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Abstract: This paper estimates global logistic regression and logistic geographically weighted
regression (GWR) models of urban growth in the adjacent border cities of Laredo, Texas in the
United States and Nuevo Laredo, Tamaulipas in Mexico, for two time periods from 1985 to 2014.
Historical land use and land cover patterns were monitored through Landsat imagery from the
United States Geological Survey to identify instances of urban growth through land type change.
Data on socioeconomic variables related to urban growth were collected from various sources
and used as independent variables. In both time periods, the logistic GWR was proven to be a
complementary model for the global logistic regression to explore the urban growth effect. In addition,
GWR outperformed the global logistic regression model with respect to goodness of fit. These results
suggest that local models are complementary to global models to empirically analyze the determinants
of urban growth in study areas that contain political borders, presumably because the relationships
between socioeconomic factors and urban growth are characterized by spatial heterogeneity in
such areas. The spatial variable of the relationship between urban growth and the neighborhood
interactions and proximity effect present the idea of complexity and interconnections between the
land use change and associated factors.
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1. Introduction

Interest in spatial patterns and spatially based drivers of urban growth has been increasing
steadily in the literature that engages with the geographical analysis of land use and land cover change
(e.g., [1–3]). Due to urgent social and environmental issues resulting from rapid urbanization including
overcrowding [4], urban heat island effects [5], air pollution [6], and ecosystem degradation [7],
ample scholarly research has sought to understand the driving factors of urban growth for cities all
over the world. Contemporary studies approach this topic from a number of methodological angles,
most of which fall into one or both of two broad categories: (1) urban simulation models (e.g., [8–13])
and (2) empirical models (e.g., [14]).

Urban simulation models have largely been developed to study the influences of neighborhood
and infrastructure accessibility on land use change [12,15,16]. Particularly, cellular automata (CA)
models are appealing in the field of urban geography to explore how neighborhood interactions affect
land cover patterns. From a technical standpoint, the behavior of urban dynamic systems based on
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CA is completely specified with a local relation. Furthermore, these models can be integrated with
raster datasets available from remote sensing, and, for this and other reasons, CA modeling has a
natural affinity with geographic information systems (GIS). As a result, CA modeling is regularly
adopted by geographers to simulate urban processes and model spatial dynamics in urban landscape
features [16–18]. However, due to the extreme complexity of the real urban system, very few urban
simulation models are operational to identify certain factors leading the urban growth and are used as
productive tools to support regional planning practice.

Aside from simulation models, empirical estimation models still play an indispensable and
appealing role in quantitatively analyzing factors that contribute to urbanization, particularly
socioeconomic factors that tend to influence land type changes at different scales of analysis. Within this
literature, regression-based methods are often used to explore and describe the empirical relationships
that exist between a dependent variable (e.g., land type change) and a variety of independent variables,
in order to characterize underlying factors of urban growth. Popular regression model specifications in
such studies include the spatial general linear model (GLM) [17], geographically weighted regression
(GWR) [13,18], and multi-level modeling techniques [19]. Compared to urban simulation models,
regression models tend to be less computationally intensive, and their outputs are relatively easy to
interpret, even by non-specialists [20,21]. Thus, whereas simulation-based models are rapidly increasing
in the land change science literature, empirical models remain effective tools for characterizing the
changing spatial patterns of urban development. This notion is particularly relevant when combined
with the earlier observation that, overall, urban simulation models tend to pay relatively less attention
to socioeconomic characteristics [16].

Nevertheless, while empirical modeling therefore has utility for exploring socioeconomic factors
that correlate with land type change in urbanizing areas, the preponderance of empirical analyses of
urban growth are based on single cities with similar economic backgrounds and/or that are situated in
singular political contexts [13,21–23]. For this reason, a region like the U.S.–Mexico border offers a
relatively novel arena in which to study spatial patterns of urbanization and land cover change. Indeed,
while the U.S. and Mexico have a history of economic cooperation, their relations are complicated
by socioeconomic inequality and cultural differences. Hence, if border cities (e.g., Laredo, Texas and
Nuevo Laredo, Tamaulipas), which are close together in space and thus share many physical attributes,
experience urbanization in different ways, then it is reasonable to conclude that the border matters.
In other words, although it is not possible to consistently measure many unobservable institutional
factors across national borders, several surrogate variables, such as industrial development patterns
and construction of transportation infrastructure, can be easily quantified on both sides of a border.

From this perspective, GWR appears to be a valuable method for studying the determinants
of urban growth in study areas characterized by international and political borders. Compared to
a conventional (global) regression model, GWR is able to identify spatial variation in relationships
between dependent and independent variables, such as between land cover change and the associated
driving factors. Moreover, research has shown that GWR can outperform global regression models
with respect to residual spatial autocorrelation and model goodness of fit [13].

To see if these expectations are indeed borne out in a selected border study area, this paper
examines two specific questions for the U.S.–Mexico border cities of Laredo and Nuevo Laredo:
(1) What variables were most significantly related to urban growth/land cover change between 1985
and 2014? (2) Do GWR models outperform global regression models of urban land use change
in understanding the relationships between urban growth and these explanatory variables in our
international study area? If the relationships between these measurable factors and land cover change
manifest in different ways on opposite sides of an international border, then we should be able to infer
that socioeconomic and institutional variables play a prominent role in patterns of urban growth.
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2. Study Area and Data Collection

Laredo and Nuevo Laredo are bi-national metropolitan cities along the U.S.–Mexico border
(Figure 1). The two cities are separated by the Rio Grande (i.e., Rio Bravo) River but are connected by
four international bridges.
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Figure 1. The Laredo–Nuevo Laredo study area and corresponding land cover in 1985, 2000, and 2014.

Landsat 5 Thematic Mapper (TM) imagery acquired in 1985 and 2000 and Landsat 8 Operational
Land Imager (OLI) imagery acquired in 2014 from the United States Geological Survey (USGS)
were downloaded for classification. Using a supervised maximum likelihood classifier in ERDAS
Imagine, four categories of land cover were designated: built-up, vegetation, water, and barren land.
Post-classification accuracy assessments resulted in a minimum 85 percent classification accuracy for
each of the three dates. We then extracted only the built-up (urban) pixels which remained stable
between classification dates and pixels that changed from non-urban land to urban land between
1985–2000 and 2000–2014, respectively, to perform the logistic regression analysis (Figure 2).
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Figure 2. Spatial and temporal patterns of urban growth during 1985–2000 and 2000–2014,
Laredo–Nuevo Laredo.

Based on expert knowledge from widely used urban growth models and some preliminary
research on the U.S.–Mexico border, we made a selection of explanatory variables [19–21] for use in
two models that correspond to two time periods (1985–2000 and 2000–2014). Common factors related
to environmental and socioeconomic development were selected and generated to build the candidate
explanatory variables. Considering the variable types and their relationship with the dependent
variable, the explanatory variables were categorized into three groups: site specific variables, proximity
variables, and density variables.

The first type of independent variable comprises site specific variables. Geophysical and
topographic conditions affect urban growth in terms of accessibility and the cost of development
and have been widely identified as strong factors for urban expansion [7,16]. For our study areas,
positive effects of elevation and negative effects of slope have been documented [22]. We extracted the
elevation and slope values for each pixel based on a corresponding 30 m digital elevation model (DEM)
obtained from the USGS. We treated the geophysical and topographic conditions as constant variables
for our study period. Population density is one of the most important demographic indicators of
urban development [19], especially considering that a higher population density usually has greater
labor and market availability and accessibility [22,23]. Taking data accessibility and comparability
into consideration, the population density data at census track level for the years 2000 and 2005 were
collected from the U.S.–Mexico Border Environmental Health Initiative (BEHI) website (Figure 3).
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The second type of independent variable comprises proximity variables, which have been widely
used in urban simulation models to explain land cover transitions [14,24,25]. Here, our proximity
variables include distances to various types of transportation networks (highway, major roads,
railroads), distance to industrial sites, and distance to existing urban clusters. Transportation data
were obtained from the BEHI website for Laredo (2004) and Nuevo Laredo (2006). To ensure data
reliability, we checked the BEHI data with transportation data available from the Texas Natural
Resource Information System (TNRIS), the El Instituto Nacional de Geografía, Estadística e Historia
(INEGI), and from the Instituto Municipal de Investigaciony Planeacion (IMIP). We manually edited
roads by visual interpretation from Google Earth to create road networks for the years 1985 and 2000,
separately. Considering the barrier of the Rio Grande River and the international border, Euclidean
distances to the Rio Grande River and international bridges were calculated for each corresponding
city. However, the distribution of local roads was highly spatially correlated with that of urban clusters
(Figure 4). Thus, we did not include the factors related to the local roads (i.e., distance and density of
the local road networks).

The international manufacturing plants (i.e., maquiladoras) program plays a considerable role in
rates and patterns of urbanization in this border region [19]. Some studies have demonstrated that
manufacturing-related industrial development along the U.S.–Mexico border has been an important
factor of urbanization in this region [19,21]. We obtained industrial land boundaries from the Laredo
city government website and INEGI (www.inegi.gob.mx) for the time period between 2000 and 2010.
Then, we manually edited them by visual interpretation of Google Earth and satellite imagery to obtain
industrial land boundaries for 1985 and 2000, respectively.
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The third type of independent variable comprises density variables. Density conditions are often
used in urban simulation models to explain land use transitions [25]. Theoretically, the transition from
non-urban land to urban land is closely related to neighborhood conditions [11,15,25]. We selected
several density attributes in 1985 and 2000, including existing urban clusters, transportation network,
and industrial sites. In addition, we considered density variation due to scale. Four scales were used
to generate density variables: 150, 300, 600, and 1200 m. However, high multicollinearities (>0.5)
among different scales were detected for the respective density factors. Existing literature and urban
simulation models have widely indicated that the possibility of urban growth at one site is distinctly
attributed to local neighborhood conditions [9–11]. Moreover, considering that a 5 × 5 focal window
size (i.e., 150 m) is commonly applied in CA models and as an attribute setting for neighborhood
conditions [9,10], we used guidance from existing literature to generate density variables of 150 m for
our analysis.

Finally, some areas were excluded from analysis given their low likelihood of urban land
conversion. These areas included city parks, airports, water bodies, and cemeteries. These excluded

www.inegi.gob.mx
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areas for Laredo were collected from the City of Laredo government website. For Nuevo Laredo,
the excluded areas were obtained from INEGI and digitized from the Landsat imagery (Figure 5).
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3. Methods

3.1. Data Sampling and Multicollinearity Detection

Our study area consisted of 1412 × 1417 pixels at 30 m spatial resolution. We treated each cell,
which incorporated potential attributes, as a potential sample for our regression analysis. Commonly,
the presence of autocorrelation and multicollinearity are two issues in regression analysis. To mitigate
spatial dependence and spatial autocorrelation, and to ensure that the sampling dataset represents
the study area with enough information to understand urban growth patterns, a systematic random
sampling scheme was designed to obtain the sampling points for the regression models for each
time period. First, a regular grid of points spaced 210 m apart was created for the study area. Then,
we selected half of the candidate points using the random selection tool in ArcGIS. This scheme is in
accordance with previous research [14].

Finally, we used our final selected points to extract the cell values for both dependent and
independent variables on which both the global logistic regression and logistic GWR were fitted.
There were 836 and 782 samples for Laredo and Nuevo Laredo for the time period 1985–2000 and
1720 and 1704 for Laredo and Nuevo Laredo during the 2000–2014 time period (Figure 6). Thirteen
candidate variables were extracted to the corresponding sampling points. A statistical summary of the
variables associated with the sampling points for each study period is provided in Table 1.
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Table 1. Descriptive statistics of original collected dataset in this study.

Description Units Date

Nuevo Laredo Laredo

Mean Standard
Deviation Minimum Maximum Mean Standard

Deviation Minimum Maximum

Site specific variables

Elevation Elevation of one specific pixel of 30 m*30 m Meter
1985–2000 136.07 15.46 0.00 161.00 145.00 23.23 0.00 214.10
2000–2014 136.42 15.73 0.00 161.00 146.34 23.05 0.00 214.10

Slope The tangent of angle of surface to horizontal
level

Degree 1985–2000 2.14 1.79 0.00 21.00 3.28 2.85 0.00 27.00
2000–2014 2.12 1.66 0.00 15.00 3.36 2.90 0.00 35.00

Population_Den Population density 100 per km2 1985–2000 44.23 2.84 0.00 203.94 6.45 10.33 0.00 47.28

X The x coordinate of the sampling points Meter
1985–2000 446.13 2.16 439.83 452.64 451.37 6.26 426.18 467.13
2000–2015 445.90 2.19 439.83 452.64 451.67 0.15 426.18 467.13

Y The y coordinate of the sampling points Meter
1985–2000 3037.30 5.17 3027.63 3047.16 3047.85 9.60 3027.21 3069.00
2000–2014 3037.08 5.29 3027.63 3047.16 3047.89 0.23 3027.21 3069.00

Proximity variables

Dis_Airports Euclidean distance to airports for
corresponding city Meter

1985–2000 4586.30 2483.27 0.00 10,375.80 8360.25 6545.40 30.00 34,463.10
2000–2014 4494.75 2568.53 0.00 10,375.80 8344.00 6837.42 30.00 34,463.10

Dis_RailWay Euclidean distance Rio Grande River Meter
1985–2000 3629.59 2505.45 0.00 10,276.20 4677.72 5469.29 0.00 28,156.50
2000–2014 3827.82 2515.42 0.00 10,276.20 7569.95 124.65 123.69 28,308.40

Dis_River
Euclidean distance to railway for

corresponding city Meter
1985–2000 3862.33 1986.91 0.00 8136.20 3841.45 3153.67 0.00 14,466.00
2000–2014 4078.45 1964.62 0.00 8136.20 58.53 0.00 0.00 10,001.50

Dis_Bridges The Euclidean distance to the four
international bridges Meter

1985–2000 7477.92 3191.26 234.31 15,221.50 11,197.01 6401.62 189.74 36,039.00
2000–2014 7830.80 3177.56 152.97 15,221.50 11,397.82 10,488.55 768.38 36,039.00

Dis_Industries
Euclidean distance to manufacturing plants

for corresponding city Meter
1985–2000 2606.09 1850.80 0.00 7804.67 4745.85 5330.43 0.00 28,422.70
2000–2014 2700.33 1853.14 0.00 7804.67 2919.22 1738.06 0.00 14,704.90

Dis_HigMajWay Euclidean distance to highway and major
roads for corresponding city Meter

1985–2000 846.15 651.70 0.00 4412.35 734.07 713.07 0.00 4804.59
2000–2014 842.58 701.68 1.16 4105.09 499.56 331.34 0.00 3569.96

Dis_UrbanClust
Euclidean distance to urban clusters for

corresponding city Meter
1985–2000 429.63 484.97 0.00 3519.73 561.60 640.98 0.00 4639.05
2000–2014 146.21 154.20 30.00 953.42 139.58 3.52 30.00 1073.31

Density variables

Den_HigMajWay The number of pixels of highway and major
roads within 5*5 neighbors N/A 1985–2000 0.36 1.47 0.00 12.00 0.86 2.51 0.00 18.00

2000–2014 0.43 1.60 0.00 12.00 0.75 0.06 0.00 22.00

De_Industries
The number of pixels of industrial pixels

within 5*5 neighbors N/A 1985–2000 0.24 2.01 0.00 25.00 0.35 2.59 0.00 25.00
2000–2014 0.49 3.07 0.00 25.00 1.74 0.00 0.00 25.00

Den_UrbanClust150
The number of pixels of built-up land within

5*5 neighbors N/A 1985–2000 1.06 3.17 0.00 22.00 1.02 2.98 0.00 25.00
2000–2014 2.98 4.84 0.00 22.00 2.91 0.12 0.00 24.00
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Prior to modeling, multicollinearity among the selected independent variables was tested in
SPSS for the periods 1985–2000 and 2000–2014. Variables that exceeded the tolerance threshold for
multicollinearity (0.5) were considered highly correlated. For example, existing urban clusters were
closely related to the density of the local road network as well as population density. In addition,
distance to the Rio Grande River was closely related to the elevation of the sampling points. In the case
of multicollinearity, a single variable was selected for modeling. For both study periods, three covariates
were excluded prior to conducting the regression: population density, distance to the four international
bridges, and distance to urban clusters. Additionally, distance to the Rio Grande River and distance
to the industrial sites were excluded for the period 1985–2000, while elevation, distance to railways,
and distance to highways and major roads were excluded from analysis for the period 2000–2014.

3.2. Global Logistic Regression

Regression has been widely used to quantitatively analyze the driving forces of urbanization at
different scales. The primary assumption of logistic regression for the analysis here is that the spatial
pattern of land cover change is correlated with relevant explanatory variables that can be consistently
measured on both sides of the U.S.–Mexico border [26]. In this sense, it enables us to incorporate
different underlying factors of urban growth, including proximate effect, density effect, and road
influence, into a spatially explicit model for specific sampling sites. In this way, logistic regression
addresses ecological preservation and environmental protection practices.

The logistic regression statistical model supposes that the change probability of the land type of
each grid can be represented in the form of a logistic function:

y = β0 + β1x1 + β2x2 + · · ·+ βmxm + e (1)

y = loge[P/(1− P)] = logit (P) (2)

P =
ey

1 + ey (3)

Equation (1) is the regular regression, where x1, x2, . . . , xm, are the explanatory variables, y is
the dependent variable, β1, β2, . . . , βm are the regression parameters to be estimated, and e is the
residual error. In this case, land change is treated as a Bernoulli variable (0: no change, 1 change to
urban land). If we just use regular regression (1) to model the urban growth, the errors cannot be
normally distributed, and the estimated value will be beyond the range of 0 to 1. Therefore, the linear
combination function of the independent variables is represented by logit (P), as shown in Equation (2).
P is the land transition probability from non-urban to urban. (P|1− P) is the odds ratio of the land
type change. Equation (2) can also be shown in the way of Equation (3), where the probability P will
increase with value y, and at the same time, it ensures that the probability surface will be continuous
within the range of 0 to 1.

We used the logistic regression model in SPSS and GWR 4.0 to perform the analyses. GWR 4.0
software, which was created by Fotheringham et al. [27], is free to use and open source. GWR 4.0
provides a range of options to select different kinds of regression. In addition, the outputs are easily
incorporated into ArcGIS for visualization [28].

3.3. Logistic GWR

The logistic regression model developed in the preceding session is global, in the sense that
the partial relationships between the independent variables and dependent variable are assumed to
be stationary across the entire study area [29]. Logistic GWR, on the other hand, can accommodate
non-stationarity by incorporating geographic location into the models. Since every point in space is
taken into account when fitting the regression equation, GWR is a powerful method to understand the
spatial distribution of variables and explore the spatial heterogeneity of relationships and processes
over the entire space [27].
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Global logistic regression is typically single-valued, while the Logistic GWR is multi-valued:
different locations have different statistical values in the space. Modified from the global logistic
regression, the logistic GWR equation is as follows:

logit (Pi) = loge (Pi|1 − Pi) = β0 + β1x1i + β2x2i + . . . + βmχmi + εi (4)

where x1i, x2i, . . . , xmi are the independent variables at location i, and εi is the regression residual at
location i. Instead of remaining the same everywhere, β1, β2, . . . , βm vary in relation to location i.

Essentially, a logistic regression is created for each instance in a spatial dataset based on a selection
of surrounding instances. A distance band, or kernel, must be specified to determine how much
influence each occurrence exerts on the others. This kernel determines the number of surrounding
data points that are included in the localized regression equation of the data point being regressed.
An effective spatial sampling scheme can significantly account for the spatial dependence problem
by expanding the distance between the sampling points. Furthermore, spatial autocorrelation effects
can be largely reduced, since the interval distance between sampled sites is usually larger than that
between the neighboring points in the original dataset [22].

4. Results and Discussion

4.1. Logistic Regression Analysis

Overall, the global logistic regression model resulted in moderate goodness of fit, with −2 Log
likelihood values of 2433.01 and 2369.87 for the time periods 1985–2000 and 2000–2014, respectively
(Table 2). The overall percentages of cases correctly classified were 77.5 and 78.0 at 1985–2000 and
2000–2014, respectively. These percentages indicate that both models were relatively successful at
predicting whether or not an observation (pixel) in our dataset did or did not convert to urban land
cover in a given time period. However, for parameter β, which indicates the contribution of each
variable to the probability of urban conversion, the odds ratio is more intuitive to explore factors that
contributed to land cover change. Using slope during 2000–2014 as an example, the value of the odds
ratio 0.96 means that the slope increase of one degree at one specific pixel would have a decreased
probability (96%) to change to built-up land. However, Norman et al. [19] found that steep slopes did
not appear to be a limiting factor for Nogales, Sonora (Mexico), which is different from the situation in
Nogales, Arizona (U.S.), where buildings are designed and planned to only be situated on desirable
topographic sites.

For the time period 1985–2000, of the eight input variables for the regression analysis, distance
to airports, distance to the rail way, distance to highway and major roads, density of industrial
sites, and density of existing urban clusters within 150 meters were all significantly related to urban
growth. Among them, two density variables (density of industrial sites and density of existing urban
clusters within 150 m) were highly related to urban growth, with odds ratios of 1.031 and 1.187,
respectively. Since both of their odds ratios were greater than 1, we can infer that the probability of
urban development in areas with higher industrial site density or existing urban clusters was much
higher than the probability of urban growth in areas with lower densities. For proximity effects,
the odds ratio of distance to highways and major roads was 0.999, which means that the urban growth
probability of pixels 1 km further away from highways or major roads was 0.999 times as large as the
growth probability of that area.

For the analysis period 2000–2014, there were seven variables incorporated into the regression
analysis: slope, distance to airports, distance to industrial sites, distance to the Rio Grande River,
density of existing urban clusters, density of industrial sites, and density of highways and major roads
(Table 2). Except for distance to the Rio Grande River, all explanatory variables were significant. Most of
them were significant at α ≤ 0.001, except the slope, which was significant at α ≤ 0.05. In terms of the
factors for contributing to urban growth between 2000–2014, elevation, distance to the Rio Grande River,
and distance to the railway did not affect urban land cover change within the study area. Regarding the
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effect of the river, this finding is similar to the results from a study which illustrated that distance to the
Yangtze River was not a factor influencing the probability of urban growth in Wuhan (Hubei province,
China) [25].

Table 2. Global logistic regression results for the probability of conversion from non-urban to urban.

Independent Variables 1985–2000 2000–2014
β S.E. Odds Ratio β S.E. Odds Ratio

Site specific variables
Elevation 0.001 0.003 1.001 — — —

Slope −0.101 0.026 0.904 −0.041 (*) 0.024 0.96
Proximity variables

Dis_Airports 0.000 (***) 0.000 1.000 −0.092 (***) 0.014 0.913
Dis_RailWay 0.000 (***) 0.000 1.000 — — —

Dis_River — — — 0.000 0.000 1.000
Dis_Industries — — — −0.067 (*) 0.029 0.936

Dis_HigMajWay −0.001 (***) 0.000 0.999 — — —
Density variables
Den_HigMajWay 0.090 0.024 1.094 0.075 (***) 0.019 1.078
Den_Industries 0.030 (***) 0.019 1.031 0.046 (***) 0.01 1.047

Den_UrbanClust150 0.172 (**) 0.021 1.187 0.132 (***) 0.011 1.142

Sample size 2556 2486
−2 Log likelihood 2433.055 2369.868

Cox and Snell 0.197 0.162
Nagelkerke 0.286 0.239

PCP 77.5 78

Note: β: coefficients in Equations (1) and (4). S.E.: standard error. Please refer to the full variable names
from Table 1. (*): significance at 0.05 level; (**): significance at 0.01 level; (***): significance at 0.001 level. PCP:
the percentage correctly predicted with cut value 0.5. —: the variable was not included in regression analysis due
to multicollinearity.

It is worth noting that the three density variables (density of industrial sites, density of existing
urban clusters, and density of highways and major roads) all had a positive effect on urban growth,
with a very high level of significance between 2000–2014. Notably, a high level of density of urban
clusters was estimated as 1.142 times as large as the probability of urban development compared to an
area with lower urban density. It also implies that urban growth was highly dependent on the highway
and major roads infrastructure of both cities between 2000 and 2014. In terms of the proximity effects
between 2000 and 2014, the greater distances to airports and to industrial sites, the lower the likelihood
of urban land cover conversion.

The positive effect of nearby urban clusters is in accordance with prior findings [14,22,25]
and confirmed by results from some of the urban growth models based on CA theory [9,11,15,16].
Similarly, the effect of industrial site density was also significant for urban growth in both cities.
With an odds ratio greater than one, it indicates that a higher probability of urban change occurred
for pixels with a higher density of industrial sites. For both cities, the influences of the highway and
major roads infrastructure on urban growth were indicated by their proximity effect between 1985 and
2000 and their neighborhood effect between 2000 and 2014, respectively. This is not surprising as this
situation is in agreement with prior research findings [7,14,16,30].

4.2. Diagnostics of Logistic GWR

While the global logistic regression model provided an explanation of the underlying factors of
urban growth in the two cities, the spatial variation of the underlying factors was not characterized.
Global regression methods can only represent the general trend of the study area and may ignore
considerable local variations [27]. In this case, logistic GWR is an effective method to detect spatial
variation of the estimated factors. Here, we used the same sample points to build the logistic GWR
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model. The −2 Log likelihood and the PCP indicate that the GWR had better goodness of fit and
improved performance (Table 3).

The global logistic regression model has unified parameters across the entire study area. However,
the GWR exhibited considerable variation in terms of the β parameter, although there was no variation
from positive to negative or from negative to positive (Table 3). The comparison suggests that global
regression exhibits challenges associated with spatial stationarity, while GWR can mitigate this problem.
The distance to and density of industrial sites had the highest difference of β between the global logistic
regression and the logistic GWR. This suggests that industrial sites tend to have greater local influence
on urban growth. At the same time, major city centers tend to affect urban growth globally. Moreover,
we can see that the distance to airports had the largest spatial variation. Density of existing urban
clusters also exhibited considerable spatial variation.

Table 3. Diagnostic information of logistic geographically weighted regression (GWR) during 2000–2014.

Logistic GWR Result

β Lower Quartile β Median β Upper Quartile β

Slope −0.041 −0.051 −0.035 −0.027
Dis_Airports −0.092 −0.135 −0.079 −0.037

Dis_River 0.000 0.000 0.000 0.000
Dis_Industries −0.067 −0.114 −0.095 −0.081

Den_UrbanClust150 0.132 0.109 0.131 0.148
Den_Industries 0.046 0.012 0.028 0.045

Den_HigMajWay 0.075 0.052 0.060 0.066
Constant −0.883 −1.020 −0.800 −0.552

Comparison of logistic GWR and global logistic regression
Global logistic regression Logistic GWR

−2 Log likelihood 2369.868 2265.202
Global AIC 2385.868 2307.967

PCP 78.0 78.6

Note: β coefficients and intercept in Equation (4). AIC refers to Akaike information criterion. Please refer to the full
variable names from Table 1.

4.3. Results of Logistic GWR and Spatial Non-Stationarity Relationship

Unlike global logistic regression, the logistic GWR generated a set of estimated coefficients and the
associated pseudo t-statistics for each sampling point. Using these values, we spatially interpolated a
continuous surface using the inverse distance weighted (IDW) interpolation using the Spatial Analyst
Toolbox in ArcGIS. Hence, the surfaces of the estimated coefficients and t-statistics were generated
to reveal the spatial variations of the underlying factors behind the urban growth. Figures 7–11
demonstrate apparent spatial variation across Laredo–Nuevo Laredo.

Based on Figure 6, slope did affect urban growth for most of the study area between 2000 and
2014, which is similar to the result from the global regression. As Figure 7 demonstrates, the spatial
distribution of the t-statistic of slope generally coincides with the spatial distributions of the slope
coefficient, which together indicate that there was a considerable part of the study area where the slope
parameter was not significant in explaining urban land cover change. For the remaining portion of
the study area, slope had a more significant negative effect on urban growth in Nuevo Laredo than
Laredo, especially in the southwest portion. For Laredo, only a small portion in the northern region
showed slope having a significant effect, as exhibited by the estimated coefficient t-statistic (Figure 7).
These results indicate that in the southwestern area of Nuevo Laredo, slope had a highly negative
effect on urban land cover change and that new urban cells were more likely to occur in areas with
low slopes.
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Figure 8 shows the spatial variation in the effect of two proximity variables: distance to airports
and distance to industrial sites for the 2000–2014 analysis period. While the negative effects had been
modeled by the global logistic regression model, proximity effects also varied throughout the study
area. Distance to airports exerted greater negative influence on urban development in the southern
portion of Nuevo Laredo and the northern portions of Laredo (Figure 8). In particular, this effect was
insignificant in the area around the Nuevo Laredo airport. In contrast, the estimated parameter surface
of the distance to industrial sites suggests that the pixels closer to industrial sites exhibited a higher
probability of transitioning to urban land cover. Compared to the global logistic regression model
results, the logistic GWR more clearly showed the role of proximity to industrial sites.

Land 2020, 9, x FOR PEER REVIEW 14 of 19 

 

Based on Figure 6, slope did affect urban growth for most of the study area between 2000 and 
2014, which is similar to the result from the global regression. As Figure 7 demonstrates, the spatial 
distribution of the t-statistic of slope generally coincides with the spatial distributions of the slope 
coefficient, which together indicate that there was a considerable part of the study area where the 
slope parameter was not significant in explaining urban land cover change. For the remaining portion 
of the study area, slope had a more significant negative effect on urban growth in Nuevo Laredo than 
Laredo, especially in the southwest portion. For Laredo, only a small portion in the northern region 
showed slope having a significant effect, as exhibited by the estimated coefficient t-statistic (Figure 
7). These results indicate that in the southwestern area of Nuevo Laredo, slope had a highly negative 
effect on urban land cover change and that new urban cells were more likely to occur in areas with 
low slopes. 

Figure 8 shows the spatial variation in the effect of two proximity variables: distance to airports 
and distance to industrial sites for the 2000–2014 analysis period. While the negative effects had been 
modeled by the global logistic regression model, proximity effects also varied throughout the study 
area. Distance to airports exerted greater negative influence on urban development in the southern 
portion of Nuevo Laredo and the northern portions of Laredo (Figure 8). In particular, this effect was 
insignificant in the area around the Nuevo Laredo airport. In contrast, the estimated parameter 
surface of the distance to industrial sites suggests that the pixels closer to industrial sites exhibited a 
higher probability of transitioning to urban land cover. Compared to the global logistic regression 
model results, the logistic GWR more clearly showed the role of proximity to industrial sites. 

 
(a)                                                                                         (b) 

Figure 8. Logistic GWR results of the estimated coefficient: distance to the airports (a) and distance to 
the industrial sites (b), 2000–2014. 

The density of existing urban clusters had a strong positive influence on urban development of 
both cities for both time periods, which is similar to the results from global regression (Figure 9). 
During 1985–2000, the effect of existing urban clusters for urban growth was much more apparent in 
Laredo than Nuevo Laredo. In contrast, between 2000 and 2014, these effects were much more 
apparent in Nuevo Laredo than Laredo. This is understandable because during 1985–2000, the new 
urban areas in Laredo were adjacent to existing urban clusters in 1985, with a much higher growth 
rate than Nuevo Laredo (11.72% annual growth rate for Laredo versus 6.97% annual growth for 
Nuevo Laredo). However, between 2000 and 2014, growth in Nuevo Laredo exhibited increased 
densification of existing urban clusters, while Laredo showed a more dispersed (i.e., sprawl) growth 
pattern. The t-statistic surface corresponds with the estimated coefficient during 1985–2000 (Figure 
9). Interestingly, the central part of the study area did not show significant urban growth, as 

Figure 8. Logistic GWR results of the estimated coefficient: distance to the airports (a) and distance to
the industrial sites (b), 2000–2014.



Land 2020, 9, 347 13 of 18

The density of existing urban clusters had a strong positive influence on urban development
of both cities for both time periods, which is similar to the results from global regression (Figure 9).
During 1985–2000, the effect of existing urban clusters for urban growth was much more apparent
in Laredo than Nuevo Laredo. In contrast, between 2000 and 2014, these effects were much more
apparent in Nuevo Laredo than Laredo. This is understandable because during 1985–2000, the new
urban areas in Laredo were adjacent to existing urban clusters in 1985, with a much higher growth
rate than Nuevo Laredo (11.72% annual growth rate for Laredo versus 6.97% annual growth for
Nuevo Laredo). However, between 2000 and 2014, growth in Nuevo Laredo exhibited increased
densification of existing urban clusters, while Laredo showed a more dispersed (i.e., sprawl) growth
pattern. The t-statistic surface corresponds with the estimated coefficient during 1985–2000 (Figure 9).
Interestingly, the central part of the study area did not show significant urban growth, as evidenced
by very low t-statistic values, while the surrounding adjacent areas had very high t-statistic values.
The reason for this strong contrast is that the central part of the study area had already experienced
urban densification, while urban growth in the remaining area relied more on nearby urban clusters.

Land 2020, 9, x FOR PEER REVIEW 15 of 19 

 

evidenced by very low t-statistic values, while the surrounding adjacent areas had very high t-statistic 
values. The reason for this strong contrast is that the central part of the study area had already 
experienced urban densification, while urban growth in the remaining area relied more on nearby 
urban clusters. 

 
(a)                                                                                              (b) 

 
(c)                                                                                              (d) 

Figure 9. Logistic GWR results of the estimated coefficient (a,c) and T-statistic surfaces: density of 
existing urban clusters (b,d), 1985–2000 and 2000–2014. 

Between 1985 and 2000, the density of highways and major roads had a stronger positive effect 
on most parts of Nuevo Laredo than Laredo (Figure 10). This effect was most noticeable in the 
southern part of Nuevo Laredo, where there was an absence of a local transportation network. The 
density of the highway and major roads had a strong positive effect on the urban growth. On the 
contrary, in the far north and far south of Laredo, where the highway exists, the density of the 
highways and major roads variable showed a slightly positive effect on the urban growth compared 
to the remaining area. 

Figure 9. Logistic GWR results of the estimated coefficient (a,c) and T-statistic surfaces: density of
existing urban clusters (b,d), 1985–2000 and 2000–2014.



Land 2020, 9, 347 14 of 18

Between 1985 and 2000, the density of highways and major roads had a stronger positive effect on
most parts of Nuevo Laredo than Laredo (Figure 10). This effect was most noticeable in the southern
part of Nuevo Laredo, where there was an absence of a local transportation network. The density of
the highway and major roads had a strong positive effect on the urban growth. On the contrary, in the
far north and far south of Laredo, where the highway exists, the density of the highways and major
roads variable showed a slightly positive effect on the urban growth compared to the remaining area.Land 2020, 9, x FOR PEER REVIEW 16 of 19 
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Between 2000 and 2014, the effect of highways and major roads density was relatively lower,
with the estimated coefficient ranging from 0.02 to 0.14 and considerable spatial variation in the
parameter significance (Figure 10). The effect of highway density in this period was more prevalent
for Laredo compared to the 1985–2000 time period, as evidenced by the estimated coefficient surface.
This difference in driving mechanism was related to the economic and development backgrounds of the
two countries. The effect of highways on urban development in developed countries such as the U.S.
was also suggested by Reilly, O’Mara et. al. [30] in their studies based on logistic regression analysis.

The last underlying factor that we used to study urban growth was the effect of industrial sites.
It is noteworthy that the distance to industrial sites only influenced urban growth in the time period of
2000–2014, rather than 1985–2000 (Table 2). Industrial site density exhibited spatial variation in the
form of a positive effect in the southern and southwestern regions of Nuevo Laredo and in Northern
Laredo. Industrial site density had a slightly negative effect on urban growth in Southeastern Laredo
(Figure 11). This distribution is associated with the spatial position of the industrial sites of both cities.
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4.4. Methodological Implications

Regression is one of the most popular approaches used to understand the driving forces behind
land cover changes. While the global logistic regression model allows us to characterize the factors
that influence urban growth, the logistic GWR more efficiently and accurately assesses the underlying
factors that drive urban growth based on spatial variation.

Our findings related to the influencing factors of urban growth are similar to results from some
other models based on CA theory [31,32]. However, this study area exhibits unique characteristics.
As the largest land-based port between the U.S. and Mexico, the study area plays a unique and
indispensable role in connecting the two countries. Nonetheless, to detect the mechanism and
trajectories of the urban growth, an analysis at a much larger, regional scale is necessary.

Previous studies have focused on analyzing urban growth for single cities, while research on broad
areas is far less common. Due to its unique manufacturing characteristics, urban land growth in this
area was much faster than that of megacities in the U.S. during the same period and is comparable with
the average growth rate of the fast growing county-level cities in China during the same period [33].
Several surrogate variables, such as industrial development patterns and construction of transportation
infrastructure, were easily quantified on both sides of the border. Moreover, we did find spatial
variations in the relationships between these factors and urban growth.

The comparison of the analysis results shows that, for our study area, the logistic GWR
outperformed global logistic regression with respect to goodness of fit and that logistic GWR can
illustrate the spatial variation of estimated factors, thus providing a better understanding of the spatial
patterns of urban land cover change. There is some literature that explains and justifies the choice of
GWR to explore local spatial patterns [34], whereas our study indicates that the choice of global or
local regression in geographic analysis depends on the context of the question being asked. For our
study area, which includes an international boundary, logistic GWR can be used as a complementary
model to explore the urban growth effect and whether the international border strongly influences
urban growth. Our results indicated that the international border has a significant effect.

Nevertheless, there are still several limitations of this study on this border area regarding logistic
GWR and global logistic regression. For example, Mexico’s manufacturing plants program is a symbol
of economic globalization which is likely influenced by distant or indirect drivers of urban growth [19].
It is believed that the external patterns and processes of trade, migration, and policies affect urban
growth on both sides of the U.S.–Mexico border. However, these factors are not directly quantified and
incorporated in empirical studies. Therefore, future research to characterize these types of indirect
drivers of urban growth and incorporate unobservable institutional factors across national borders is
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warranted. The study was based on statistical analysis in the time periods of 1985–2000 and 2000–2014.
During the study periods, spatial regulations may have changed, which could lead to uncertainty as to
the interoperation of results. In addition, data accessibility with consistent socioeconomic datasets at
equal time intervals prevented a comprehensive analysis of the trajectories of urban growth throughout
the historical range.

5. Conclusions

In this study, we used global logistic regression and logistic GWR to investigate factors influencing
urban growth in Laredo, Texas, U.S. and Nuevo Laredo, Tamaulipas, Mexico from 1985 to 2014. For the
time period 1985–2000 of analysis, the global logistic regression and the logistic GWR show that two
density variables, density of existing urban clusters and density of industrial sites, influenced urban
development, with observable spatial variation. Additionally, the underlying factors changed with
time and became more complicated. Between 2000 and 2014, there were two proximity variables
(distance to airports and distance to industrial sites) that influenced urban land cover change and
three density variables (density of existing urban clusters, density of industrial sites, and density of
highways and major roads) that influenced urban growth. In summary, our results indicate that the
logistic GWR is in overall agreement with the global regression, with the same influencing direction
for all estimated factors except density of industrial sites between 2000 and 2014. The performance
of the models suggests that the local models are complementary to global models to empirically
analyze the determinants of urban growth in study areas that contain a political border. Overall,
this study contributes to an improved understanding of drivers and patterns of urbanization along
the U.S.–Mexico border region. Specifically, the border brings different socioeconomic conditions
(e.g., population, industrial sites) of two cities, which affects the overall urban growth rate and
extent, as evidenced by both the global regression and GWR model results. In addition, the GWR
analysis further contributes to explaining the spatial heterogeneity characteristics of urban growth
across an international border. Information related to the spatial variability of relationships between
urban growth and neighborhood and proximity effects provides insight into the complexity and
interconnections between land use change and associated factors.
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