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Abstract: Agricultural land use is influenced in different ways by local factors such as soil conditions,
water supply, and socioeconomic structure. We investigated at regional and field scale how strong
the relationship of arable crop patterns and specific local site conditions is. At field scale, a logistic
regression analysis for the main crops and selected site variables detected, for each of the analyzed
crops, its own specific character of crop–site relationship. Some crops have diverging site relations such
as maize and wheat, while other crops show similar probabilities under comparable site conditions,
e.g., oilseed rape and winter barley. At the regional scale, the spatial comparison of clustered variables
and clustered crop pattern showed a slightly stronger relationship of crop combination and specific
combinations of site variables compared to the view of the single crop–site relationship.

Keywords: arable land use pattern; maize; k-means; cluster analysis; Land Parcel Identification
System; crop rotation

1. Introduction

In the last several decades, European arable farming has been characterized by modifications of
cropping patterns and crop choice driven by enormous progress in plant breeding, plant protection,
fertilization, and drainage techniques [1,2]. Additionally, market prices, farm subsidies, and political
incentives such as support of bioenergy crops have influenced crop choice [3–5]. Recent studies have
shown that a few cash crops are preferentially grown both in time and space while other crops are
neglected [6,7]. In Northern Germany, maize and winter wheat are cropped on more than 50% of the
arable area, and in many regions only one to three relevant crops are grown [7]. On the other hand,
a decreasing importance of regional site conditions such as soil conditions, water supply, and climate
for choosing a crop for a given site can be observed [8,9]. Thus, the relationship between site conditions
and farmers crop choice (hereafter referred to as the crop–site relationship) seems to become weaker in
modern farming.

One initial objective of the Common Agricultural Policy (CAP) is to increase productivity. This
policy, therefore, has been a major driver of land use change for many decades [10]. The reform
of 2003 introduced new rules of payments to framers. Payments were decoupled from production
to Single Farm Payment. At the same time, intervention prices for specific crops were maintained.
National schemes on the promotion of renewable energy crops supported the intensive cultivation of
crops for biomass production [11]. All this resulted in a continuation of intensive arable production
in many historically intensively managed regions [12–14]. The latest reform of the CAP in 2013
implemented political instruments that are commonly named with the term “greening” [15] such as
crop diversification. However, there is lack of knowledge ensuring that farmers have enough options to
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diversify crop rotations. In a recent approach, it was shown on the basis of spatial data that some crop
rotation patterns refer to site conditions, whereas others explicitly do not [16]. To our knowledge, there
is no spatial explicit information on the extent to which the crop–site relationship still exists in recent
landscapes. We present here a method to detect the relationship of crop cultivation and site conditions
to improve the understanding and assessment of ecosystem services in the agricultural system.

With the presented methods, a binary logistic regression and a k-means clustering, we analyzed
crop patterns in the landscape to understand to what extent crop choice still depends on site conditions.
We first explored how intensive the individual relationship between the single crop and the single site
variable is. Second, we localized regions of relationship between the clustered sets of site variables
and the clustered crop patterns. Our study combines site variables and crop data of the year 2011 for
the German federal state Niedersachsen (Lower Saxony), which includes an exceptional variety of
agricultural systems. These characteristics made the region a good example for other arable regions
and for the estimation of future trends in agricultural land use.

2. Materials and Methods

2.1. Research Area

Lower Saxony is characterized by various site conditions and a broad spectrum of agricultural
land uses. The 2.6 million ha of farmland are cultivated by 41,730 farms with an average farm size of
61.8 ha [17]. During the last decade, maize (Zea mays L.) became the most dominant crop followed by
winter wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) (Figure 1). The northwestern
part is dominated by marshy land with maritime climate, a high proportion of permanent grassland
and extensive cattle breeding in the north and livestock breeding in the west. The cropping proportion
of maize on arable land is above average for the Lower Saxonian acreage in this region. In the eastern
part, sandy moraine soils with mixed farms are dominating. Arable farming characterizes the middle
and south of Lower Saxony established on loessial soils in a hilly terrain influenced by subcontinental
climate. The preferred crops under these conditions are sugar beet (Beta vulgaris subsp. vulgaris),
oilseed rape, and winter wheat.
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Figure 1. Natural area classification of the German federal state of Niedersachsen (Lower Saxony NUTS
1 region DE9 (European Nomenclature of Territorial Units for Statistics)) and the acreage of the ten main
crops or crop groups in 2011, forage includes arable and temporary grassland and fodder legumes [17,18].
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2.2. Data Characteristics and Processing

Our analysis followed two complementary approaches to detect the characteristics and spatial
distribution of specific crop–site relationship. In a first step, a logistic regression analysis was processed
that combines crop information at the field scale for the ten most commonly used crops in Lower Saxony
with site variables such as soil, precipitation, and livestock density to characterize the relationship
between these and the crops at the field scale. This result is compared with the result from a k-means
clustering process to localize spatial overlays of clustered crops and clustered site variables at the
regional scale.

For the crop data at the field scale, the Land Parcel Identification System (LPIS) was used, which
is a yearly updated database that supports the administration of direct payments for European farmers
as part of the Integrated and Control System (IACS). It was established in all member states of the
European Union in 1992 and developed concurrently with political reform measures [19]. In Germany,
the data are managed by the German Federal States’ institutions. The access is limited due to privacy
protection reasons, and special permission is required for scientific use. For this study, information
about the main agricultural land use type in 2011, the field size, and individual field identification
numbers were provided for the state Lower Saxony. The dataset was attributed to a GIS-geometry that
comprises the boundaries for all agricultural parcels (about 990,000 records in total) [20]. Due to a small
amount of imprecise field identification, e.g., the assignment of one ID to more than one field, the IACS
dataset had to be debugged for uncertainties. For the analysis, only arable fields were included. Hence,
with a loss of 15% due to imprecise field identification and intersection loss, the basic dataset of the
analysis consists of 444,009 agricultural parcels.

To analyze the crop–site relationship, it was necessary to find spatial variables that represent the
site conditions of the investigated area in a suitable resolution and area-wide consistent availability.
Official data from well-established public sources satisfied these requirements (Table 1). The variables
were selected with the aim to represent the environmental site conditions in Lower Saxony. This
northwestern part of Germany is characterized by high local densities of livestock husbandry and
grassland farming ([21], Figure 2). Therefore, variables concerning animal production were included.

Table 1. Site variables with their classes, units, and source scale. Classification of the metric variables
was implemented corresponding to the geometrical intervals.

Predictor Variable Classes Unit Source

Arable farming potential 1–7 Classes: ‘extremely low’ to
‘extremely high’

[22]
1:50,000

Soil texture
(dominant surface
textural class of the soil)

1 Peat soil [23]
2 Coarse (>65% sand) 1:1,000,000
3 Medium (<65% sand)
4 Medium fine (<15% sand)
5 Fine (>35% clay)

Slope
(dominant slope class)

1 Level (<8%) [23]
2 Sloping (8–15%) 1:1,000,000
3 Moderately steep (>15%)

Multi-annual
precipitation sum
(1981–2010)

1 560–676

mm*y−1

[24]
2 677–746 0.96 × 0.96 km
3 747–806
4 807–878
5 879–1202

Relative biotope density

1 0.00–0.90 Observed
Density/Potential
Density

[25]
2 0.91–1.10 LAU-2
3 1.11–2.00
4 2.01–18.76
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Table 1. Cont.

Predictor Variable Classes Unit Source

Grassland proportion

1 0.00–0.02

ha/ha agric. area

Based on IACS-data 2011
2 0.03–0.06 1 × 1 km
3 0.07–0.17
4 0.18–0.44
5 0.45–1.00

Cattle density

1 0.00–0.10

Livestock unit/ha
(agricultural area)

[26]
2 0.11–0.29 LAU-2
3 0.30–0.65
4 0.66–1.32
5 1.33–2.93

Pig/poultry density

1 0.00–0.02

Livestock unit/ha
(agricultural area)

[26]
2 0.03–0.09 LAU-2
3 0.10–0.30
4 0.31–0.99
5 1.00–3.21

Average farm size

1 0–40

ha (agricultural area)

[26]
2 41–64 LAU-2
3 65–104
4 105–172
5 172–311

The data for cattle density, pig, and poultry density, and the average farm size were extracted from
agricultural census data at LAU-2 (Local Administrative Unit) scale (Figure 2). The relative biotope
index was developed by the Julius Kühn-Institute, the German Federal Research Centre for Cultivated
Plants, to estimate the biotope features in agricultural landscapes. The value for the relative biotope
density was calculated using the locally observed density of linear biotope habitats (field margins
and hedgerows) and patch biotopes (small woods and grassland patches) per estimated minimum
biotope density at LAU-2 scale. The latter was extrapolated from the intensity of plant protection in the
corresponding landscape type—the higher the intensity of plant protection applications is, the higher
the need for biotopes is [27]. The proportion of grassland refers to the area of grassland per arable area
in a 1 × 1 km cell of a raster. The multi-annual precipitation sum (1981–2010, [24]) is available in a
0.96 × 0.96 km raster format. The temperature was not regarded due to the low variation of the thermal
regime in the study region. For the soil texture and slope information, the data of the European Soil
Database were used which are available in so-called Soil Typological Units [23]. The arable farming
potential was derived by the Lower Saxonian State Office for Mining, Energy and Geology (LBEG)
based on soil and climate parameters (e.g., soil texture, bulk density, humus content, soil structure,
and water logging level) [28]. The higher the value of the arable farming potential is, the higher the
natural locally potential for biomass production of the soil is. For the regression analysis, all metric
variables were transformed from metric values into interval values to facilitate the comparison of the
variables’ potential (Table 1). The classification of the intervals was implemented by a geometrical
interval algorithm that minimizes the sum of the squares of the number of elements per class to ensure
approximately the same number of values in each range [29].

Due to the differences in format and spatial scales of the used datasets, they were processed in
relation to a reference scale. For the logistic regression the reference scale was the field scale. For the
cluster process the information content of the variable polygons was attributed to a 1 × 1 km grid
according to their spatial location and proportion. Grid cells with less than 10% of arable area within
the grid cell area, i.e., less than 10 ha of arable area, were not included in the analysis. The merging of
the attributed information was performed with the Spatial Join tool in ArcGIS®. For the small patched
polygons of the arable farming potential, the mean of all soil classes per quadrant was attributed.
Furthermore, the grid surface permits the calculation of the crop area proportion (crop area per arable



Land 2019, 8, 65 5 of 14

area in a 1 × 1 km grid cell) as metric variables. The crop area per grid cell is the sum of all fields that
had their centroid within one grid cell.Land 2019, 8, x FOR PEER REVIEW 5 of 15 
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2.3. Binary Logistic Regression (Field Scale)

Logistic regression is used instead of linear regression when the observed or measured response
of interest is not continuous but binary to predict the likelihood of an event over the likelihood of
nonoccurrence [30]. The cultivation of a crop on a specific field is such a binary event. Its likelihood
under the occurrence of a specific site variable indicates the strength of its relationships to the cultivation
site. If the site variable, e.g., cattle density, changes by one unit while all other variables stay stable,
the likelihood of crop occurrence, e.g., maize, is increased or decreased by the resulting value of the
regression equation. This value is larger or smaller than zero and can be larger than one. The two
variables, arable farming potential and soil texture, have an ordinal scale and not a metric scale like all
the other variables. Due to this, all characteristics of these two variables were analyzed separately
(Table 3). The first characteristic, peat soil for soil texture and very low arable farming potential, had the
role of the reference value, the same role that zero had for the other variables.

The nine main crops of Lower Saxony were chosen for analysis plus one group containing all
spring cereals. For each of the ten crop categories, a binomial regression equation with a binary
response variable, y ∈ {0, 1}, was defined to determine the probability of occurrence for each crop
separately [31,32]. The regression analysis was performed using the software CRAN-R version 3.1.0 [33].
It uses a logarithmic function calculating the logit (πi) for the ratio of the probability (Pij) that a field
(i) is cultivated with a specific crop (j) or not (1 − Pij). Written in a logit equation as suggested by
Fahrmeir et al. [34],

πi = P(yi = 1) =
exp(ηi)

1 + exp(ηi)
(1)
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contains the linear predictor
ηi = β0 + β1xi1 + . . .+ βkxik. (2)

The predictor (πi) represents the logarithmic odds (log odds), while the coefficient (βk) for this
variable (xik) is the expected change in these log odds. While holding the corresponding predictor
variables constant, a one unit increase of the predictor variable causes a change in the probability
corresponding to the coefficient value for having the subject crop [29,35].

The likelihood ratio test with a null model for each crop resulted in a rejection of the null hypothesis
for all crops. That means that the observed crop occurrence is more likely under the presented model
than under the null model.

In contrast to the other variables, arable farming potential and soil texture are handled as factor
variables. The coefficient of the first category acts as a reference category with a value of zero.

We inspected the correlation effects between the site variables to identify the rate of correlation
between the variables, e.g., between cattle density and biotope density and between soil texture and
arable farming potential (Table 2). These effects are immanent for variables that characterize ecological
and spatial phenomena [36]. A high correlation of the variables is an expected effect and is therefore
not considered in the equation. This decision is forced by the objective of the regression analysis, which
is not used as a predicting model but as a method to characterize the relationship between the crops
and the site conditions.

Table 2. Correlation matrix of the site variables used in the logistic regression model.

A. F. Pot. 1 Soil
Texture Slope Precipit. Biotope I 2 Farm

Size CattleD 3 PigPoulD 4 GrassL 5

A. F. Pot. 1
Soil texture 0.617 1

Slope 0.145 0.267 1
Precipit. −0.125 −0.093 0.117 1
Biotope I −0.503 −0.548 −0.227 0.350 1
Farm Size 0.162 0.161 0.084 −0.421 −0.367 1
CattleD −0.439 −0.437 −0.190 0.501 0.665 −0.435 1

PigPoulD −0.207 −0.248 −0.161 0.248 0.227 −0.358 0.221 1
GrassL −0.242 −0.144 0.006 0.235 0.332 −0.154 0.388 −0.132 1

1 arable farming potential; 2 biotope index; 3 cattle density; 4 pig/poultry density; 5 grassland proportion.

The values of the correlation matrix indicate already the joint appearance of single variables
(Table 2). The interaction of site variables creates regional patterns that are investigated in the next
section employing a cluster analysis.

2.4. Cluster Analysis (Regional Scale)

A non-hierarchical k-means clustering with the Hartigan & Wong algorithm [37] was used to
detect regional patterns of similarities for the site variables and for crops [38,39]. This was realized
with the software CRAN-R version 3.1.0 [33,40]. The k-means clustering is a common method for
identifying spatial units at the landscape scale [41–43]. It was used in this paper to identify spatial
units with consistent properties. The crop clusters and the site clusters were than compared in their
spatial concordance.

The optimal number of classes, k, was found by comparing results of multiple runs with different
number of classes and visualizing the grade of clustering in a map [44]. The uncertainty of the initial
random partition was adjusted by choosing the most frequent version of partition in ten runs. In a
previous step, a z-transformation of all variable values standardized the very different scales to improve
the comparability of the results. The cluster analysis generated five site clusters (S1, S2, S3, S4, and S5)
and five crop clusters (C1, C2, C3, C4, and C5).
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3. Results

3.1. Site Dependency at Field Scale

The intensity of the crop–site relationship is reflected in the coefficient value of the logistic
regression analysis (Table 3). In general, the probability of crop appearance in the dataset depends
more strongly on soil variables than on other site variables. Arable farming potential and soil texture
show a high likelihood of determining the occurrence or non-occurrence of a crop but vary in their
direction of relationship.

There are linear relations between crop and site variables in different directions, e.g., the increase
in farming potential increases the probability of wheat but decreases the probability of forage cropping.
Oilseed rape is an example of non-linear relations. It was cropped on fields with a middle and high
arable farming potential with a much higher likelihood than on fields with an extremely high farming
potential. The log odd results of sugar beet prove that soil variables can differ in their direction of
influence and explain different aspects of the crop-soil relationship. The ambivalent relationship of
sugar beet cropping and soil texture is determined by historical production quotas rather than by
soil conditions. The variables farm size, pig/poultry density, grassland density, and biotope index
have in general a low influence on probability. Each of the analyzed crops has its own specific
character of site dependencies. Some crops such as maize and wheat have diverging site relations,
while other crops, e.g., oilseed rape and winter barley, show similar probabilities under comparable
site conditions. This result will be examined further in the next section by identifying regions with
convergent characteristics.

Table 3. The log odds values describe the likelihood of crop occurrence when the variable value
changes by one unit, while all other variable stay stable. The positive/negative sign shows the direction
of relationship; ref. is the reference category of the ordinal variables.

Variables SBeet WO Rape Triticale Potato Rye WBarley WWheat SCereal Forage Maize

Arab. Farm. Pot.

Extremely Low ref. ref. ref. ref. ref. ref. ref. ref. ref. ref.
Very Low −0.082 −0.142 −0.141 0.419 −0.359 −0.143 0.140 0.112 0.086 −0.097

Low 0.330 0.040 0.081 0.613 0.430 0.364 −0.116 0.133 −0.311 −0.187
Middle 0.729 0.484 −0.090 0.489 0.172 0.665 0.468 0.112 −0.564 −0.408
High 0.611 0.480 −0.508 −0.285 −0.530 0.547 0.831 0.283 −0.397 −0.726

Very High 1.025 0.440 −0.638 −0.014 −0.831 0.585 0.775 −0.122 −0.676 −0.693
Extremely High 1.136 −0.457 −1.198 −0.388 −1.796 0.354 0.763 −0.443 −1.000 −0.710

Soil Texture

Peat soil ref. ref. ref. ref. ref. ref. ref. ref. ref. ref.
Coarse 0.727 0.445 0.137 −0.106 0.498 0.493 0.120 0.007 −0.015 −0.203

Medium 0.285 0.960 −0.075 −0.659 −0.160 0.511 1.077 0.026 0.023 −0.348
Medium Fine 0.480 1.043 −0.600 −1.312 −1.019 0.651 1.186 −0.837 −0.181 −0.549

Fine 0.225 0.861 −0.117 −2.576 −0.093 0.454 1.170 −0.111 −0.158 −0.114

Slope −0.040 0.230 −0.146 −0.513 −0.269 0.254 0.159 −0.330 0.130 −0.493
Precipitation −0.198 0.019 −0.213 −0.113 −0.285 0.018 0.021 0.092 0.078 0.093

Biotope Index −0.278 −0.165 0.036 −0.003 0.205 −0.047 −0.240 −0.067 −0.037 0.173
Farm size 0.067 −0.026 −0.213 0.094 0.141 −0.304 −0.055 −0.060 −0.031 0.043

Cattle Density −0.498 −0.323 −0.201 −0.145 0.391 −0.176 −0.034 −0.145 0.091 −0.176
Pig/Poultry Density −0.215 0.125 −0.033 −0.209 0.141 0.167 0.202 −0.209 −0.008 0.167

Grassland/a. area −0.192 −0.230 0.056 0.084 0.058 −0.008 0.002 0.084 0.221 −0.008

3.2. Statistical Clustering and Spatial Projection

The nature of the relationship between site variables and the grown crop is examined in the
regression analysis. With two statistical clustering processes—one for the site variables and one for the
crop data—the characterization of the crop–site relationship will be transferred into a spatial projection
to visualize overlapping spatial patterns. The k-means clustering of the site variables formed five
continuous regions, which are characterized by their mean value in the defined clusters (Table 4).
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Table 4. Mean values per cluster of the k-means clustering for site variables (S1, S2, S3, S4,
and S5—corresponding map in Figure 3a). Values are z-standardized and represent how strong
the standard deviation differs from the mean value (µ = 0.000). A small value shows no significant
difference from the mean value. The positive and negative values represent the direction of deviation
from the mean value in that cluster.

S1 S2 S3 S4 S5 Mean SD Unit

A. F. Pot. −0.520 −0.290 −0.254 0.530 1.648 3.63 1.14 middle
Soil texture −0.545 −0.390 −0.453 1.017 1.298 2.52 0.94 medium

Slope −0.278 −0.279 −0.269 3.415 −0.279 1.09 0.39 (<8%)
Precipit. 0.422 −0.638 0.276 0.414 −0.246 774.42 75.96 mm
Biotope I 1.030 −0.363 −0.159 −0.607 −0.703 1.68 1.19 oD/pD
Farm Size −0.415 0.321 −0.612 0.205 0.318 69.59 29.77 ha
CattleD 1.362 −0.511 0.122 −0.680 −0.665 0.64 0.53 LU/ha Agric. A.

PigPoulD −0.285 −0.244 1.861 −0.423 −0.306 0.38 0.54 LU/ha Agric. A.
GrassL 0.408 −0.356 −0.564 −0.314 −0.504 0.21 0.22 ha/ha Agric. A.

S1 is characterized by a low farming potential and sandy soils, which correlate with a higher
than average cattle density, biotope density, and grassland proportion. A quite different pattern of site
conditions and crops characterizes S2: less humid climate and larger farm sizes. S3 has strong relations
to farms that are smaller than average, with a specialization in pig and poultry farming. S4 and S5
have many similar characteristics but are distinguishable by the steeper slope and higher precipitation
of the fifth cluster. The k-means clustering of the regional crop area proportion also resulted in five
clusters (C1, C2, C3, C4, and C5). Each of these clusters has a characteristic composition of dominant
crops (Table 5): The regional pattern of site conditions in C1 is related to a much higher than average
maize proportion of the crop clustering process. C2 is the only cluster that is not dominated by maize
or wheat but by a mixture of other crops, mainly rye and potato. C3 is characterized by a mixture of
maize, triticale, and forage cropping. A composition of oilseed rape, winter wheat, and winter barley
is the distinct feature of C4. The most obvious characteristic of C5 is a winter wheat proportion that is
three times higher than the mean in Lower Saxony.

The transfer in a spatial projection of the clustering results reveals relationships between the site
variables and the crop clustering on the one hand and distinctive differences on the other (Figure 3).
Significant congruencies can be proved for S2 and C2, the potato–rye cluster. The second and third
highest proportions of quadrants with spatial congruence were observed for S5 with C5 and for S1
with C1. The other two crop clusters have less than 50% spatial congruence with the site clusters.

Table 5. Mean values of the k-means clustering of crop data (corresponding map in Figure 3b).
The values represent mean ratios of the crop area per arable area of the related quadrant. Values in
bold are significantly higher than the mean value of the certain crop and are considered characteristic
crops for the cluster type.

C1 C2 C3 C4 C5 Mean SD Unit

SBeet 0.002 0.052 0.013 0.098 0.090 0.05 0.11 ha/ha Arab. A.
Potato 0.015 0.184 0.060 0.026 0.015 0.06 0.13 ha/ha Arab. A.

WO Rape 0.005 0.034 0.028 0.222 0.064 0.06 0.13 ha/ha Arab. A.
SCereal 0.018 0.094 0.040 0.030 0.021 0.04 0.10 ha/ha Arab. A.
Maize 0.816 0.120 0.463 0.092 0.070 0.34 0.31 ha/ha Arab. A.

Triticale 0.018 0.066 0.062 0.032 0.008 0.04 0.09 ha/ha Arab. A.
Rye 0.033 0.218 0.073 0.026 0.009 0.07 0.14 ha/ha Arab. A.

Forage 0.042 0.062 0.090 0.034 0.024 0.05 0.11 ha/ha Arab. A.
WWheat 0.021 0.044 0.074 0.228 0.621 0.21 0.25 ha/ha Arab. A.
WBarley 0.020 0.055 0.072 0.177 0.054 0.07 0.12 ha/ha Arab. A.

All others 0.008 0.071 0.025 0.035 0.022 0.03 0.08 ha/ha Arab. A.
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4. Discussion

4.1. General Discussion

Agricultural crops do not grow randomly at a specific site. Their spatial occurrence reflects the
sum of farmers’ decisions as a product of site conditions and the political and economic framework.
In recent decades, farmers, breeders, and the plant protection industry have focused on a few profitable
crops. This was also a result of the market price development and the European agricultural policy
and culture of yield-based subsidies. However, sustainable cropping systems rely on diverse cropping
systems, among other factors [45,46]. In our study, we detected the strongest relationship of site
variables, namely soil texture and arable farming potential, with crops at the most productive areas and
the least productive areas. Crops like sugar beet, oilseed rape, and winter wheat are characterized by a
high probability to be cropped on sites with a high arable farming potential. The spatial congruence
of site clusters (e.g., S5) with crop clusters (e.g., C5) confirmed the regression result referring to the
relationship of very high farming potential and the combined cropping of sugar beet and winter
wheat. This was supplemented reversely by the significant absence of single crops on soils with
high farming potential, such as rye and forage. Zimmermann and Britz concluded from their study
of the use of agri-environmental measures by farmers in the EU that those measures were most
likely found on less productive sites during 2000–2009 [47]. The recent CAP 2014–2020 includes
agri-environmental measures such as crop diversification as obligatory requirements for initial pillar
payments. Recent studies concerning the impact assessment of the CAP 2014–2020 show contrary
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results: a limited environmental impact of the new greening rules [48] and strong effects on the
farmland use in high-intensive agricultural regions [49].

The spring cereals and forage crops are characterized by a weak crop–site relationship as well as
maize and winter wheat, which are the main arable crops, with acreage of 32% and 21% of the arable
area, respectively [17]. The economical preference, the high tolerance for the combination with other
crops, as well as the tolerance to short intervals in the rotation result in a dense cropping of maize and
winter wheat in space and time [7,16]. Nevertheless, each of these two crops dominate regions that
are characterized by contrasting conditions concerning the soil texture and arable farming potential,
the slope, as well as the grassland and livestock density.

The relationship of maize cropping and specific combinations of site conditions is strongly
determined by the cultivation practice for this crop. Rotations with maize are characterized by very
dense cropping up to permanent cropping on the one hand and maize as one part of very diverse
rotations on the other hand [16]. These rotation phenomena are common in regions with different site
characteristics and geography. This is further confirmed by the result that the spatial congruency of site
clusters and the crop cluster with dense maize cultivation (Figure 3, C1) was clearly distinguishable
from their relationship to the cluster of maize cultivation in combination with other crops (C3).
Whether maize cropping is allocated to C1 or C3 apparently has consequences in terms of ecosystem
effects. While the spatially dense maize cultivation can have negative impacts on ecosystem services,
the maize cultivation within the more diverse system of C3 can have a positive impact [50]. As the
identified areas with high maize acreage are only partly explainable by livestock farming, they may
correspond with other factors such as biogas production that are not represented by the explanatory
data. The area cultivated with maize increased in Northwestern Germany from 2005 to 2011 by
67% [17]. The widespread cultivation of maize is an effect of the expansion of biogas production after
the implementation of the national renewable energy law [11,26].

4.2. Reflections on the Methods Used

For a realistic analysis of regional crop–site relationships, the use of crop information at field
scale is essential [51,52]. The yearly updated database of the LPIS is a valuable data source for
agronomical and environmental analysis. The LPIS data have a high spatial resolution that allows for
a precise intersection with other spatial information and yields precise answers to field scale questions.
Area-wide crop information on field scale could also be useful for the validation of crop growth models
especially for areas with a large diversity of cropping systems [53,54] and for modeling procedures
when information concerning cropping practices is needed [52,55,56]. The scientific use of LPIS data,
e.g., for the prediction of the crop yield or for projecting changes in agricultural land use practice,
is increasingly becoming important [55,57–60].

Two statistical methods were applied for the analysis of the crop–site relationship: logistic
regression analysis and k-means clustering, visualized by a map projection. Both approaches concern
different levels and aspects of the relationship. The level of spatial similarities between the crop clusters
and the site clusters supplemented the results of the logistic regression analysis and elucidated in parts
the fuzzy picture of direct relationships. This underpins the need to include cropping patterns instead
of single crop information in modeling approaches.

Not all the chosen variables have the expected potential to explain crop–site dependencies. The low
influence of farm size, pig/poultry density, grassland density, and biotope index on the probability of
crop cultivation in comparison with the soil variables can be explained by their low tendency to form
spatial patterns or clusters in Lower Saxony, which is reflected in the high standard deviation values.
In our analysis, we focused on environmental variables instead of economic variables because most of
the studies concerning the cropping-plan decision making process of farmers consider economical and
sociological drivers [3,61]. However, we could show the still high potential of soil variables as drivers
for decision making, which is also confirmed by a study of Peltonen-Sainio et al. [62]. This study
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exposed also field size as a potent driver variable, which was not concerned in our study, because it is
indirectly included in the biotope index.

The crop clustering process resulted in a much more scattered picture than the site cluster
projection. The latter is based on variables with different spatial resolution, ranging from the smaller
scaled LAU-2 data to 1 km2 resolved raster data that gave a different degree of precision. However,
the reason for the different degree of spatial clustering is not only caused by the spatial resolution of
the data sources. While the site clusters are products of natural conditions, the crop clusters are a result
of both site conditions and socio-economic factors, e.g., market prices and subsidies. This supports the
flexibility of the farmers in crop choice and therefore the fragmentation of crop clusters, especially
in the center of Lower Saxony (#3, 5, 6 referring to Figure 1), with medium arable farming potential,
sandy soils, and a higher variation of farm types in this area than in other regions.

5. Conclusions

The relationship of site conditions and crop cultivation at the field scale is generally weak but
detectible for some crops. One reason is that modern cropping practice enables the farmer to override
the relationship of crop and site to a large extent. However, this does not apply to all crop–site
relationships. In arable regions with productive soils, the crop–site relationship is stronger. This
comes along with specialization of the farming systems to a few cash crops, mainly the most profitable
crops like sugar beet and winter wheat. On the other hand, a stronger relationship of crop and site
at the regional scale was also detected for clusters with less productive soils and the crop cluster
with dominant maize cultivation. Economic reasons and policy-based incentives, such as support for
bioenergy crops may have enforced this allocation. Farming practice and agricultural policy must face
the chances but also the risks of this development.

In regions with less fertile soils and mixed farming structure, farmers’ cultivation practices are
much more diverse. These site clusters are not dominated by one crop cluster but by multiple crop
clusters with a number of dominating crops. The likelihood of crop rotation diversification is higher in
these multiform regions, but in rather monotonous regions diversification efforts are crucial.
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