results and
discussion. Section 5 provides the main conclusions.

2. Literature Review
2.1. Research on Carbon Emission Characteristics

In recent decades, scholars have studied low-carbon cities and the factors that influ-
ence carbon emissions. It is well-documented that population size has a fairly significant
positive impact on carbon emissions compared to the more complex impact of economic
factors [15–17]. For example, the authors of [18] found that an E-KEC relationship exists be-
tween economic growth and carbon emissions. However, other scholars have argued that an
inverted U-shaped relationship exists between the economy and carbon emissions [19,20].
Two approaches are usually used to assess technology. The first interprets technology
progress (T) as a residual term [21]. This approach classifies what cannot be explained
by population (P) or affluence (A) as technology progress (T). However, this approach
does not reflect the true impact of technology progress (T) on the environment because the
error term represents not only the technological impact but also social and other impacts
on carbon emissions [11,22]. The second approach expresses technology progress (T) as
a set of variables that can capture different technological factors, such as energy intensity
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(E) [23–26], urbanization (U) [27–29], and industrial structure (I) [19,21,30,31]. All of these
factors have been shown to play a significant role in carbon emissions.

Regarding the study of carbon emission characteristics, scholars usually use the
IDEAM model [20,32], LMDI method [33], or STIRPAT model [34] for impact factor analysis.
The IDEAM model allows for a dynamic assessment of various carbon emission sources
over time. It has the advantage of allowing a more comprehensive analysis of carbon
emissions. However, it requires a large amount of data to be effective, and these data are
difficult to obtain in some regions and countries. The IDEAM approach can be complex and
difficult to understand for policymakers and the public, which may limit the effectiveness
of promoting low-carbon actions. Both the LMDI method [33] and STIRPAT model can
be used to analyze the impact factors, but they differ in their scope of application and
methodology. The LMDI method is mainly used to decompose the amount of change in
a factor. The STIRPAT model is mainly used to measure the degree of impact of factors
such as population, wealth, and technology on the environment. The population, affluence,
technology (IPAT) model reflects the combined social, economic, and technological factors
affecting carbon emissions [35].

The above studies outline numerous factors that influence carbon emissions and
various research methods, which helped the investigation of the characteristics of urban
carbon emissions in this paper.

2.2. Research on Carbon Peak Prediction

Due to the heterogeneity of different regions and industries, the results of carbon
peak predictions differ. In some existing studies, researchers have used sectors, regions,
industrial structures, and per capita carbon emissions as the objects of study for carbon peak
projections. In terms of sectors (industry, construction, transportation, and agriculture),
only the agricultural sector will reach its peak in 2030 [36]. Analyzing by region (western,
central, and eastern), the eastern region will not achieve the target peak without policy
intervention [37]. Looking at the industrial structure (primary, secondary, and tertiary
sectors) shows that all regions will be able to achieve peak carbon emissions by 2030 [38]. In
terms of carbon emissions per capita (high-, medium-, and low-carbon cities) analysis, the
results show that only 44% of cities would achieve the target peak under unregulated devel-
opment [39]. It is noteworthy that relevant studies at the level of urban characteristics have
not been conducted. In addition, most of the previous studies have provided projections
and analyses regarding carbon peaking without further analysis of urban heterogeneity.
Therefore, it is difficult to propose targeted emission reduction strategies.

Considering the heterogeneity among cities, scholars usually use a classification
approach to solve this problem. Commonly used classification research methods include
the k-nearest neighbors (K-NN) algorithm and the k-means clustering algorithm. The K-NN
algorithm is designed to determine which specific categories of study subjects are known.
The k-means clustering algorithm is designed to divide complex research objects into classes,
with no categories being determined beforehand. In terms of classification characteristics
at the national city scale, the k-means clustering algorithm is more appropriate, as shown
in [40]. At the same time, scholars have modeled and calculated projections of peak carbon
emissions in an attempt to help policymakers develop reasonable emission reduction
strategies. The commonly used research method is scenario projection [41–44].

Due to the heterogeneity among cities, different carbon control strategies should be
developed. In order to achieve national emission reduction targets, more precise emission
reduction strategies must be proposed. Classification studies are a good way to improve the
precision, as they can classify cities with similar carbon emission characteristics according
to the changes in influencing factors so that emission reduction strategies can be proposed
based on common problems. However, in previous studies, there are no analyses that
combine characteristics with carbon attainment targets. In order to fill this research gap,
this paper proposes differentiated emission reduction strategies based on city carbon
emission characteristics for 340 Chinese cities. This study had two objectives: (1) to identify
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the driving factors affecting urban carbon emissions and classify cities accordingly; and
(2) considering the differences in city characteristics, to propose differentiated emission
reduction strategies to address the common problems of cities.

3. Data Sources and Methods
3.1. Experimentation Framework

Figure 1 shows the experimental framework of this study, and the steps are briefly
described below:

• Driving factors analysis: Based on the STIRPAT model, the drivers that significantly
affect the level of carbon emissions in Chinese cities were selected as variables;

• City classification analysis: A k-means clustering algorithm was used to classify
340 Chinese cities according to their carbon emission characteristics; characterization
was carried out based on the classification results;

• Carbon emission prediction analysis: A ridge regression model was used to test each
of the classified cities, and the optimal ridge regression model was selected for carbon
emission trend prediction;

• A scenario simulation analysis was used to explore carbon emission trends under the
influence of differentiated carbon control policies.
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3.2. STIRPAT Model

The early IPAT model, which decomposes environmental pressure (I) into the prod-
uct of population (P), affluence (A), and technological progress (T), has the expression
I = P × A × T [45]. The model is widely used in academia, but when one of the indepen-
dent variables changes, there is no guarantee that the other independent variables will
remain fixed. Therefore, other scholars [46] have proposed the STIRPAT model, which is
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an iteration of the original model and is widely used for the quantitative analysis of the
factors that influence carbon emissions. The model’s specific form is shown in Equation (1).

I = aPb AcTd (1)

Here, I, P, A, and T have the same meanings as in the IPAT model; b, c, and d are
indices of population (P), affluence (A), and technology progress (T); and e is the error term.
In practical applications, Equation (2) is usually subjected to a logarithmic treatment in
order to determine the relevant parameters by regression analysis.

InI = α + b (InP) + c (InA) + d (InT) + e (2)

In order to explore the multivariate influences on city carbon emissions in greater depth,
this study further extends the STIRPAT model with the following equation (Equation (3)):

InI = α + b (InP) + c (InA) + d (InT) + d (InUR) + d (InST) + e (3)

In Equation (4), carbon emissions, which significantly represent the total levels of
carbon emissions from all sectors, are selected as the explanatory variable; the relevant
independent variables are decomposed and improved accordingly [47]. As regions experi-
ence similar human actions, there are commonalities in the influencing factors. Therefore,
we searched the relevant literature, and influencing factors were extracted. The model
variables are shown in Table 1.

Table 1. Description of model variables.

Variable Definition Unit

Carbon emissions (I) Total carbon emissions from all sectors Mt
Population (P) Total population Million people
Affluence (A) GDP per capita 104 CNY /person

Technology progress (T) GDP/total energy consumption
carbon emissions 104 CNY/tons

Urbanization (UR) City population size/total population %
Industrial structure (ST) Share of secondary sector %

In this study, population (P) was treated as a proxy for the number of permanent
residents [40]. The indications are that the larger a population is, the higher the carbon
emissions are. Next, affluence (A) was measured in terms of GDP per capita [48]. The
indications are that the higher the GDP per capita of a region is, the more energy that
region consumes and the higher its carbon emissions are. Then, technology progress (T)
was expressed using energy efficiency [49], which represents the ratio of total GDP to total
energy carbon emissions. State-of-the-art technologies, such as renewable energy systems
and energy-efficient appliances, can reduce the environmental impacts associated with
energy consumption. By incorporating energy efficiency into the model, the role of techno-
logical advances in mitigating environmental impacts can be studied. The urbanization
(UR) of city centers is usually quite distinct from that in nearby villages and towns. To
effectively capture this difference, this study used the proportion of the urban resident
population compared to the total resident population, which represents the population
concentration, as a supplementary indicator. Many cities are currently in an intermediate
stage of industrialization. In this phase, structural changes (ST) within the secondary sector
often serve as an accurate reflection of the industrialization progress. Therefore, this study
employed the share of carbon emissions from the city’s secondary sector relative to the
total carbon emissions as an indicator to assess the level of industrialization.
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3.3. k-Means Clustering Algorithm

Due to the large number of cities in China, this study used a k-means clustering
algorithm to group cities with similar characteristics together. The different groups were
then analyzed to generate peak carbon predictions. Conventional k-means clustering is
mainly adapted to machine learning and pattern recognition problems. This algorithm is
highly sensitive to initial centroid points, but it cannot guarantee that it will arrive at a
better solution because initial centroids are computed randomly for a given cluster. In order
to overcome this shortcoming, we used the sum of the squared errors as the number of
clustering centers to avoid randomization and to improve the performance of the algorithm.
Its effectiveness is well-demonstrated in the literature [50].

The elbow method is one of the most popular methods for determining the k-optimal
value, which is the key to the k-means clustering algorithm. The core metric of the elbow
method is the sum of error squares, as detailed in Equation (4).

SSE = ∑k
i=1 ∑p∈Ci

‖x−mi‖2
2 (4)

where Ci is the ith cluster, p indicates the sample points in Ci, mi is the center of mass
of Ci, and SSE is the clustering error for all samples, which represents a good or bad
clustering effect.

As the number of clusters k increases, the samples are divided more finely and the
degree of aggregation of each cluster gradually increases; then, the sum of squared errors
(SSE) naturally decreases gradually. When k is less than the true number of clusters, the SSE
decreases greatly, and when k reaches the true number of clusters, the degree of aggregation
obtained by increasing k again rapidly becomes smaller in return, so the decrease in SSE
decreases abruptly and then tends to level off as the value of k increases, which means that
the graph of SSE and k has the shape of an elbow, and the value of k corresponding to this
elbow is the true number of clusters for the data.

3.4. Ridge Regression

Ridge regression analysis is a biased estimation regression method dedicated to the
analysis of covariance data. The core idea is that XTX approaches singularity when there
are multiple covariances. By adding XTX to an integer constant matrix kl, the likelihood
of it approaching singularity will be greatly reduced. The probability that |XTX + kl| = 0
is much smaller than that |XTX|=0. Ridge regression is actually a modified form of least
squares that obtains more realistic regression coefficients by abandoning the unbiased
nature of least squares at the expense of losing some information and reducing accuracy.
The principle is detailed in Equation (5):

β̂(k) =
(

XTX + kI
)−1

XTy (5)

In Equation (5), β̂(k) is the ridge regression estimate of the parameter, X is the design
matrix after normalization, kl is the normal number matrix, l is the unit matrix, and
0 ≤ k ≤ ∞ is called the ridge parameter.

In order to avoid the problem of multiple colinearities arising from variable variance
inflation factors greater than 10, this study used ridge regression methods to analyze four
categories of Chinese cities. The ridge regression method can eliminate the interference
from multiple colinearities in the results by adding a non-negative factor K to the main
diagonal of the standardized matrix of independent variables. In the ridge regression, R2

changes with the value of K. In this study, the optimal ridge regression model was chosen
for carbon emission prediction.

3.5. Scenario Simulation

In order to project different carbon peaking pathways for Chinese cities, two scenarios
were identified that can be used to project levels of carbon emissions from Chinese cities up
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to 2050. The two scenarios were the baseline scenario and the differentiated scenario. In the
baseline scenario, the factors’ growth rates should be judged in line with national policies
and relevant historical trends (Table 2), with most factors showing a small downward trend.
Due to the large number of cities in China, these values are only average values.

Table 2. Sources of scenario-setting factors.

Indicators Data Sources

Population (P) National Bureau of Statistics (2021b)
Affluence (A) NBS Yearbook (2016–2021); EIA

Technology progress (T) Outline of the Thirteenth Five-Year Plan for National Economic
and Social Development of the People’s Republic of China

Urbanization (UR) National Development and Reform Commission (2013)
Industrial structure (ST) World Development Report

In terms of population size, according to the National Bureau of Statistics [51] pro-
jections, China’s population will peak around 2030 and then experience negative growth.
Therefore, this variable assumes that China’s population growth rate will decline year-
by-year in the future, with negative growth occurring after the population growth rate
falls to 0 in 2030. In terms of GDP per capita, the average GDP per capita growth rate for
2016–2020 was 6.28% according to the National Bureau of Statistics Yearbook (2016–2021).
The International Energy Outlook 2021 [52] provides a detailed forecast of China’s GDP for
2020–2050. Their results were, therefore, referenced in the GDP per capita growth rates in
this study. The 13th Five-Year Plan proposes an average annual increase of 3.4% in energy
efficiency from 2016 to 2020, 4.4% from 2021 to 2040, and 5.6% from 2041 to 2050. In terms
of urbanization rates, according to the National Development and Reform Commission [53],
the rate was expected to slow down to 0.8–1.0% per annum over the last decade, with a
further slowdown after 2020, reaching 60% in 2020, 68% in 2030, and 80% in 2050. In terms
of industrial structure, the World Development Report [12,54] shows that, when GDP per
capita exceeds USD 10,000, the primary sector will remain at around 5%, the secondary
sector at 40%, and the tertiary sector at around 55%. The secondary sector is therefore
expected to saturate in the decade between 2020 and 2030, before China enters the late
industrialization phase (see [55,56] for changes in this variable and projected trends in this
paper). The baseline scenario variables are shown in Table 3.

Table 3. Baseline scenario variable settings.

Variable 2021–2025 2026–2030 2031–2035

P 3.26% 1.5% −0.5%
A 5.99% 4.2% 3.56%
T 4.4% 3.4% 3.4%

UR 0.8% 0.8% 0.6%
ST −1.4% −1.6% −0.7%

The baseline scenario sets out differentiated scenarios through both enhanced and
combined policy instruments. The rates of change in the differentiated scenarios allocate
the national policy data from the baseline scenario to the individual indicators through the
principle of constant aggregation and differentiation of indicators. This process draws on
the research in [12]. The average growth rates set in the differentiated scenarios are shown
in Table 4.
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Table 4. Differentiated scenario variable settings.

Variable Cities Category 2021–2025 2026–2030 2031–2035

P

Eco-agricultural cities 3% 1.5% 0.5%
Industry-led cities 1% 0.5% −0.5%

High-resource-availability cities 3% 1% 0.5%
Resource-poor cities 5% 3% 1%

A

Eco-agricultural cities 6.99% 5.20% 4.56%
Industry-led cities 4.2% 3.56% 3.56%

High-resource-availability cities 3% 1% 1%
Resource-poor cities 6% 5% 4%

T

Eco-agricultural cities 4.4% 4.4% 4.4%
Industry-led cities 3.4% 3.4% 3.4%

High-resource-availability cities 6% 4.4% 3.4%
Resource-poor cities 4.4% 3.4% 3.4%

UR

Eco-agricultural cities 0.8% 0.8% 0.6%
Industry-led cities 0.6% 0.4% 0.4%

High-resource-availability cities 0.8% 0.6% 0.5%
Resource-poor cities 0.8% 0.8% 0.6%

ST

Eco-agricultural cities −1% −1% −0.5%
Industry-led cities −1.6% −1.4% −1%

High-resource-availability cities −0.5% −1.5% −1%
Resource-poor cities 1.6% 1% −0.7%

3.6. Data Sources

We used panel data from 340 cities in China (from 2020) to conduct an empirical
study. Data on population, GDP per capita, industrial structure, and technology level were
taken from the China Urban CO2 Emissions Dataset (2020) published by the China Urban
Greenhouse Gas Working Group (CCG). Data on urbanization levels were taken from
the 2021 Statistical Yearbook for each city and were assumed to remain constant over the
study period.

4. Results and Discussion
4.1. Classification Results

To determine the optimal number of clusters, the elbow method was used to select
the k value at the “elbow”, which is the point where inertia begins to decrease in a linear
fashion (Figure 2). Therefore, the optimal number of clusters for the data was four.
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When the number of clusters was four, the results for the groupings provided a
complete and reasonable picture of the carbon emission characteristics of cities across the
country, with each grouping having more typical carbon emission characteristics. The final
clustering results, based on the k-means clustering algorithm, are shown in Table 5.

Table 5. Final cluster centers.

Variable
Cluster Center

Eco-Agricultural Cities Industry-Led Cities High-Resource Availability-Cities Resource-Poor Cities Sig.

P 1.44 1.46 0.32 2.75 0.000
A 271.66 635.23 193.44 48.77 0.000
T 4.20 7.56 5.47 4.02 0.000

UR 0.46 0.59 0.59 0.41 0.000
ST 0.61 0.68 0.87 0.30 0.000
I 1146.01 4626.75 3978.30 147.05 0.000

The results show that, currently, Chinese cities can be broadly characterized with
four categories of carbon emissions (Table 6). The first category can be summarized as
“eco-agricultural cities” and comprises 101 cities, which are scattered and concentrated in
the eastern outer edge of the Tibetan Plateau. The second group, which can be summarized
as “industry-led cities”, comprises 114 cities, mainly in the eastern provinces of China,
including cities such as Shandong, Jiangsu, and Zhejiang. The third category can be
summarized as “high-resource-availability cities” and comprises 104 cities, mainly located
in northern China in provinces such as Inner Mongolia, Xinjiang, and Qinghai. The fourth
category, which can be summarized as “resource-poor cities”, is composed of a relatively
small number of cities (20), located mainly in the western regions of China, such as Tibet
and Qinghai. In order to make the classification of cities more intuitive, GIS software was
used to draw a cluster analysis map of Chinese cities (Figure 3).

Eco-agricultural cities are focused on agricultural production and ecological conser-
vation. Due to the uniqueness of their ecological and agricultural resources, these cities
have relatively low levels of economic development, urbanization, technology, and in-
dustrialization. The development of such cities depends on the primary industry and
the processing industry of the primary industry. At the same time, the tertiary sector
based on agricultural resources is well-developed. For example, in cities such as Altai
and Mudanjiang, agriculture, forestry, animal husbandry, and livestock industries have
their own characteristics. These cities also undertake some external supply tasks. They
are less industrialized but in a rapid development stage. In addition, cities such as Guilin
and Beihai are rich in natural resources and have high proportions of tertiary industries.
The tourism and service industries in these cities are developing rapidly, attracting large
numbers of tourists and investments. In the context of economic restructuring, the focus of
development in these cities is gradually shifting from traditional industries to service and
innovation industries.

Industry-led cities are those where industrial production and its industrial chain
are the main economic pillars. Their distinctive feature is the abundance of population
resources, meaning that these cities have more labor and consumer markets. At the same
time, these cities also possess a high level of urbanization, and their urban scale and well-
developed infrastructure provide good conditions for economic development. The main
source of the economy in these cities is the secondary industry; for example, light industry
and heavy industry. These industries play a vital role in the development of these cities.
With its efficient production mode and diversified product structure, light industry plays
an important role in such cities’ economies. Examples include the textile industry and the
food processing industry. Heavy industries, on the other hand, are one of the main pillars
of these cities’ economies, such as iron and steel, machinery, and chemicals. The strong
development of these industries has also led to the development of other industries in these
cities; for example, the financial industry and service industry.
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Table 6. Clustering results for total carbon emissions.

Types of cities Number Examples Proportion

Eco-agricultural cities 101 Altai, Beihai, Guilin, Mudanjiang, Lincang, Jieyang, etc. 29.80%
Industry-led cities 114 Baoji, Cangzhou, Beijing, Hangzhou, Chongqing, Shenzhen, Tianjin, etc. 33.63%

High-resource-availability cities 104 Aksu, Baotou, Datong, Handan, Panzhihua, Zhoushan, etc. 30.67%
Resource-poor cities 20 Aba City, Yushu, Linzhi, Lhasa, Sanya, Daxinganling, etc. 5.89%
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High-resource-availability cities are those that depend on specific natural resources
for their development. These cities usually have relatively small populations but more
significant economic development. Their economic sources are mainly resource extraction
and the development of traditional industries, which represent 87% of the secondary sector.
However, these cities have low energy efficiency and high carbon emissions, which are
associated with their overreliance on traditional industries and resource extraction. As such
cities have many distinctive resources, such as metals, ores, and biology, these resources
are some of the key factors that make them competitive in the global market. However,
these cities also face many challenges. One of the most significant challenges is the strong
positive correlation between the economic development of these cities and their carbon
emissions. As a city’s economy grows, its energy demand grows with it. As a result, this
leads to energy inefficiencies and increased carbon emissions.

Resource-poor cities are those with low levels of economic development and inade-
quate infrastructure. Due to their remote location, poor infrastructure, and low level of
economic development, these cities contribute little to the total carbon emissions. Consider-
ing the actual situation of these cities, carbon emissions can be appropriately exchanged for
economic development. This approach requires a reasonable balance between economic
development and environmental protection. In strategy formulations, various factors,
such as the sustainability of urban development, ecology, and social equity, need to be
considered to ensure that the reduction in total carbon emissions is coordinated with the
sustainable development of the urban economy.
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4.2. Ridge Regression Results

Table 7 shows the ridge regression coefficients for the four categories of Chinese cities.
In order to verify the validity of each model, the relevant variables for the four categories
of cities were substituted into their respective ridge regression equations to calculate the
simulated carbon emissions in 2020. The calculated results were then fitted to the actual
values for comparison. The results showed that the error between the actual and simulated
values was within 10%, which met the accuracy requirements of this study.

Table 7. Ridge regression coefficients and model test results.

Sort Constant lnP lnA lnT lnUR lnST R2 F

Eco-agricultural cities 2.826 0.651 0.456 −0.486 −0.156 0.051 0.738 F(5, 95) = 53.461, p = 0.000
Industry-led cities 2.408 0.764 0.65 −0.69 0.074 −0.228 0.843 F(5, 108) = 115.715, p = 0.000

High-resource-availability cities 0.709 0.908 0.986 −0.862 −0.098 −0.65 0.942 F(5, 98) = 319.309, p = 0.000
Resource-poor cities 3.951 0.377 0.229 −0.204 0.523 −0.032 0.600 F(5, 12) = 3.594, p = 0.032

The regression results for the four categories of Chinese cities showed that population
and the level of economic development have the greatest degrees of influence on urban
emissions. Meanwhile, the level of urbanization and industrial structure have relatively
small effects. In particular, the level of technology has a significant negative impact on
carbon emissions, indicating a downward trend in carbon emissions as energy efficiency
increases. This finding confirms that technological progress is the main driver of the decline
in carbon emissions. The level of urbanization and industrial structure have different
influencing factors for each type of city, with positive or negative effects, depending on the
characteristics of the city category. The characteristics of the different types of cities are
detailed in Figure 4.
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The main factors influencing carbon emissions in eco-agricultural cities are the popu-
lation, technology progress, and the level of economic development. Of these, technology
progress has a negative impact on carbon emissions. The level of urbanization has a small
impact, and the industrial structure has the least impact.

The main factors influencing the level of carbon emissions in industry-led cities are
population, technology progress, and the level of economic development. The secondary
factor is the influence of industrial structure, while the urbanization rate has the least influence.
Among all the factors, energy efficiency and industrial structure show negative influences.

The factors affecting carbon emissions in high-resource-availability cities are the
level of economic development, population, technology progress, and industrial structure.
The level of urbanization has a smaller impact. Among all the factors, energy efficiency,
industrial structure, and urbanization level show negative influences.

Among the factors affecting the carbon emissions of resource-poor cities, the level of
urbanization has a significant impact on carbon emissions. This is followed by the size
of the population, the level of economic development, and the level of technology. The
influence of industrial structure is smaller. The level of technology and industrial structure
factors have negative impacts on carbon emissions in cities of this type.

4.3. Analysis of Trend Forecasts
4.3.1. Analysis of Eco-Agricultural Cities

Projections of carbon emission trends in eco-agricultural cities are shown in Figure 5.
This group of cities peaks in the baseline scenario after 2030, with an average peak
of 13,684,100 million tons of carbon. The differentiated scenario shows the ability to
achieve a carbon peak in 2025–2030, with an average peak of 13,251,800 tons, a decrease of
3.16% compared to the baseline scenario. The largest influencing factor for carbon emis-
sions in eco-agricultural cities is population, where a 1% change in population will result
in a 0.651% change in total carbon emissions. This factor is followed by GDP per capita.
Eco-agricultural cities are dominated by the primary and tertiary sectors but have a lower
level of technology. This is the main reason for the low total carbon emissions of this type of
city. The positive influences affecting the carbon emissions trend in this category are ranked
as follows: population > GDP per capita > energy efficiency (negative) > urbanization
(negative) > industrial structure. Therefore, in the differentiated scenario, the focus should
be on upgrading the level of technology and energy efficiency.
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4.3.2. Analysis of Industry-Led Cities

Projections of carbon emission trends for industry-led cities are shown in Figure 6.
Cities of this type peak in carbon in the baseline scenario after 2030, with an average peak of
61,048,900 tons. Peaks can be achieved earlier than 2025 under the differentiated scenario,
with an average peak of 49,898,900 ton, a decrease of 18.26% from the baseline scenario.
The largest influence on carbon emissions in industry-led cities is population, where a
1% change in population size results in a 0.764% change in total carbon emissions. The
second largest influence is the level of economic development. However, at the same time,
an increase in the level of technology has a significant effect on the reduction in emissions
in this category of cities. Specifically, each 1% increase in the level of technology results in a
0.69% reduction in total carbon emissions. The economic and social development of these
cities is rapid and not entirely dependent on energy and resource drivers. These cities have
a relatively large and rapidly growing secondary sector. Their industry has entered a post-
industrial phase of development. The positive influences affecting the carbon emissions
trend in this category of cities are ranked as follows: population > energy efficiency
(negative) > GDP per capita > industrial structure (negative) > urbanization. Industry-led
cities are characterized by a large population and a level of economic development that is
in the upper middle class of the country. They have a relatively large share of secondary
industries and rely on traditional industries for economic development, which directly
leads to high carbon emissions per capita in these cities.
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4.3.3. Analysis of High-Resource-Availability Cities

Projections of carbon emission trends in high-resource-availability cities are shown
in Figure 7. This type of city will not achieve the 2030 carbon peak target in the baseline
scenario, and total carbon emissions will continue to grow. However, in the differentiated
carbon control scenario, the target is expected to be achieved on schedule (by 2030). Total
carbon emissions will be reduced by 24.31% over the same period compared to the baseline
scenario, which is a significant reduction. The biggest influence on carbon emissions in
the high-resource-availability cities is the level of economic development. Specifically, a
1% change in the level of economic development will result in a 0.986% change in total
carbon emissions. High-resource-availability cities have a larger population base and
larger total carbon emissions. The overreliance on local resource extraction in exchange
for economic development has led to a lag and even a decline in the transformation of
traditional industries. The current industrial structure of this type of city is at an early stage
of industrialization, and the level of economic development is significantly lower than
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that of other types of cities. High-resource-availability cities have very high and rapidly
increasing carbon emissions per capita compared to other types of cities. They have a single
industrial structure and a very low level of technology. The positive influences affecting the
carbon emissions trend in this category are ranked as follows: GDP per capita > population
> energy efficiency (negative) > industrial structure (negative) > urbanization (negative).
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4.3.4. Analysis of Resource-Poor cities

Projections of the carbon emission trends for resource-poor cities are shown in Figure 8.
The trend for cities of this type in the baseline scenario does not achieve the 2030 carbon
peaking goal. However, given the backward development of this category of cities, the
low level of resources, the low development potential, and the low levels of total carbon
emissions and all indicators, as well as the extremely low contribution to the achievement
of the national target, a continuous increase in carbon emissions may be allowed. This
increase in emissions would be in exchange for an increase in economic development and
urbanization levels, as well as an increase in industrial structure. The largest influencing
factor for carbon emissions in resource-poor cities is the level of urbanization; specifically, a
1% change in urbanization level will result in a 0.523% change in total carbon emissions.
The carbon emissions of such cities are characterized by a low base and a small population
base. Their slow urbanization is a result of local constraints, such as a lack of physical
resources and geographical remoteness. The current industrial structure of this type of city
is in the beginning stages of industrialization, and the level of economic development is
significantly lower than that of other types of cities. These cities have the lowest per capita
carbon emissions and the slowest growth in carbon emissions compared to other city types.
The positive influences affecting the carbon emissions trend in this category are ranked
as follows: urbanization > population > GDP per capita > energy efficiency (negative) >
industrial structure (negative).
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4.3.5. Comparison of Total Volume Changes

Taken together (Figure 9), the baseline scenario shows continued growth in total
city-wide carbon emissions, increasing at a lower rate after 2030 but failing to meet the
carbon peaking target. In the differentiated scenario, by controlling different elements
for the different types of cities, the cities as a whole reach peak carbon emissions in 2030
and achieve a 20.83% reduction in carbon emissions compared to the baseline scenario
over the same period. It is possible to reach the 2030 carbon peak target on time based on
the differentiated development of the various cities. The carbon intensity in 2025 under
the differentiated scenario would be 18.81% lower than in 2020, which would achieve the
18% target in China’s 14th Five-Year Development Plan, and, when carbon peaks in 2030,
31.27% lower than in 2020.
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4.4. Further Discussions and Suggestions

The results of the China urban carbon emission trends experiment suggest that, with-
out enhanced carbon control and reduction efforts, the goal of reaching the country’s carbon
peak by 2030 will be difficult to achieve. This finding is in line with those of [57]. According
to urban characteristics, Chinese cities can be classified as eco-agricultural, industry-led,
high-resource-availability, and resource-poor cities. Considering that there are significant
differences between different types of cities, their abatement strategies may also vary.
However, in the analysis, it was found that the heterogeneity of these cities can be ex-
plained, which justifies the results of the study. This study found that two important factors
contributing to city heterogeneity are population and GDP per capita, which have only
positive effects on carbon emissions. This finding is consistent with most studies [58,59].
However, energy efficiency, urbanization rate, and industrial structure exert different de-
grees of positive or negative influence on the carbon emissions of cities. Furthermore, the
predicted results from carbon peaking found that, even with differentiated carbon control,
resource-poor cities will still fail to achieve carbon peaking. This suggests that such cities
have more difficulties in developing emission reduction strategies.

Based on the analysis and discussion of the research results, further suggestions can
be explored.

Eco-agricultural cities need to make some necessary adjustments in their future carbon
reduction actions. First, reform of the household registration system needs to be accelerated
in order to facilitate population mobility and resource allocation between urban and rural
areas. This will allow for a more rational layout of public resources, such as education
and health, in cities and towns, as well as ensure equity in education and provide more
development opportunities for farmers moving to cities. It is worth mentioning that
population is the main factor affecting carbon emissions, but carbon emissions should
not be controlled by suppressing population growth, which is not scientific. Therefore,
consumption culture and structure can be further optimized so as to promote a low-carbon
lifestyle. Second, in order to promote carbon emission reduction in eco-agricultural cities,
an innovative industrial system needs to be developed. By formulating moderate support
policies, leading industries with special characteristics, such as tourism and organic food
industries, can be cultivated. Such an industrial model can not only connect with the
primary and tertiary industries but also promote intra-industry division of labor, active
innovation, and positive interaction to form a healthy intra-industry ecosystem. This can
effectively promote the economic development of the city, while also reducing carbon
emissions. Third, in order to transform the eco-agricultural city into a green ecosystem,
carbon emissions from agriculture and animal husbandry need to be controlled. Carbon
emissions from agriculture and animal husbandry can be reduced by promoting advanced
agricultural technologies and management methods and optimizing land use and planting
structures. In addition, it is also necessary to cultivate residents’ awareness of energy
conservation and environmental protection to reduce carbon emissions in their lives. This
can be achieved through publicity and education, demonstration and leadership, and policy
guidance, which can raise residents’ awareness of environmental protection and further
improve energy efficiency, thereby effectively reducing carbon emissions.

Industry-led cities have significantly higher GDP per capita than other types of cities
because these cities have more industries, especially manufacturing. They provide strong
support for the cities’ economic development. These cities typically have more international
trade and foreign direct investment, which also contribute to their economic strength and
international status. However, this economic model has also led to serious environmental
problems, including air pollution, water pollution, and land degradation. In the future,
we need to take a series of measures to mitigate these environmental problems. First,
people should be guided to adopt a low-carbon lifestyle, which can be achieved through
active guidance from government departments. The government should promote the
concept of environmental protection among the public and educate residents on how to
adopt a low-carbon lifestyle, such as cycling, walking, using public transportation, and
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reducing meat consumption. In addition, the government should encourage companies
to produce and sell low-carbon products to reduce carbon emissions. Second, we need
to optimize the industrial structure and set strict carbon control standards and evolution
timelines. The government should take measures to limit the production of high-energy-
consuming and high-polluting enterprises or even close these enterprises to reduce carbon
emissions. In addition, the government should encourage the use of clean energy, such
as solar and wind energy, to reduce the reliance on electricity and increase the share of
green power employed. In order to achieve this goal, the government should also increase
research, development, and promotion regarding clean power generation technologies.
Finally, the government should develop financial subsidies to encourage consumers to
purchase low-carbon products and services. These subsidies can serve as a push-back
mechanism to force manufacturers to produce and offer energy-efficient, green, and low-
carbon products, thereby accelerating the development of a low-carbon economy. In
conclusion, the joint efforts of the government, enterprises, and the public are needed to
alleviate the environmental problems in industry-dominated cities.

High-resource-availability cities typically use specific natural resources to generate
revenue. While this type of development can bring short-term economic benefits to cities,
it can also have negative environmental and climate impacts in the long run. Therefore, in
order to reduce emissions and control carbon, these cities need to take the following actions.
First, they need to take measures to intensively develop local resources and achieve a
scale of resource utilization. This can be achieved by establishing environmentally friendly
technologies and improving the efficiency of resource use. For example, cities can adopt
new technologies, such as smart manufacturing and digital technologies, to improve re-
source use efficiency. In addition, cities can promote low-carbon urban planning from the
perspective of revitalizing the stock. This would include measures such as building new
green buildings and promoting low-carbon transportation. Second, cities need to upgrade
outdated industries and industries that rely on local resources for development while also
developing green mining and fostering alternative industries. This will help industries
to transform and reduce carbon emissions while also helping the development of the
service sector. To achieve this goal, China is actively improving traditional manufacturing
processes and bringing in relevant talent to improve the technological content and effi-
ciency of the industry. Third, companies can improve logistics management and optimize
transportation routes to improve transportation efficiency and reduce carbon emissions. As
mentioned above, resource-dependent cities need to take a variety of measures to reduce
emissions and control carbon, including intensive development of local resources, improv-
ing traditional manufacturing processes, and changing traditional transportation methods.
These strategies can effectively reduce the carbon emissions of resource-dependent cities.

Resource-poor cities face the dual task of achieving economic development and im-
proving the quality of life of their residents under the goal of carbon peaking. However,
these cities are relatively economically backward, and the problems of population loss
and unemployment are more prominent. If these cities are excessively constrained, it may
lead to the limitation of their economic development and, more seriously, aggravate the
problems of population loss and unemployment, which will negatively affect the qual-
ity of life of local residents. Therefore, in future efforts to reduce emissions and control
carbon, the government can appropriately relax the constraints on carbon emissions in
these types of cities. This means that these cities can be given some room for carbon
emission growth and flexible peak hours to prioritize economic development and address
population loss and unemployment. In this way, these cities should be able to achieve
a balance between economic development and environmental protection, improving the
quality of life of local residents while also easing the pressure to meet carbon peak tar-
gets. Once the economies of these cities have been properly developed and supported,
the government can then gradually tighten its control over their carbon emissions. It is
worth mentioning that, when the government relaxes carbon emission constraints, it will
also need to establish a sound regulatory system and institutional mechanism to ensure a
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balance between economic development and environmental protection in these cities. Only
in this way can we achieve a win-win situation for both sustainable economic development
and environmental protection.

This study established different carbon control scenarios, which led to the formation
of differentiated recommendations for carbon emission reduction in cities. Emissions re-
duction can be achieved through the control constraints on the influencing factors affecting
carbon emissions in each given scenario. The focus with regard to carbon emission trends
in Chinese cities should be on different planning points depending on each city’s character-
istics. For cities with better urban resources and infrastructure, the exploration of carbon
decoupling pathways should be accelerated to steer in the direction of a green economy
while maintaining steady economic growth. For cities with a predominantly traditional
primary and tertiary sector, low-carbon development should be reconciled with economic
growth and population. For cities in the late stages of industrialization, the use of high-
carbon-emission energy sources should be restricted. The transformation of the energy mix
should also be strengthened to achieve a basic and comprehensive improvement in quality
and optimization. Cities with economic growth that depends on local resources should
control the practice of blind and rough urban expansion. Plans should be put in place for a
low-carbon industrial system, and low-carbon transport construction should be increased
and strengthened. In addition, cities that are lagging behind in economic development and
lacking in basic conditions should implement a lenient management policy to accomplish
a moderate transfer of carbon emission rights. It is necessary to encourage the exchange
of carbon emissions for economic development and social progress, but this should be
undertaken on the basis of low and manageable growth in carbon emissions. Through
differentiated policy control, the overall carbon goal for China’s cities can be achieved.

5. Conclusions

This study classifies cities according to their carbon emission characteristics and
proposes differentiated carbon control strategies based on the results. Most previous studies
only analyze the carbon emission characteristics of cities or propose emission reduction
strategies with carbon peaking as the goal. No studies have pointed out that carbon peaking
is the target and proposed differentiated emission reduction strategies from the perspective
of the carbon emission characteristics of cities. This study combines the two aspects to
propose more targeted emission reduction strategies based on the common problems of
cities. This study uses data from 340 Chinese cities from 2020 to propose differentiated
emission reduction strategies using a classification followed by projection approach.

The main findings of this study are as follows:

• The drivers of carbon emissions affecting Chinese cities are population, GDP per
capita, energy efficiency, urbanization, and industrial structure. According to the
regression results, different types of cities have different carbon emission factors, and
future carbon emission trends are characterized by these differences;

• Based on the degree of variation in carbon emission factors and trends in different
cities, the 340 Chinese cities were classified in this study into four types regarding
carbon emission attainment: eco-agricultural cities, industry-led cities, high-resource-
availability cities, and resource-poor cities;

• A carbon emission trend forecasting model was established. The coefficients of the
variables for different types of cities were derived from the results of ridge regres-
sion in order to build a prediction model for carbon emission trends based on city
characteristics;

• The scenario analysis showed that, under the baseline scenario, Chinese cities will not
be able to meet their carbon peak targets by 2030. Under the differentiated carbon
control scenario, eco-agricultural, industry-led, and resource-dependent cities will be
able to peak in 2030, with lower total carbon emissions. In this scenario, resource-poor
cities will not peak. However, the total amounts of carbon emissions and all indicators
for resource-poor cities are at low levels. They contribute very little to the achievement
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of the national target, which basically allows for a continuous increase in carbon
emissions in exchange for increases in economic development and urbanization, as
well as improvements in industrial structure. The results of the projections of carbon
emission trends in cities showed that, as a whole, China has a huge amount of work
to do to achieve the ambitious goal of reaching peak carbon by 2030. However,
differentiated and targeted carbon control targets can be controlled according to the
different types of cities, with a view to minimizing the negative impact of reducing
carbon emissions on urban development in the short term.

In this paper, corresponding carbon control strategies are developed according to
four categories of Chinese cities with different characteristics. It can be used as a reference
for national policymakers to develop relevant strategies. Our study also summarizes the
common problems that need to be addressed by the government to help policymakers
explore the key issues. Second, this paper identifies national-level targets, and our research
can help policymakers develop corresponding low-carbon strategies based on actual urban
conditions. In addition, this paper provides a basis for policymakers.

However, this paper also has certain limitations that need to be addressed in future
studies. This study only considered the common problems of each type of city in the
characterization, thus neglecting the small differences between each city. Future research
can incorporate more influencing factors into the study of city characteristics in order to
propose more precise and differentiated mitigation strategies.
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