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Abstract: New approaches to collect in-situ data are needed to complement the high spatial (10 m)
and temporal (5 d) resolution of Copernicus Sentinel satellite observations. Making sense of Sentinel
observations requires high quality and timely in-situ data for training and validation. Classical ground
truth collection is expensive, lacks scale, fails to exploit opportunities for automation, and is prone
to sampling error. Here we evaluate the potential contribution of opportunistically exploiting
crowdsourced street-level imagery to collect massive high-quality in-situ data in the context of crop
monitoring. This study assesses this potential by answering two questions: (1) what is the spatial
availability of these images across the European Union (EU), and (2) can these images be transformed
to useful data? To answer the first question, we evaluated the EU availability of street-level images on
Mapillary—the largest open-access platform for such images—against the Land Use and land Cover
Area frame Survey (LUCAS) 2018, a systematic surveyed sampling of 337,031 points. For 37.78% of
the LUCAS points a crowdsourced image is available within a 2 km buffer, with a mean distance of
816.11 m. We estimate that 9.44% of the EU territory has a crowdsourced image within 300 m from a
LUCAS point, illustrating the huge potential of crowdsourcing as a complementary sampling tool.
After artificial and built up (63.14%), and inland water (43.67%) land cover classes, arable land has
the highest availability at 40.78%. To answer the second question, we focus on identifying crops at
parcel level using all 13.6 million Mapillary images collected in the Netherlands. Only 1.9% of the
contributors generated 75.15% of the images. A procedure was developed to select and harvest the
pictures potentially best suited to identify crops using the geometries of 785,710 Dutch parcels and the
pictures’ meta-data such as camera orientation and focal length. Availability of crowdsourced imagery
looking at parcels was assessed for eight different crop groups with the 2017 parcel level declarations.
Parcel revisits during the growing season allowed to track crop growth. Examples illustrate the
capacity to recognize crops and their phenological development on crowdsourced street-level imagery.
Consecutive images taken during the same capture track allow selecting the image with the best
unobstructed view. In the future, dedicated crop capture tasks can improve image quality and expand
coverage in rural areas.

Keywords: crowdsourcing; citizen science; agriculture; street-view; in-situ; LUCAS; Copernicus

1. Introduction

Accurate, timely, direct, and massive in-situ observations across large areas are needed to
complement the increasing spatial and temporal resolution of remotely sensed data. Classical field
surveys to collect such in-situ data are costly and cannot guarantee a continuous flux of ground-truth
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data. Such continuity is needed to consistently calibrate and improve relevant crop information,
but also to verify maps and support monitoring activities in near-real time. Crowdsourced imagery
may provide such an in-situ data source. This is however conditional on a set of criteria including
image quality, which, for example, relates to the potential to recognize features of interest, the spatial
coverage and distribution of images, as well as the temporal frequency and location revisits of images.
Besides image quality, density, and frequency related aspects, factors such as relative landscape
heterogeneity at smaller (e.g., typical parcel size) and larger (e.g., patchiness of land cover types) scales
will determine the potential of crowdsourced imagery as a source of valuable in-situ information.
In addition, requirements will largely depend on application needs.

The need for low cost, suitable in-situ observations from crowdsourced imagery is especially
urgent to complement the large data streams that are produced, on a regular and continuous basis by
the European Union’s (EU) Sentinel sensors as part of the Copernicus space program. The Sentinel
data sets, and those derived from the Copernicus services, are accessible under a full, free and open
license. Their integration in country-wide agricultural monitoring applications is currently a key topic
in scientific and application development domains. Matching the Sentinel data stream with in-situ
data derived from massive amounts of crowdsourced pictures may provide an essential new avenue,
especially since the number of cameras on Earth will increase from 14 billion in 2017, to 44 billion
by 2022 [1].

1.1. In-Situ Data

Traditional in-situ ground truth collection is prone to sampling errors [2] and lacks the scale
and possibility for automated integration using big data analytics. Moreover, classical field surveys
require a considerable organizational effort, which makes it difficult to achieve periodic re-sampling to
assess changes in dynamic agricultural phenomena. Increasingly, parcel-level crop-type data based
on farmers’ declarations are becoming available in the public domain (e.g., in the Netherlands [3];
Austria [4]; Denmark [5]). Combined use of such parcel-level data and Sentinel observations has
already led to detailed monitoring of land management over large areas (see e.g., [6]). However, in a
strict sense, such parcel data may a priori not be considered as ground truth as they are based on farmers’
declarations in the context of the EU’s Common Agricultural Policy (CAP). A further complication is
timeliness, as declared parcel data may not be available until late in the growing season.

In the EU, the Land Use and land Cover Area frame Survey (LUCAS) [7,8] provides such in-situ
data. LUCAS is a three-yearly harmonised in-situ land cover and land use data collection exercise
that extends over the whole of the EU’s territory. The in-situ aspect of the survey implies that data
are gathered through direct observations made by surveyors on the ground. LUCAS is based on
a standardised systematic methodology in terms of a sampling plan, classifications, class specific
data collection protocols, and statistical estimators that are used to obtain harmonised and unbiased
estimates of land use and land cover.

1.2. Crowdsourcing

The potential of citizen science observatories and active or opportunistic crowdsourcing to
collect massive and high-quality in-situ data has been demonstrated by several recent studies.
Citizens without professional expertise in remote sensing can become actively involved in the
creation and analysis of large data sets. Kosmala et al. [9] used citizen science in combination
with remote sensing to link ground-based phenology observations with satellite sensor data for
scaling and validation purposes. Data collection is done with mobile applications where people are
guided to particular fields to take pictures and observations such as in FotoQuest [10] or with ad-hoc
crop management applications. In the United States of America (USA), planting and harvesting
dates of maize could be tracked by analyzing Google search data [11]. Indeed, the advent of
geospatial user-created content such as Geo-Wiki [12] has been of great benefit to the collection
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of large quantities of reference data for land cover classification. Minet et al. [13] provide a detailed
review of crowdsourcing activities in agriculture.

1.3. Street-Level Imagery

Most citizen-science driven or crowdsourcing applications have specific objectives clearly defined
at the onset of the activity. Yet, taking and sharing images for our own pleasure has become so
ubiquitous, that new chances to opportunistically exploit the information contained in these images
arise every day. Here we specifically focus on crowdsourced geo-tagged and time-stamped street-view
imagery. The enormous potential of these images is illustrated by recent applications in the domains
of e.g., political preferences [14], income bracket prediction [15], crime rate prediction [16], electric
network maintenance [17], transport [18], urban risk assessment [19], and urban greenery and urban
trees [20-22]. Different platforms and business models coexist to host the growing archives of
street level imagery.

A well-known repository is Google Street View (GSV). Street-level pictures are collected by
image-acquiring devices mounted on-board dedicated cars, bikes, and other transportation means.
GSV coverage is extensive, and in many cases each location has been captured multiple times over
the years. Other repositories are Open Street Cam, Tencent, Baidu, Here, Bing Streetside, and Apple,
each with their own characteristics. In this study, we explore the images on Mapillary [23], a European
platform. Mapillary is the first to provide open access and free-of-charge detailed street-view photos
based on crowdsourcing [24]. Despite the higher completeness of GSV compared to Mapillary [24],
limitations in term of access, contribution, and date filtering availability through the Application
Program Interface (API), make it difficult to use the vast dataset for dynamic crop monitoring.
In addition, it is possible to filter the data with queries through the site’s API, allowing the harvesting
of images for a defined time window and geographical area.

The use of geo-tagged street-level imagery for collection of agricultural statistics is not new.
Wu and Li [25] developed their own device combining a GPS, a video camera and a GIS to collect
crop type information in China. The same approach was also used by [26] to validate paddy rice
mapping products. The Global Croplands project used GSV along with remote sensing with their
Street View Application [27], which permits to collect information on crops. The approach was
also used to train and validate a 30 m Africa cropland map [28]. Street-level imagery was also
successfully used to validate crop monitoring information derived from remotely sensed observations
by Sentinels 1 and 2 [6]. However, no scientific study has properly assessed to potential of using such
crowdsourced street-level images for crop monitoring.

1.4. Objectives

The overall aim of this manuscript is a first evaluation of the potential of opportunistically
exploiting crowdsourced street-level imagery to collect massive high-quality in-situ data relevant
for crop monitoring. In particular, we investigate two aspects: the geographic availability and the
potential usefulness of such imagery for crop monitoring (Figure 1).

In order to do so, we have defined the following objectives:

(1) What is the spatial availability of Mapillary street-level imagery across the European Union based
on the stratified and systematic LUCAS 2018 sample?

(2) What is the detailed spatio-temporal availability of these images in relation to crops,
crop phenology, and agricultural parcels in the Netherlands?

(3) Which are the parcels potentially best observed by Mapillary crowdsourced images using
geo-spatial analysis in combination with the pictures’ metadata?

(4) And finally, what is the potential usefulness of crowdsourced imagery for different crop
monitoring use cases?

In the Discussion we:
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(1) Identify promising next steps to further constrain full sets of crowdsourced street level imagery
to those with the potential for in-situ crop monitoring at parcel level;

(2) Discuss issues related to capturing and collecting crowdsourced imagery along with parcel revisit
rates relevant for future computer vision related activities.

° AVAILABILITY ASSESSMENT
- 1. Spatial coverage
o Local density
o Country
LUCAS o Land cover

2. Distance analysis

- EU-28

SAMPLING

OBJECTIVE 1

e USABILITY ASSESSMENT

1. General availability ;

2. Spatial coverage =

CROWDSOURCING Ty 2 Spelelcovere :
PLATFORM 4. Parcel revisits 2
BRP 5. Examples o

NL
FULL DATASET

Figure 1. The first objective of the paper is to assess the spatial availability of crowdsourced street-level
imagery data across the European Union (EU-28) based on the Land Use and land Cover Area frame
Survey (LUCAS). The second, third, and fourth, objectives are to assess the potential usability of such
images to generate in-situ data relevant for crop monitoring in the Netherlands (NL) using to the Dutch
agricultural parcel registry, i.e., Basisregistratie Gewasparcelen (BRP).

2. Materials

After introducing the goals of this research, this section presents the three main datasets used in
this study: the Mapillary data (Section 2.1), the LUCAS survey (Section 2.2) and the Dutch agricultural
parcel registry (Section 2.3).

2.1. Mapillary

Mapillary’s collaborative platform enables anyone with a Global Positioning System (GPS)
enabled camera or smartphone to contribute street-view photos. In contrast with other approaches
to street-view, this key enabler has accelerated imagery collection at a global scale by engaging
different types of contributors. Since it was set-up and the first photo was taken in 2013 [29],
the service has attracted an ever increasing user base, reaching 100 million photos in 2016 [30],
200 million in 2017 [31], to more than 370 million images (as of September 2018). Early adopters of the
platform were OpenStreetMap (OSM) contributors using smartphones and action cameras; however,
recent commercial activities have expanded the contributor base to Mapillary customers, including
government agencies, surveyors, and mobile mappers. While Mapillary continues to incentivize
crowdsourcing activities through community events and online contests; offering new commercial
products based on advances in computer vision (e.g., feature extraction, change detection, improved 3D
reconstruction through Structure from Motion) has driven customers to contribute more imagery with
systematic collection methods and professional equipment. This approach has resulted in continued
growth of the platform with a shift over time to higher quality images. Mapillary is in partnerships
with other location intelligence (HERE [32]) and is still contributing to open-source entities such as
OSM [33]. Know-how on computer vision has led to contracts with the automotive industry in the
context of self-driving vehicles (BMW i Ventures [34]). Mapillary’s main technical goal is similar to
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the one articulated by Google Street View (GSV), yet has certain qualities that make it more adequate
in the current context. First of all, images on Mapillary are available under the Creative Commons
Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0 [35]). Additionally, their rapidly
growing archive and sensor-agnostic approach—any camera or smart phone can be used—provides an
ideal dataset for scientific studies. The latest version of the Mapillary API (v3) [36] includes the ability
to harvest images, to sequence images, and even perform image segmentation based on search options
such as unique key identifier, camera model, camera angle, and anonymized user names. Furthermore,
selection criteria can be based on a given radius, bounding box, proximity to points, or whether an
image point is looking at certain coordinates, which can be used together or separately to perform
powerful and structured queries. The possibility to query on dates is key to characterize dynamic
vegetation phenology and essential for crop monitoring.

2.2. LUCAS

LUCAS sampling is a two-phase sampling carried out in three steps summarized below (see [37]
for details):

(i) The base grid is obtained by using a 1 km? grid with a systematic spatial sampling design which

includes around 4,400,000 points.
(ii) The master grid is a subset of the base grid, comprising around N = 1,100,000 points (corresponding

to a 2 km? grid covering the EU-28 territory, also systematically selected). Each of these points is
classified into eight land cover categories (the strata) on the basis of photo interpretation of aerial

photos or satellite images.
(iii) The field sample is a sub-selection of the master grid. A sample of n points, out of N, is selected by

strata and by the second level of the Nomenclature of Territorial Units for Statistics (NUTS2) and
the n points are visited in order to determine the land cover and land use at a more detailed level.

In 2018, 337,031 points were selected from the base grid. Among these points, 238,558 (70.78%)
are in-situ points, i.e., surveyed on the field, while the remaining 98,473 (29.22%) are labelled by photo
interpretation without field surveying.

2.3. The Dutch Agricultural Parcel Registry

The Netherlands were chosen to test the usefulness of the Mapillary street-level imagery for crop
monitoring. The reasons for this are the following: in the European context, the Netherlands is one of
the most data-rich countries—the data set required to carry out the study, the Dutch agricultural parcel
registry, is provided free of charge and is open access; this also holds true for other extensive national
datasets. The openness of Dutch data makes it a perfect fit for our proof of concept. Additionally, as will
be demonstrated in this study, the Netherlands is the country with the largest street-level availability in
the EU after Malta. The Dutch agricultural parcel registry, i.e., Basisregistratie Gewasparcelen (BRP) [3],
is derived from the Land Parcel Information System (LPIS) [38]. The LPIS itself is maintained and
updated on the basis of the digital topographic map at scale 1:10,000 and actual aerial orthophotos.
The BRP contains over 785,710 parcels, comprising a total area of 1.5 million hectares; the attribute
information contains a unique parcel identifier, along with some metrics for each field, as well as the
type of crop cultivated there. The version used in this study (2017) differentiates between 300 different
crop types. The parcel boundaries get updated annually (post-May) and a data archive starting from
2009 exists. In terms of data quality, the BRP has excellent spatial coverage of field boundaries, making
it perfect for targeted sampling efforts such as the one presented here. In terms of attribute information,
such as the crop grown on the respective parcel, deviations from reality, albeit very limited, can be
expected as this information is derived from farmers” declarations. As such it cannot be taken as
clear cut ground truth. For this study, the main crops were aggregated to 8 crop groups: grasslands,
maize, potatoes, winter wheat, sugar beet, onions, summer barley, and flowers. Table A1 (Appendix A)
summarizes the aggregation and their specific classes. In 2017, 680,792 parcels (86.6% of the total) are
part of these 8 groups, while 104,918 (13.4%) are not.
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3. Methods

3.1. Availability Assessment Methodology—European Union

To determine the availability of Mapillary street-level images across the EU, a sampling
methodology was used. This was necessary as it is not possible to have direct access to the whole
European Mapillary data base. To this end, we make use of the systematic and stratified sampling
frame of LUCAS 2018 described in Section 2.2. This section first describes how the crowdsourced
street-level imagery data is collected and finally addresses the methodology for the spatial pattern
analysis. For each LUCAS 2018 point, the location of the closest crowdsourced image was collected
with a maximum distance of 2 km. A 2-km distance was selected as the master grid is a systematic
spatial sampling where each point is at a 2-km distance. Therefore, 337,031 requests are sent to the
Mapillary API The results are then collected as a GeoJSON [39] file which is then converted to a
database. In order to measure the data availability with point pattern analysis, we first apply methods
based on density and then on distance. The local density (A;) is measured with the quadrat density
method in order to assess the underlying process of local intensity. As we are considering a sample of
the crowdsourced data, the local density has to be normalized by the sampling grid used. The local
density 1) (Equation (1)) is thus defined as the ratio of the local density of sampling points on the
local density of crowdsourced data where a corresponds to the area of the grid cell.

Nsampling
)\i - ”crow:sourced (1)
14
The global density (A) (Equation (2)) is the ratio between the number of points available in the
crowdsourcing platform and the point sampling.
Nerowdsourcing

A= @

Msampling
In order to better characterize the sample collected, the distance between the LUCAS sample
point and the crowdsourced point is calculated. The shortest distance between the two points is
calculated according to the haversine method [40] assuming a spherical Earth, and thus ignoring
ellipsoidal effects.

3.2. Usability Assessment Methodology—The Netherlands

While for the first part a sampling approach was selected to assess the availability in the EU,
the methodology for the second part was applied on the full Mapillary dataset of the Netherlands,
making use of the information in the Dutch agricultural parcel registry described in Section 2.3
and summarized in Figure 2. After the first step of data collection, The Mapillary Dutch database
we analyze here contains 13,601,610 pictures. Out of these, 25,093 images have been taken before
September 2013 (when Mapillary was launched) and according to the metadata analysis are deemed
unusable (Section 4.2.2).

To investigate the usefulness of street-level imagery to generate relevant in-situ data, and to
identify those pictures that potentially should have the best view on agricultural parcels, we developed
the following multi-step methodology. After the first step of data collection, we then subset the
immense Mapillary archive to a more manageable set by excluding all images that are not within
a certain buffer distance of an agricultural parcel (Step 2, Figure 2). We specify a time window
corresponding to the growing season of the respective crop located in the parcel of interest (Table 1).
Third, we generate Instantaneous Fields Of View (IFOV) for the subset of images—either triangular
for normal cameras with a fixed horizontal field of view, or circular for panoramic fields of view.
The IFOVs represent what is visible from the camera’s position and these are intersected with the
parcel boundaries while keeping the native geometry and attributes in order to know which parcels are
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visible on the image. In the final step, the information is stored in a table where each row is the unique
image-parcel combination. This table is used to generate summary statistics and results (Section 4).

Data filtering Select pictures

Spatial and temporal filtering

(keep those pictures within a 50 m Step 3 Selecting pictures looking at
Step 1 buffer of parcels) ep parcels
O O O O
O A4 A4 O
H Step 2 A Step 4
Data collection P IFOV calculation P
13.6 million Mapillary pictures Deriving pictures' field of view from

image metadata

Figure 2. Methodological flowchart of the availability and usability assessment for Mapillary images
in the Netherlands.

Table 1. Aggregated crop classes and their respective growing season.

Aggregated Crop Class Growing Season Percentage of Total Area
Grassland March—October 64.42%
Maize mid April—mid October 10.83%
Potatoes late April—October 4.34%
Winter Wheat Autumn—mid July * 2.60%
Sugar Beet early April—late October 2.18%
Onions April—October 0.85%
Summer Barley April—late August 0.80%
Flowers—Tulip October—late June 0.58%
Flowers—Lilly Spring—September
* if soft wheat.

The data collection effort is carried out in a completely automated way with the idea for the
method to be easily transferable and applicable. The used tools were PostgreSQL (9.5.14) with PostGIS
extension (2.1.8), ran in a client (PGAdmin III), and the R scripting language, ran in the R IDE (RStudio
version 3.4.4). The full Dutch Mapillary dataset used here contains more than 13.6 million images.
Directly working on the entire Mapillary archive for the Netherlands allows using geospatial analysis
to filter and select the image data for our purposes. For instance, determining the total number of
cultivated parcels that have at least one image associated with them taking account of the crop and
its growing season. Other valuable information includes the total number of images per crop type,
the average number of images per parcel, the temporal and spatial distribution of images, etc.

Additional attribute information was also supplied along with the images (see Table A2 in
Appendix B for description of the variables). Among these there is a corrected camera angle,
which subverts some of the obvious penalties the analysis incurs as a result of a wrongly stated or
recorded camera angle. Others include camera specifications such as camera orientation, focal length,
acquisition mode, camera mode and make, GPS accuracy, compass accuracy, width and height of
the image, and Mapillary application version with which the images were captured and uploaded.
Such information can help to obtain rough benchmarks for important aspects related to image quality
prior to any visual inspection.

The images were obtained between 2013-2018 and most of them are located in cities; as such
only a fraction of these will be useful for our analysis. In order to arrive at meaningful information
we create a table, which holds only the images within a 50 m buffer of an agricultural parcel and that
have been taken between 2017-01-01 and 2018-01-01. To identify those parcels that are potentially
observed by crowdsourced images further selection steps are needed. To do this we developed an
automated approach to calculate triangular or circular IFOVs for each image. It is important to
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remark on the need of projecting all spatial data before calculating the IFOVs, as the distortion that
occurs as a result of having the data in the Mapillary-native WGS84 causes the triangular polygons
to be of different sizes and shapes. In our case we chose to work in Amersfoort/RD New projection
(EPSG:28992). The horizontal angle of view () (in grey in Figure 3a) is obtained via Equation (3) where
width, height = fixed camera width and height, cfocal = computed focal length (stored as a ratio of
image size and focal distance (focal gistance) (Equation (4))), max() = denotes the maximum value of the
two arguments (width and height) and then take the coordinates of the point itself as the central vertex
of the triangular IFOV. The fmmz3s (Equation (5)) is the nominal focal length stored in the Exchangeable
Image File (EXIF) metadata, recorded in millimeters as the equivalent focal length for a camera with
35 mm film and a width of 36 mm. The x and y coordinates of the other two vertexes A and B are
calculated with Equations (6) and (7) respectively where ax, ay, bx, by = X and Y coordinates for vertex
A and B, cx, cy = X and Y coordinate for central vertex, d = the leg of the triangle in terms of distance
between central vertex and other vertexes, ca = camera angle in terms of direction of movement (the
black arrow in Figure 3a) and 6 is the camera’s horizontal angle of view.

6 = 2 x arctan(width/ (2  cfocal x max(width, height))) (3)
cfocal = focal jistance/ max(width, height) 4)
fmmzs = 36 * focal gistance / width (5)
ax = cx+dx*sin(ca —0/2) ©)
ay = cy +d = cos(ca —60/2)
bx = cx+d=sin(ca+6/2) @)
by = cy +d * cos(ca+6/2)
A -119°54" -79954¢
(ax,ay) " . Pictures
=Intersect IFOV

=Non-Intersect IFOV
Selected parcels
Non-selected parcels

per

-19°54'~

(cx,cy)

(a) (b)

Figure 3. The Instantaneous Field Of View (IFOV, green triangle Figure 3a from the point where
the picture was taken (C) is obtained by calculating the triangle coordinates based on the picture’s
metadata. The camera angle (CA) is the moving direction of the sensor. The horizontal angle of view
(0) represented in grey is the azimuth field of view of the camera and thus varies according to the
sensor. Figure 3b shows the process of intersecting the generated (in this case triangular) IFOVs with
the parcel boundaries, leading to parcel selection (yellow) or not (red).

For the panoramic 360° cameras, we assume the IFOV to be most adequately represented by a
circular buffer with a radius of 50 m. Attribute information of each image is appended to each respective
corresponding triangular or circular polygon. The last step is to perform a simple intersection between
the IFOVs (green and blue triangles in Figure 3b) and the parcels in order to only keep those images
whose IFOVs intersect with a parcel. By means of this method, the parcels selected are displayed in
yellow, while the ones that are not—are in red (Figure 3b). In this way we ensure to keep only those



Land 2018, 7, 127 9 of 26

images, that, to the best of our assumptions, will have the parcel displayed on them. Metadata is
stored in a table of polygon features which can easily be queried or exported to a desired format.

4. Results

4.1. Availability Assessment

The spatial availability was assessed over Europe (EU-28). For each LUCAS point, a request was
sent to the Mapillary server and the reply was saved. For 37.78% of the LUCAS points, an image
was available within their 2 km neighborhood (Table 2) while for 62.16% of the points no image was
available in a 2 km buffer. For 0.06% of the points, there was an error in the retrieval: 115 points had a
error 504 (Gateway Time-out) and 78 points had an error 502 (Bad Gateway).

The detailed spatial distribution of the LUCAS points that have at least one crowdsourced image
within a distance of 2 km available is mapped in green in Figure 4. LUCAS 2018 points without
Mapillary crowdsourced images within a distance of 2 km are shown in blue.

® Not available  Available

Okm 500km 1000km

Figure 4. Map displaying the LUCAS 2018 survey points. To assess the availability of Mapillary
crowdsourced steet-level imagery, the location with a crowdsourced image closest to each of the
337,031 LUCAS points was harvested through the Mapillary API. The LUCAS points for which an
image was available within a 2 km distance are represented in green (N = 127,346 representing 37.78%
of the total) while the points without a crowdsourced image within a 2 km buffer are represented in
blue (N = 209,492 representing 62.16%).
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Table 2. Global density of LUCAS points with and without Mapillary crowdsourced images within a
2 km distance. The retrieval errors are mainly network errors due to server failures (502, 504).

Number Percent (%)

LUCAS 2018 points with a crowdsourced image within a 2 km radius 127,346 37.78
LUCAS 2018 points without a crowdsourced in a 2 km radius 209,492 62.16
Retrieval errors 193 0.06
Total 337,031 100

4.1.1. Density Assessment

First, the local density is measured using the quadrat density (Figure 5) and demonstrates the
heterogeneity of the coverage.

0O 10 20 30 40 50 60 70 80 90 100

Figure 5. Local density of available street-level imagery within a 2 km radius of LUCAS 2018 points
based on a systematic spatial sampling of 337,031 points averaged by grid cell (%).

Second, the global density is calculated for each country. Figure 6 provides the detailed availability
(%) sorted by country and also provides the number of points for which crowdsourced images are
available (green) and not available (blue). The availability ranges from 100% for Malta (MT) to 12%
for Bulgaria (BG). However, Malta contains only 79 LUCAS points. The Netherlands has the second
highest availability (88%) for a total of 5011 LUCAS points.
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Figure 6. Density by country sorted from the largest availability to the lowest. The bar plot shows the

number of LUCAS points for which crowdsourced data are available (green) and not available (blue)

summarized by country. The availability (%) is represented by the black line.

Third, the global density was assessed for 8 main land cover classes: Arable land, Permanent
crops, Grass, Wooded areas, Shrubs, Bare surface, Artificial areas and Inland water (Table 3), following
the LUCAS stratification. Shrubs have the lowest availability (26.94%), while the Artificial areas
land cover class has the highest availability of crowdsourced images (63.14%). Arable land has an
availability of 40.87%.

Table 3.

land cover strata.

Availability of crowdsourced imagery based on the LUCAS sampling for 8 main

Global
Strata . . . Availability
Description Corresponding Classes Available Unavailable Total Per Stratum
(%)
Cereals, root crops,
Arableland ~ NOP-Permanent industrial crops, 45,740 66,172 111,912 40.87
dried pulses, vegetables and
flowers, fodder crops
Permanent Fruit trees and fruit bushes,
other permanent crops (vineyards, 1384 2374 3758 36.83
crops .
olive trees)
Grass Grassland, with or without sparse 19,970 32,848 52,818 3781
tree/shrub cover
Wooded Areas where at least 10% is 10,416 83,104 123,520 .72
areas covered by tree
Shrubs Shrub land with or without sparse 5495 14,903 20,398 26.94
tree cover
Bare land: areas with no
Bare surface,  vegetation (rocks, sand, and
rare or low lichens) or areas covered less than 948 1847 2795 33.92
vegetation 10% by dominant species
of vegetation.
Artificial,
construction Bu.ﬂt—up and artificial non 12517 7307 19,824 63.14
and sealed built-up areas
areas
Surfaces covered by water or ice,
Inland water  either permanently or for most 876 1130 2006 43.67

of year
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4.1.2. Distance Assessment

For those LUCAS points for which a crowdsourced image was available (N = 127,346), the distance
from the location of the image to the point is of significant interest for this study. The distribution of
these distances (Figure 7) indicates that 25% of the images are located within 300 m of the LUCAS
point (1st Quartile: 297.11 m), the average distance is 816.11 m.

Min. 0.03; 1st Qu. 297.11; Median 726.43; Mean 816.11; 3rd Qu. 1289.86; Max. 2007.00; NA's 209685

. T .
6 1stQu. Medlian 3rd.Qu.

Points' distribution [%]

0 500 1000 1500 2000
Distance from crowdsourced point to LUCAS sample point (m)

Figure 7. Distribution of the distances between LUCAS points and the locations of the closest
crowdsourced image.

4.2. Usability Assessment

When assessing usability, we wish to assess the potential of the images to provide a valuable
inference for in-situ data. Therefore, we investigated the contributions of Mapillary users, specific
attributes from the metadata that we found to be possible benchmarks for image quality, the spatial
and temporal distribution of Mapillary data, and finally the parcel revisit rates.

4.2.1. Contributors

Figure 8 shows the number of images generated as a function of the number of contributors on a
logarithmic scale. It is clearly visible that the vast majority of images are generated by a very small
community of contributors. In the whole of the Netherlands, 75.15% of all the images are generated by
only 1.9% of the contributors (Figure 8a). Indeed most contributors have less than 10 images associated
with their user-key, and 68.3% of the contributors have been active on the platform for a total of only
one month. For the selected crowdsourced images located at a distance of 50 m to a parcel, a slightly
higher percentage of users (4.3%) contributed a similar share of images (73.55%) (Figure 8b). In this
subset, skewed to images located in the countryside, the difference between the top contributor and
subsequently ranked ones is also smaller compared to the nation-wide dataset.

c .
100- .

~.
S ..\
.
o 100- ® ...
4 & \,
g 3 n,
S \ S .
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o} ", g 10-
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=7 3
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' ' ' ' ' '
10 1000 100000 10 1000 100000
Number of photos Number of photos
(@ (b)

Figure 8. Distribution of user-generated images for (a) the entire Dutch Mapillary dataset and (b) for
the photos within a 50-m buffer of an agricultural parcel.
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4.2.2. Metadata Analysis

The meta-data available permits to characterize several quality related aspects of the collected
crowdsourced imagery. As a first filter it was necessary to remove images that are suspected of
having an inadequate time-stamp. Some 25,093 of the images had a date of creation before the date
Mapillary was officially in business. Out of these, 803 are reportedly taken in the 1970s. Suspecting a
misrepresentation either due to user oversight when setting the camera clock or issues of translation
between date formats, the decision was taken to exclude these. Among the remaining pictures,
16.6% are with a 360° camera. The metadata also contains orientation information [41]. Most of the
pictures are looking forward (88.80%) and backward (11.13%), of the remaining pictures, 6370 look
right (i.e., 0.05 %) and 3146 look left (i.e., 0.02%).

In terms of camera model, 92 different types of devices have been used to record the images,
produced by 33 different vendors. This means that images would undoubtedly vary significantly in
terms of usability for potential subsequent analysis. The GPS accuracy is the offset between the target’s
recorded and its actual position. This is usually measured in meters, where an acceptable GPS accuracy
is between 3.5-5.0 m. The mean offset was found to be around 5.02 m, sufficient for the purposes of
the current study focusing on agricultural parcels. That being said, extreme offsets of 1400 m were also
recorded and the metric was missing for 50.2% of the images. The compass accuracy represents the
compass error measured in yaw angles and can be used to determine moving direction; mean error
for the dataset was found to be around 10.3 degrees. This metric was missing for 68.9% of images.
The HFOV was obtained as described in the methodology to accurately calculate the IFOV for each
image. This is done to get as close as possible to a true representation of what is visible from the sensor
when the picture is taken. Bearing in mind that most on-board cameras are placed in a forward looking
direction, a large HFOV would be beneficial for monitoring of objects in the near-and-far-peripheral
vision range. Logically, this will be where in most cases crops will be located. In our case the HFOV
for the images was around 179.9 degrees.

4.2.3. Spatial Availability

The agricultural land use in the Netherlands, comprising both arable crops and grassland,
is aggregated on a 2 km grid as percentage relative to each 2 x 2 km? grid cell area (Figure 9a):
a value of 1 (blue) means that the 2 x 2 km? grid cell is fully in agricultural land use whereas a value
of 0 (red) means that the grid cell is fully covered by something other than agricultural land use.
The pattern outlines the major arable production areas, typically on the alluvial soils near the coast,
together with large grassland areas on sandy soils and peat areas. These are interspersed with large
cities, especially in the western and central parts, and some contiguous nature areas.

For the same 2 x 2 km? grid, the density of Mapillary pictures was calculated, with high densities
in blue and low densities in red (Figure 9b). Grid cells for which no Mapillary pictures are available
are left in white. The density scale spans several orders of magnitude, with some of the major urban
centres having grid cells with more than 100,000 Mapillary pictures. The correlation coefficient between
Mapillary point density and agricultural land use per 2 x 2 km? grid is —0.172. Furthermore, in major
agricultural areas (e.g., in the North and South), most Mapillary pictures are registered along the major
road network, leaving significant gaps in the coverage where agricultural land use is most dense.
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Mapillary Pictures A
Bl 1-1869

I 1869-5813
5813-12298
12298 - 24662
24662 - 66364
66364 - 158309
B 158309-330278

Cultivated Area (%) A
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53 53

Figure 9. The proportion of agricultural land use in a 2 km grid over the Netherlands (a) shows the
areas where data are needed for crop monitoring. The Mapillary data availability for agricultural
parcels is aggregated for the same 2 km grid and shows a heterogeneous pattern (b).

4.2.4. Temporal Availability

Crop monitoring requires the availability of images throughout the growing season. Multiple
re-visits of the same parcel would possibly allow to track crop growth development in that location.
Multiple revisits to multiple parcels would allow monitoring crop phenology across climatological
gradients. Figure 10 shows the number of images per month for the years 2016, 2017, and 2018,
and how these are spread throughout the growing seasons of each crop.

year
— 2016
~ 2017
2018
150000-
(%]
Q
(o]
©
g 100000- Lily
—
8 Tulip Tulip
()
-g Summer.Barley
2 Onions
Sugar.Beet
50000- %er.whe Winter.Wheat
0- ' . . . .
Jan . Apr Jul Oct Jan
Date

Figure 10. Monthly availability of images throughout the year for 2016-2018 along with growing
season of the main crops.
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4.2.5. Temporal Availability Targeted to Parcels

The previous section addresses the general temporal availability of pictures throughout crop
specific growing seasons. This section focuses on the parcels of 2017 to analyze parcel specific revisits.
First, the parcels that have at least one image associated with them in 2017 are obtained and compared
with the total number of parcels in each crop group in 2017 (Figure 11). In 2017, 75,973 grassland parcels
have at least 1 observation on a total of 506,183 parcels which corresponds to 15.01% . This availability
per crop group range between 15.01% for grasslands to 6.49% for parcels with lilies (availability in
black in Figure 11).

600000 No picture available

15 Picture available
15

400000 — Availability [%]

10

200000

Number of parcels
sabew! yum sjaased Jo 1uadiad

Grass Winter.Wheat Maize Sugar.Beet Onions Potatoes Tulip Summer.Barley Lily

Crop Type

Figure 11. Number of parcels observed and not observed at least once in 2017 per crop group. The crop
groups are ordered by the proportion of parcels having at least one picture in 2017 to the total number
of parcels (availability).

Regular repetitive observations of the parcel are a prerequisite to track crop phenological
development. The number of unique months for which a given parcel was observed at least once is
calculated and then aggregated per crop group resulting in the number of parcels per crop group shown
in Table 4. For example, there were 50,249 grassland parcels observed at least once in 2017 representing
9.93% of the parcels while, 12,747 parcels were observed in two different months representing 2.52%.
For grassland, 328 parcels were observed each month (representing 0.06%).

One of the eight winter wheat parcels with an observation for each of the 12 months was selected to
illustrate the numbers in Table 4. Figure 12 maps all locations of these revisits (Figure 12a), resulting in
a high and well-distributed temporal revisit frequency (Figure 12b). Street-level pictures were obtained
throughout the seasons (Figure 12c-h). In 2017, the parcel was observed 222 times on 46 unique days,
which allows to observe crop development. Pictures taken from nearly the same location were selected
to facilitate the comparison. On the right side of the street-level imagery, we can observe the winter
wheat growth stages. In January (Figure 12c), the tillering stage could be observed, afterwards the
plant is growing and greening (jointing and heading phase, respectively Figure 12d,e). The maturity
stage, corresponding to when the plant reaches its maximum height and weight, and starts to become
yellow, occurs in summer (Figure 12f,g. In December, the field has been ploughed again (Figure 12h).
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Figure 12. In 2017, this parcel (latitude = 51.9567° N, longitude = 5.6345° E) was observed 222 times
on 46 unique days. The average revisit rate is 4.8 days. Having frequent pictures permits to observe

several winter wheat growth stages.
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Table 4. Number of parcels and their monthly revisit frequency for each crop group.

Number of Month 1 2 3 4 5 6 7 8 9 10 11 12
Grass 50,249 (9.93%) 12,747 (2.52%) 4917 (0.97%) 2411 (0.48%) 1456 (0.29%) 1006 (0.2%) 673 (0.13%) 455 (0.09%) 758 (0.15%) 571 (0.11%) 402 (0.08%) 328 (0.06%)
Maize 6989 (8.21%) 1731 (2.03%) 588 (0.69%) 340 (04%) 206 (0.24%) 204 (0.24%) 128 (0.15%) 109 (0.13%) 211 (0.25%) 112 (0.13%) 96 (0.11%) 78 (0.09%)

Potatoes 2467 (7.23%)  471(138%) 159 (047%)  72(021%)  40(0.12%) 39 (0.11%)  4(0.01%)  16(0.05%)  15(0.04%) 14 (0.04%)  9(0.03%)  7(0.02%)
Winter Wheat 2001 (9.76%) 406 (1.98%) 124 (0.6%)  59(0.29%)  24(0.12%) 43 (0.21%) 15(0.07%)  33(0.16%)  20(0.1%)  12(0.06%)  5(0.02%)  8(0.04%)
Sugar Beet 1318 (7.66%) 300 (1.74%) 76 (0.44%) 34 (0.2%) 28(0.16%)  28(0.16%) 13 (0.08%) 22(0.13%)  15(0.09%)  8(0.05%)  8(0.05%) 4 (0.02%)
Onions 558 (8.28%) 105 (1.56%) 29 (0.43%) 17 (0.25%) 4(0.06%) 8(0.12%)  1(0.01%)  1(0.01%)  1(0.01%)  2(0.03%)  1(0.01%)  2(0.03%)
Summer Barley 327 (5.16%) 75 (1.18%) 32 (0.5%) 9 (0.14%) 8 (0.13%) 6(0.09%)  4(0.06%)  11(0.17%)  3(0.05%) 1 (0.02%) - 6 (0.09%)
Flowers 265 (5.75%) 41 (0.89%) 15(0.33%)  11(0.24%) 84 (0.09%)  5(0.11%) - - 1(0.02%) - 1(0.02%) -
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5. Discussion

5.1. Availability Assessment

The crowdsourced pictures availability assessment reveals that 37.78% of the EU territory has
pictures within 2 km of a LUCAS point (Table 2). The density assessment highlights the heterogeneity
of the spatial coverage in the EU. This is confirmed when looking at the global density per country
(Figure 6). The availability is above 60% for several countries mainly located in the central north part
of the EU (the Netherlands, Belgium, Luxembourg, Denmark and Germany), but also other small
countries reach these levels of availability (Malta, Cyprus and Lithuania). In Italy, Spain, Romania,
Finland, Greece and Bulgaria, the availability is below 30%. Across all LUCAS land cover classes
(Table 3), the artificial area class is ranking highest (63.14%) in global density. Population density
is obviously highest in urban areas and people there are proportionally contributing more to the
Mapillary platform. Interestingly, for the scope of this paper, the agricultural areas have a rather high
global availability over the EU: arable land (40.87%) and permanent crops (36.83%). The LUCAS grid
provides statistically reliable figures with a systematic coverage over the EU and a stratified sampling
of about 337,031 points. The use of a 2 km buffer to harvest the closest crowdsourced point could be
considered a limitation in the study. Obviously, a 2 km distance is often too large to have an actual view
on the LUCAS point. However, it was selected as it is the distance between two adjacent LUCAS points.
The intention was not to reproduce the LUCAS survey but rather to quantify the spatial distribution
and completeness in terms of coverage. In the EU distance assessment (Figure 7), the results show
that one quarter of the available crowdsourced points are located less than 300 m from their nearest
LUCAS counterpart. Extrapolating this figure with the availability assessment would thus mean
that 9.44% (i.e., 25% of 37.78%) of the EU territory has an image within 300 m from a LUCAS point.
This assumption illustrates the significant potential of crowdsourcing as a useful and complementary
land use and land cover sampling tool.

5.2. Usability Assessment

In the second part of the results, the Dutch Mapillary database was analysed. First, when looking
at contributors (Figure 8), more than 75% of the pictures are provided by less than 2% of the users
in the Netherlands. Similar results were already demonstrated for Mapillary by [24], and is close
to what was demonstrated by [42] where for both Panoramio and Flickr only 1% of the users are
responsible for around 70% of the photos taken. This characteristic of the contributing community
highlights two contrasting aspects. On the one hand a significant part of the archive (growth) depends
on the, voluntary, contributions of relatively few enthusiasts. At the same time, however, creating
incentives for these top contributors for specific goals such as using top-end camera equipment,
targeted crop monitoring and capture tasking, could lead to significant better quality or more suitable
image collection. Understanding the motivation and the purpose of the contributors is therefore
key to sustaining this kind of crowdsourced model. For Mapillary, a part of the most active users
probably contributes as they believe in open data and user-generated models like Open Street Map.
Another potential to increase high-quality thematic contributors could be targeting farmers who
commit images with cameras mounted on farm machinery. In this perspective, the EU Code of
Conduct on agricultural data sharing [43] provides interesting insights of how this could be organized
while respecting at the same time the General Data Protection Regulation (GDPR) [44].

Second, the meta-data analysis demonstrates the heterogeneity of the sensors (92 types of devices
from 33 brands). There is still an important potential to exploit the meta-data, including selecting
images which orientation meta-data would make them specifically suited for crop monitoring. Indeed,
left or right looking images, along with panorama pictures (16.6% of the total) are more suited to
retrieve information about crops. The debate on camera position is ongoing in the active Mapillary
community [45]. A set of unofficial rules have been articulated to state that users would mostly shoot
in a forward looking direction, unless the road has already been mapped this way; or the road is a
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highway with little change; or when the forward view is obstructed for some reason. Should this type
of thinking be adopted more generally throughout the user base, this would mean that when roads get
traversed, for example, by active contributors, and mapped in a forward view, subsequent sequences
of images on the same road would have the camera positioned to the side. This would generate higher
quality images for the purpose of agricultural monitoring.

Third, the detailed spatial availability analysis over the Netherlands (Section 4.2.3) also reveals
a heterogeneity in coverage with picture availability negatively correlated to cropland density.
Not surprisingly, rural areas have a lower coverage than cities. Furthermore, in rural areas, a larger
share of the imagery is collected along the major roads, i.e., at higher average speeds and further away
from field boundaries than for imagery collected on local and rural roads and, thus, with reduced
quality for crop recognition.

Fourth, considering temporal availability (Section 4.2.4), full representation is lacking as data
for 2018 stops in July—the time when the Dutch Mapillary dataset was received. It is still, however,
clearly visible that the number of images have significantly increased (by a factor of three) between
2016 and 2017. The incomplete 2018 archive prevents us from confirming this trend for 2018, yet it is
encouraging to think that if it does, crowdsourced street-level imagery can become more and more
available for crop monitoring or indeed as a source of in-situ information for land use and land cover,
and other environmental applications.

Finally, considering parcel specific temporal revisits for 2017 (Section 4.2.5), and specifically the
number of parcel observed at least once in 2017 (Figure 11), even if the percentage of parcels observed
ranges 6-15%, it still represent a large amount of parcels being observed every year. This is true
especially for grasslands, winter wheat, maize and potatoes that cover larger areas. When investigating
the number of months for which parcels have observations (Table 4), we observe that, in 2017, the revisit
distribution is highly skewed—the vast majority of parcels for all crops have only a single observation.
These parcels are thus potentially suited for crop type detection only. The least performing crop
in this sense is tulips, with 94% of the parcels visited only once. Parcels with high revisit rates,
i.e., at least monthly in the growing season, would be most suited for monitoring of crop phenology.
This requirement is often not met, except for the main crops (grassland, maize, potatoes and winter
wheat), for which, respectively, 1456, 206, 40 and 24 parcels are observed for five months (Table 4).
Furthermore, smart sampling could be designed to take account and make use of inter-field variability
to create time-series of regional crop phenology.

5.3. Data Harvesting and Picture Interpretation

The crop type identification by visual photo-interpretation enables transforming the street-level
pictures into information. Figure 13 presents an example of the pictures selected following the
geo-spatial analysis to target the best suited pictures. However, many factors including the training
of the interpreter, the image quality, the field of view and the parcel size influence the possibility to
identify the crop. In [6] we showed that a 90% consistency could be reached among three crop type
interpreters, using forward looking street view imagery, though for a limited selection of crop types
(grass, maize, cereals) and late in the growing season. Pre-selecting the best quality imagery for visual
and later automated interpretation tasks can be further enhanced with sub-image analysis such as
perspective segmentation and Mapillary Al tagging of vegetation (and in the future, crops).

For repetitive image collections, additional logical reasoning may be used, i.e., to pre-condition
automatic recognition with the expected sequence of crop phenological states (e.g., flowering in wheat
cannot occur before elongation). Even contextual landscape information may be derived directly from
the imagery. This is illustrated in Figure 14 which shows a seasonal sequence for two fields. On the
left parcel, grass grew (2017.05.06), was harvested (2017.07.23), after which a cover crop was planted
(2017.10.10 and 2017.11.05). On the right parcel, the field was recently sown (2017.05.06), maize grew
to an advanced stage (2017.07.23), was harvested and the field was ploughed again with some stubble
remaining (2017.10.10), and finally the emergence of a winter cereal can be recognized (2017.11.05).
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The leaf on/leaf off condition of the trees in the background provide some useful indication on the
(relative) progress of the season.

Future development of the approach presented here can benefit from existing pheno-cam
research [46,47]. Hufkens et al. [47] used cameras to collect near-surface remote sensing data to
validate satellite-derived land surface phenology products. Recent developments in Deep Learning
should help to automatically extract crop-relevant information from street-level images. Indeed,
a few recent studies have used street level imagery for land cover and land use mapping [48,49].
While some challenges still need to be addressed, the proposed approach opens avenues for other
applications besides crop type identification such as phenology, flowering, impacts of extreme weather
impacts, landscape features, linear elements, hedgerows and monitoring of agricultural activities,
e.g., grassland mowing.

(a) Grassland (b) Maize (c) Potatoes

(d) Winter wheat (e) Sugar beet (f) Onions

(g) Summer barley (h) Flowers

Figure 13. Street-level imagery permit to identify crop label by visual interpretation.
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(a) 2017.05.06 (b) 2017.07.23

(c) 2017.10.10 (d) 2017.11.05

Figure 14. On the left parcel grass was followed by a cover crop, on the right parcel, maize was
followed by a winter cereal. Also note the leaf on/leaf off condition of the trees in the background,
which provides seasonal context. (latitude = 51.9922° N longitude = 5.7421° E).

5.4. Capture Tasks and Image Quality

Image quality relates to different aspects of the capturing process and the image itself.
This determines whether the parcel is going to be visible on the image. Cameras may be out of
focus, or placed improperly resulting in visual distortions that hamper image usability. Environmental
factors such as sun glint or rain conditions also impact image quality. Concerning improperly placed
cameras, the Mapillary tech-team have expressed their eagerness to correct for this by automatic
object detection and soft cropping of, for example, dashboards or other car parts that obstruct camera
view [50]. Reflections off wind shields, caused by sun glint are among the most commonly reported
issues by Mapillary users [51]. Possible proposed solutions to prevent this effect include the use of a
Circular Polarized Filter (CPF), for which both industrial and do-it-yourself solutions exist (e.g., use
of a lens from 3D glasses). Alternatively, to mitigate already caused damage to the image, recent
advances in computer vision allow the exploitation of ghosting cues for layer separation in order
to remove the unwanted reflection [52]. Improved cameras (e.g., two stereoscopic cameras, LiDAR,
additional spectral bands) could bring new opportunities for vegetation monitoring. For example,
Filippa et al. [53] showed that sensors with a Near InfraRed (NIR) spectral channel permit to derive
Normalized Difference Vegetation Index (NDVI) to validate satellite phenology products. In the future,
dedicated crop capture tasks and use of constantly improving techniques to augment image reliability
can improve image quality and expand coverage in rural areas.
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The view of the parcel may also be obstructed. For instance, roads are often surrounded by
lines of trees or hedges, making it necessary to carry out visual inspection or alternatively add an
extra step to the analysis to account for this. Consecutive images taken during the same capture
track can help in selecting the image with the best unobstructed view. Additionally, there may be
infrastructural visual obstructions, such as embankments or dike ring walls. A possible integration
of a high resolution Digital Elevation Model (DEM), such as the Dutch Actueel Hoogtebestand
Nederland (AHN) 2017/2018 [54], or Light Detection And Ranging (LiDAR) data could make for
an automated mechanism to filter out those images. Automatically selecting images a priori best
suited to view a parcel will benefit from further methodological developments (e.g., distance to
roads, exclusion of highway pictures, using metadata such as speed to target only observations from
bicycles and pedestrians).

6. Conclusions

This study demonstrated the potential of crowdsourced street level imagery as a source of
in-situ data for agricultural monitoring. Statistical methods on density and distance were used to
measure the availability of crowdsourced images throughout Europe with respect to the LUCAS
2018 sampling grid in terms of both country-wide scale and land cover. A specific case study was
done in the Netherlands to evaluate the potential of extracting crop-relevant in-situ data from these
images. A detailed methodology to harvest the images potentially best suited to observe a parcel
was developed taking advantage of the parcel geometries and crop declarations in the Dutch LPIS.
The availability of Mapillary crowdsourced street level imagery throughout the EU and the Netherlands
is heterogeneous and challenges to extract useful information from images remain. Nevertheless,
potential benefits of extracting in-situ data relevant for crop identification, crop rotation, and crop
phenology are presented. Realizing this potential would complement and further valorize frequent
and high resolution observations with the Copernicus Sentinels. Harnessing this novel data source
provides a unique opportunity to address pressing information needs in the context of food security,
commodity markets, environmental monitoring, and support to sustainable agricultural policy design
and implementation.
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Appendix A. Aggregation of the Crops

Table Al. Aggregation of the crops in 8 main categories.

Label Dutch Name (gws_gewas) Gewas Code

Grasland, blijvend 265

land Grasland, tijdelijk 266

0 grassland (gra) Grasland, natuurlijk. Hoofdfunctie landbouw. 331
Grasland, natuurlijk. Areaal met een natuurbeheertype ... 336

Graszaad 383

Mais, snij- 259

1 maize (mai) Mais, korrel- 316

Mais, corncob mix 317
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Table Al. Cont.

Label Dutch Name (gws_gewas) Gewas Code
Aardappelen, consumptie 2014
Aardappelen, poot- (NAK) 2015

2 potatoes (pot)

Aardappelen, poot- (ABM) 2016
Aardappelen, zetmeel 2017
winter wheat (wwh)  Tarwe, winter- 233
sugar beet (sbt) Bieten, suiker- 256
onions (oni) Uien, zaai- 262
Uien, poot- en plant- (incl. sjalotten) 1931
summer barley (sba) Gerst, zomer- 236
Tulp, bloembollen en -knollen 1004
7 flower (flo) Lelie, bloembollen en -knollen 1002

Appendix B. Mapillary Metadata Description

Table A2. Description of the available variables on the Mapillary platform.

Variable Full Name Description

corrections to the ca (camera angle) field, introduced either by the
cca corrected camera angle .

users themselves, other users, or Mapillary staff.
altitude GPS altitude The height above sea level, as recorded by the onboard

GPS system.

Seeing as how the vast majority of values for this variable is 1,
orientation camera orientation we assume the following: 1 == landscape orientation,

3 == portrait orientation
cfocal camera focal length The optical distance from the point where light rays converge

camera_mode

camera acquisition mode

The mode of acquiring the images.

calt

camera altitude

Camera altitude in terms of how high the camera is positioned
from the ground in meters.

captured_at #- When the image was captured
created_at -#- When the image was created
user_key #- The unique key identifier for the image/sequence contributor

compass_accuracy

digital compass accuracy

Compass error measured in yaw angles.

sequence

sequence key

The unique key identifier for the sequence of images

gps_accuracy

horizontal GPS accuracy

The offset between the target’s recorded and its actual position.
Usually measured in meters (standard GPS accuracy is 3.5-5.0 m.)

width fixed camera width The x dimension of the image—how many pixels it is wide.
fmm35 focal length 35 mm Cameras with a focal length of 35 mm.

model camera model #-

make made from The company, producing the cameras

ca camera angle The looking direction (0-360 degrees)

key

#-

The unique key identifier for the image
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Table A2. Cont.

Variable Full Name Description
height fixed camera height The y dimension of the image—how many pixels it is tall.
o » Some lat/lon coordinates that are really close to the
) image coordinates.
I » Some lat/lon coordinates that are really close to the
) image coordinates.
file_size -#- Size of the file

. s . Thy i f th lication the i
captured_with  application version e version of the application the images/sequence was

captured with
Whether the image was captured in panorama mode or not,
pano panorama mode along with some specifications about this
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