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Abstract: Soil organic carbon (SOC) is an important indicator of soil quality and directly determines soil
fertility. Hence, understanding its spatial distribution and controlling factors is necessary for efficient
and sustainable soil nutrient management. In this study, machine learning algorithms including
artificial neural network (ANN), support vector machine (SVM), cubist regression, random forests
(RF), and multiple linear regression (MLR) were chosen for advancing the prediction of SOC. A total
of sixty (n = 60) soil samples were collected within the research area at 30 cm soil depth and measured
for SOC content using the Walkley–Black method. From these samples, 80% were used for model
training and 21 auxiliary data were included as predictors. The predictors include effective cation
exchange capacity (ECEC), base saturation (BS), calcium to magnesium ratio (Ca_Mg), potassium to
magnesium ratio (K_Mg), potassium to calcium ratio (K_Ca), elevation, plan curvature, total catchment
area, channel network base level, topographic wetness index, clay index, iron index, normalized
difference build-up index (NDBI), ratio vegetation index (RVI), soil adjusted vegetation index (SAVI),
normalized difference vegetation index (NDVI), normalized difference moisture index (NDMI) and
land surface temperature (LST). Mean absolute error (MAE), root-mean-square error (RMSE) and
R2 were used to determine the model performance. The result showed the mean SOC to be 1.62%
with a coefficient of variation (CV) of 47%. The best performing model was RF (R2 = 0.68) followed
by the cubist model (R2 = 0.51), SVM (R2 = 0.36), ANN (R2 = 0.36) and MLR (R2 = 0.17). The soil
nutrient indicators, topographic wetness index and total catchment area were considered an indicator
for spatial prediction of SOC in flat homogenous topography. Future studies should include other
auxiliary predictors (e.g., soil physical and chemical properties, and lithological data) as well as cover
a broader range of soil types to improve model performance.

Keywords: geostatistic; machine learning; geospatial modeling; predictive mapping; soil fertility
indices; environmental covariates

1. Introduction

Globally, soils of the humid tropics have received overwhelming acceptance for agriculture.
However, these soils in southeastern Nigeria have the potential that could be exploited for crop
production. Unfortunately, they are both highly weathered and leached soils formed on alluvial
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deposits under excessive rainfall and high-temperature conditions [1,2]. This soil like other soils
weathers through the actions of environmental conditions (i.e., topography, and other soil-forming
factors) to give the soil their genetic properties (e.g., soil pH, texture, clay, CEC, exchangeable cations) [3].
Soil texture, nutrient status, and mineralogical properties of alluvial deposits bear the imprints of
quartz oxides, which are not rich in most plant growth nutrients [4]. This status gives low crop yield
if there is no application of appropriate nutrient amendments. For example, the yield of fresh fruit
bunches (FFB) is estimated at 3–5 t·ha−1 from University of Calabar Teaching and Research Farm;
under alluvial deposits soil is far less than the national average of 8–12 FFB t·ha−1 and world-record
yields of 25–35 t·ha−1 in Malaysia [5].

Soil organic carbon (SOC) is an essential indicator of soil quality, and directly determines soil
fertility and plant productivity [5]; it plays a significant role in supplying nutrients to the soil and in
the formation of improved soil structure. In previous years, several soil researchers have reported
variability of SOC in different ecological zones of the world [6–8]. These studies are in line with
the different assumptions, including the fact that variation in crop yield within a given field reflects
variation in SOC [9]. Their studies further explained that in order to achieve appropriate soil nutrient
management for uniform crop yield, it is necessary to know where the low SOC, as well as soil
nutrients, reside within a given field, and how much carbon or soil nutrient is present. This is
essentially the importance of quantitative soil mapping. The accurate and up-to-date information
obtained in the process ensures the application of site-specific nutrient management to match spatially
variable conditions.

Variability of soil nutrients is a significant constraint for sustainable crop production due to the
resulting non-uniformity of output across different sections of the field. One way of minimizing
heterogeneity in the soil resulting in different crop yields is through digital soil mapping (DSM), but it
is often constrained by within-site variability [10]. These issues became the target of a site-specific
cropping system, otherwise known as precision agriculture. The technique of precision agriculture can
delineate sites for specific management. Precision agriculture has now been developed to spatially
varied nutrients and soil properties within a field relying on geospatial technologies and utilizing soil
properties, remote sensing data, digital elevation model (DEM), micro-climatic data, and geology [11].
Precision agriculture allows farm managers to manage within-field variability to maximize the
cost–benefit ratio of the proposed crop enterprise. Besides that, specific landscape attributes control
the spatial distribution of SOC coupled with the interactive action of soil-forming factors [3,12].

In agro-ecosystems, the spatial distribution of soil properties is affected by natural ecological
processes influenced by many factors, including climate, soil type, topography, and land use. It thus
becomes a challenge to accurately model SOC at farm scales [10,13] over a broader area that spans
several kilometres without taking into consideration these factors. Before the advent of geospatial
technologies, the spatial distribution of soil properties including SOC was assessed from conventional
soil surveys and laboratory analyses of collected soil samples utilizing classical statistics; an approach
that is tedious, time-consuming, and expensive. The traditional soil survey method could not
provide detailed information about soil variation required for many environmental applications. Thus,
alternative approaches are needed. As an alternative, the digital soil mapping (DSM) technique was
developed and became one focus of soil and environmental science. Under the framework of the DSM,
several geostatistics prediction methods, as found in John et al. [9], have been developed to predict the
spatial distribution of soil properties.

Through the advances in technology, there is a comprehensive application of machine learning
algorithms such as multiple linear regression (MLR), artificial neural network (ANN), support vector
machine (SVM), decision tree, cubist regression, and random forests in soil studies using auxiliary
environmental data [8,14].

Environmental auxiliary data such as digital elevation models (DEM), remote sensing, climatic data,
and geology have been combined via predictive models to estimate soil properties. A large number of
existing DEM data sets (e.g., SRTM DEM and Aster GDEM) [6,15,16] has been used to extract terrain
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attributes (e.g., elevation, slope, aspect, topography wetness index) as predictors for predicting soil
properties. Remote sensing images, on the other hand, have also served as excellent data for both
qualitative and quantitative study of soil properties, including SOC [7,8,15]. Previous studies on
predicting SOC primarily utilized multi-spectral optical sensors, including Landsat [6,8], MODIS [17],
SPOT [18], RapidEye [19], Landsat and MODIS [15], and Landsat and ALOS PALSAR [20].
Remote sensing data provides a cost-effective, reproducible, and spontaneous approach to quantifying
SOC variability [21]. This technique is achieved through the correlation between soil reflectance and
SOC. In [22] it is reported that the increase in SOC is inversely proportional to an overall decrease in
reflectance in the visible (Vis, 400–700 nm), near-infrared (NIR, 700–1400 nm), and shortwave infrared
(SWIR, 1400–2500 nm) regions of the electromagnetic spectrum (McMorrow et al. [23,24]).

Fathololoumi et al., [25] worked on improved digital soil mapping with multitemporal remotely
sensed satellite data fusion in Iran using random forest (RF) and cubist models. Their results showed
that the cubist model exhibited greater accuracy than RF in the modeling of SOC. While in the
high-resolution mapping of soil properties using remote sensing variables in southwestern Burkina
Faso (studies conducted by Forkuor et al. [19]), RF performed better in the prediction of SOC. In addition,
in the prediction and mapping of soil organic carbon using MLA in Northern Iran by Emadi et al. [15],
the deep neural network (DNN) model was reported as a superior algorithm with the lowest prediction
error and uncertainty. Bian et al. [7] utilizes multiple stepwise regression (MSR), boosted regression
trees (BRT) model, and boosted regression trees hybrid residuals kriging (BRTRK) to model SOC in
northeastern coastal areas of China. Similarly, Taghizadeh-Mehrjardi et al. [6] use the artificial neural
network (ANN), support vector regression (SVR), k-nearest neighbour (kNN), random forest (RF),
regression tree model (RT), and genetic programming (GP) to predict SOC. Their study recommended
the combination of ANN and equal-area spline functions for predicting SOC spatial distribution in the
Baneh region of Iran.

Despite the acceptability of MLA in DSM, few or no studies have considered the incorporation of
soil nutrient indicators and environmental data in modeling SOC in southeastern Nigeria and the world
at large. Additionally, the Nigeria environment is yet to get acquainted with the modeling program
involving MLA in soil mapping, and no feasible study has been carried out elucidating this approach,
despite the region’s active engagement in agriculture production. Consequently, a fundamental
knowledge gap remains, hindering the ability of farm managers and agronomists to improve the land
and soil quality. Furthermore, we hypothesize that in flat terrain configuration, soil nutrient indicators
play many roles in explaining SOC distribution to ancillary environmental data. Therefore, in this
study, we applied five machine learning algorithms (RF, Cubist, ANN, MLR, and SVM) to estimate
the SOC variability in a flat alluvial terrain condition with environmental variables and soil nutrient
indicators known to influence SOC variability in the alluvial deposit of Calabar, Nigeria.

2. Materials and Methods

2.1. Description of the Study Area

The study was conducted in Calabar, Cross River State. The study area extends from latitudes
4◦57’ N–5◦00’ N and longitude 8◦19’ E–8◦24’ E (Figure 1), and spreads over an area of approximately
60 km2 with an elevation range of 1 to 102 m above sea level. The area is characterized by a humid
tropical climate with distinct wet and dry seasons. This area receives average annual rainfall exceeding
2500 mm per annum; and the average minimum and maximum temperatures of this area are about
22 ◦C and 30 ◦C, respectively, with a mean relative humidity of 83% [26]. The principal crops grown
in the area include maize, sugar cane, cassava, groundnut, oil palm and vegetable crops (okra,
Telfairia occidentalis, pepper, waterleaf, Amaranthus cruentus, etc.). The soils of the study area are
developed on coastal plain sand parent material [27]. They are characterized by udic moisture regime
and isohyperthemic temperature regimes, respectively [28]. Furthermore, according to USDA soil
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taxonomic classification, the soil order of the region is overwhelmingly Ultisols, and the soil is classified
as Typic kandiudults [29].
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Figure 1. Geographical position of the study area in Cross River State.

2.2. Soil Sampling Regime and Laboratory Analysis

A total of sixty (n = 60) composite soil samples were collected at a depth of 0–30 cm with the aid
of a soil auger at a sampling density of one sample per 3.3 m2 and were thoroughly mixed in a Ziploc
bag to obtain a homogenized sample. The soil sampling at 0–30 cm is the depth of the tillage zone.
We sampled to this depth because there is no significant accumulation of SOC beyond 30 cm in the
alluvial deposit. The sampling was aided by a hand-held global positioning system (GPS) (Garmin
eTrex 10). These samples were adequately labeled and transported to the laboratory for analysis.

The samples were air-dried, ground, and passed through a 0.5 mm sieve. The SOC was
determined by the standard Walkley–Black wet oxidation method using acid dichromate (K2Cr2O7)
solution, as outlined in Udo et al. [30]. At the same time, effective cation exchange capacity (ECEC),
base saturation, calcium (Ca), magnesium (Mg), and potassium (K) were obtained by standard
laboratory procedure prescribed by Udo et al. [30]. These analyses were carried out at the University of
Calabar Soil Science Department Laboratory. The soil nutrient indicators used as part of the explanatory
variables was estimated from the already laboratory-measured soil properties, for example, Ca2+ to
Mg2+, K+ to Mg2+ and K+ to Ca2+ ratios were calculated using their representative basic cations;
furthermore, in this study, they are represented as Ca_Mg, K_Mg, K_Ca, respectively.

2.3. Environmental Covariates

Environmental covariates were derived from both the digital elevation model (DEM), obtained at
the spatial resolution of 30 m from ASTER GDEM, and Landsat 8 operational land imager (OLI) and
a thermal infrared sensor (TIRS) acquired at https://earthexplorer.usgs.gov. DEM was processed using

https://earthexplorer.usgs.gov
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System for Automated Geoscientific Geographical Information System (SAGA-GIS) software terrain
analysis toolbox.

The Landsat 8 Operation Land Imager (OLI) remote sensing data Path 187/Row 57
was acquired 2 January 2018 (growing season) with a cloud cover of 6.31% and SCENE_ID
“LC81880562018361LGN00”, and used to derived spectral indices and land surface temperature
(LST) (Table 1). The images contain nine spectral bands with a resolution of 30 m (multi-spectral), 15 m
(panchromatic), and 100 m (TIRS bands 10 and 11), resampled to 30 m. The Landsat images were
geometrically corrected and projected to a World Geodetic System 1984 (WGS 84) into a Universal
Transverse Mercator (UTM) Zone 32N coordinate system. Detailed specifications and preprocessing
method of the Landsat 8 OLI images to obtain surface reflectance images can be found in Roy et al. [31].
The area of interest (AOI) was demarcated in the satellite images with the help of the polygon feature
using the ArcGIS 10.8 software (ESRI, Redlands, USA) environment.

Table 1. Environmental covariates for soil organic carbon prediction.

Environmental Covariates Variable Description

Landsat 8 OLI

b3 Green, 0.525–0.600 µm

b4 Red, 0.630–0.680 µm

b5 NIR, 0.845–0.885 µm

Clay index (CI) CI = SWIR1
SWIR2

Iron index Iron index = Red
Blue

Normalized Difference build-up
Index (NDBI)

NDBI = (SWIR – NIR)
(SWIR+NIR)

Ratio Vegetation Index (RVI) RVI = NIR
RED

Soil Adjusted Vegetation Index
(SAVI)

SAVI = (NIR – RED)
(NIR+RED+L) × (1 + L)

Normalized Difference Vegetation
Index (NDVI)

NDVI = (Band 5 – Band 4)
(Band 5+Band 4)

Normalized Difference Moisture
Index (NDMI)

NDMI = (NIR – SWIR)
(NIR+SWIR)

Land surface temperature (LST) LST = BT
{1+[(λBT/ρ)lnε]}

ASTER GDEM

Elev Elevation
PCurv Plan curvature
TCA Total catchment area

CNBL Channel Network base level
TWI Topographic wetness index

Retrieval of land surface temperature (LST) from thermal infrared sensor (TIRS) band 10 was carried
out according to the following sequence of steps. The first step involves the conversion of the Digital
number (DN) of the thermal infrared band into spectral radiance (Lλ) as presented in Equation (1):

Lλ = ML ×Qcal + AL (1)

where, Lλ = atmospheric spectral radiance (SR) in watts/(m2
· srad · µm), ML = band-specific

multiplicative rescaling factor from the metadata, Qcal = corresponds to band 10, AL = band-specific
additive rescaling factor from the metadata.

The second step involves the conversion of spectral radiance to brightness temperature in Celsius.

BT =
K2

ln
(K1

Lλ+1
) − 273.15 (2)
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where, BT is the satellite brightness temperature in Celsius, and K1 and K2 represent thermal conversion
from the metadata.

Lλ = spectral radiance at the sensor′s aperture
[
W/

(
m2
· sr · µm

)]
where, W = Atmospheric water vapor content.

The next step was the calculation of the normalized difference vegetation index (NDVI),
the proportion of vegetation (PV), which is highly related to the NDVI, and emissivity (ε), which is
related to the PV.

NDVI =
(Band 5 − Band 4)
(Band 5 + Band 4)

(3)

Estimation of the proportion of vegetation PV

PV =

[
NDVI − NDVImin

NDVImax − NDVImin

]2

(4)

Estimation of land surface emissivity (LSE)

ε = 0.004 × PV + 0.986 (5)

Calculation of land surface temperature

LST =
BT{

1 + [(λBT/ρ)lnε]
} (6)

where LST is Celsius, BT is the at-sensor brightness temperature in Celsius, λ (10.8µm) is the wavelength
of the emitted radiance: ρ = h × c/σ = 1.438 × 10−2 mK, σ is the Stefan–Boltzmann constant, h is Planck’s
constant, c is the velocity of light, and ε is the land surface emissivity (LSE). The computation of other
covariates from Landsat 8 OLI is shown in Table 1.

2.4. Machine Learning Techniques

In this study, five ML algorithms, including random forest (RF), cubist regression, artificial neural
networks (ANN), support vector machine (SVM), and multiple linear regression, were chosen. A brief
description of the ML techniques used in this study are presented as follows:

2.4.1. Random forest

Random forests (RF) is an ensemble of classification and regression trees (CART). This MLA
was developed by Breiman [32] and is said to be as accurate as or better than adaptive boosting,
yet computationally faster [33,34]. RF algorithm can handle both continuous and categorical variables.
The RF algorithm is quite robust to noise in predictors and thus does not require a pre-selection of
variables [35]. In RF, two hyperparameters are usually modified by users to regulate the complexity
of the models, including (a) the number of trees (or iterations) (ntree), which also corresponds to the
numbers of decision trees; random forests will overfit if the number is too large; (b) and mtry depicts
the number of indicators that are randomly sampled as candidates at each split. In this case study,
we will tune two parameters, namely the ntree and the mtry parameters that have the following effect
on our random forest model.

In this present study, the model performance is obtained from each combination of the
hyperparameters tuning with the grid search method [36] with cross-validation (CV) methods.
K-fold CV is one of the extensively employed CV methods in machine learning and there is no definite
rule for selecting the value of k. However, a value of k = 5 or 10 is ubiquitous in the field of applied
machine learning and in this present study, we adopted this k = 10 in five repetitions. This was executed
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to avoid bias in data selection during RF hyperparameters tuning. According to Rodriguez [37],
the bias of an accurate estimate will be smaller when the number of folds is either five or ten.

2.4.2. Cubist Regression

The cubist model was developed by Quinlan [38] as a rule-based model which is an extension of the
M5 tree model. According to Kuhn [39], the model structure consists of a conditional component—or
piecewise function acting as a decision tree, coupled with multiple linear regression models. The trees
are reduced to a set of rules which are eliminated via pruning or combined for simplification. The main
benefit of the cubist method is to add multiple training committees and boosting to make the weights
more balanced [38–40]. The cubist model adds boosting with training committees (usually greater than
one) which is similar to the method of “boosting” by sequentially developing a series of trees with
adjusted weights. The number of neighbours in the cubist model is applied to amend the rule-based
prediction [39]. This model was implemented in R with tuning two hyper-parameters: neighbors
(Instances) and committees (Committees). These two parameters are the most likely parameters to
have the largest effect on the final performance of the cubist model. Cubist followed a similar approach
in RF

2.4.3. Artificial Neural Network

In predictive modeling and forecasting, as well as nonlinear and impermanent time series of
processes where there is no exact solution and clear relationship to recognize and describe them,
artificial neural networks have shown good performance. The frequently used ANN model is referred
to as the multilayer perceptron (MLP). This model is occasionally used as a substitute for a feed-forward
network. The MLP requires a well-known output so that to learn and train the network; this type of
neural network is referred to as a supervised network. MLP produces a model that plots the input
to the output using training data so that subsequently, the model is applied to predict the output
when it is unknown. In the present study, and after some preliminary tests to choose the model,
multilayer feed-forward back-propagation ANN was applied [41]. The ANN models are well adapted
for modeling nonlinear behaviour. They have the capacity of learning for complex relationships
between multiple inputs and output variables. The ANN model was run in R using the package “nnet.”
The best structure for the ANN model was obtained by changing the size (number of units in the
hidden layer).

2.4.4. Multiple Linear Regression

Multiple linear regression (MLR) is a machine learning algorithm applied to regress a target
variable that is SOC in this study against some selected covariates (e.g., environmental variables and
soil nutrient indicators). In soil spatial prediction functions, MLR is a least-squares model where
a targeted soil property is predicted from selected explanatory variables. So, in this present research,
a linear relationship was established for SOC (response variable) using the explanatory variables.
A simple MLR equation is presented in Equation (1).

y = a +
n∑

i−1

bi × xi ± εi (7)

where n = number of predictors; y = response variable (SOC); xi = explanatory variables or predictors
(environmental and soil nutrient indicators variables); a = intercept (constant term); bi = partial
regression coefficients; εi = the model’s error term (also known as the residuals).

This was automatically implemented in R using the k = 10 folds CV in five repetitions. In addition,
the tuning parameter “intercept” was held constant at a value of true
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2.4.5. Support Vector Machine (SVM)

Support vector machine (SVM) is a machine learning algorithm that produces an optimal
separating hyperplane to differentiate classes that overlap and are not separable in a linear way.
It was originally developed for classification purposes; however, it can also be used for regression
problems [42]. In this study, SVM for regression (SVR) was implemented. SVR is a kernel-based
learning regression method that was proposed by Cherkassky [43]. It is based on the computation of
a linear regression function in a multidimensional feature space. Hence, modeling a linear regression
hyperplane for nonlinear relationships is possible with the feature space. Two forms of SVM regression,
namely, “epsilon (ε)-SVR” and “nu (v)-SVR,” are commonly used in the SVM model. The original
SVM formulations for regression (SVR) use parameter cost (c) and epsilon (ε) to apply a penalty to
the optimization for points that are incorrectly predicted. Several studies, including Siewert [44] and
Zhang et al. [45] have utilized SVR in environmental monitoring studies to predict SOC. In SVM
regression, the Gaussian Radial Basis Function (RBF) kernel was applied. We employed the RBF
kernel to obtain an optimal SVM regression model which is important to obtain the best set of penalty
parameters C and kernel parameters gamma (γ) for the SOC training datasets. In the present study,
we evaluated the training set and then tested the model performance on the validation set.

2.5. Data Scaling and Partitioning

The dataset used for modeling (n = 60) was scaled to a range between 0 and 1, indicating the
lowest and the highest value, respectively. To evaluate the suitability of the different models for SOC
prediction, a completely random technique was applied to divide the dataset into training (80%),
and test (20%) datasets. Each model was fitted using the train data while the test data was used for
validation. A 10-fold cross-validation was applied to the training dataset for each of the models used
in the study and repeated five times. This and all modeling were performed in R software [46].

2.6. Model Validation and Accuracy Assessment

From the pool of twenty (22) SOC predictors, only the significant predictors (p-value < 0.1)
were selected to build a prediction model. This was established using a simple correlation matrix.
The models selected for this study were evaluated for their performance. The models were trained
with 80% of the dataset (i.e., 48 observation points) and the validation set was tested by the remaining
20% of the dataset (i.e., 12 observation points). Mean absolute error (MAE), root-mean-square error
(RMSE) and R2 were used to determine the model performance according to the following equations:

MAE =
1
n

n∑
i=1

∣∣∣SOC(Xi) − SOC
(
X̂i

)
| (8)

RMSE(%) =

√√
1
n

n∑
i=1

[SOC
(
X̂i

)
− SOC(Xi)]

2
(9)

R2(%) = 1−

∑
i [SOC(Xi) − SOC

(
X̂i

)
]
2

∑
i [SOC(Xi) − SOC

(
X̂i

)
]
2 (10)

where n = the size of the observations, SOC(Xi) = measured response and SOC(X̂i) = predicted response
values, respectively, for the i-th term observation, SOC(Xi) being the average of the response variable.
Furthermore, a good model prediction was expected to have low MAE and RMSE as well as an R2

value close to 1. Li et al. [47] proposes a classification criterion for R2 values: R2 < 0.50 (unacceptable
prediction), 0.50 ≤ R2 < 0.75 (acceptable prediction) and R2

≥ 0.75 (good prediction). The same criterion
was applied in the current study.
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3. Results and Discussion

3.1. Descriptive Statistics

The descriptive statistics of the SOC of the study site are shown in Table 2. SOC value ranged
from 0.32 to 3.10% with the mean of 1.62% and coefficient of variation (CV) of 47%. According to
the classification proposed by Wilding and Drees [48], SOC samples indicated high variability
(CV > 35%) which may be attributed to random factors such as environmental factors and measurement
errors [49,50]. Using Landon [51] rating for tropical soils, the SOC of the study was generally
low. The low SOC in the soil is consistent with the findings by Akpan-Idiok and Ogbaji [29] and
Taghizadeh-Mehrjardi et al. [6] in Cross River State, and also with that of Bednář and Šarapatka [52] in
the Czech Republic. The low SOC content may be attributed to the disturbance of the topsoil (0–30 cm)
during tillage activities in preparation of the site for planting, in addition to high temperature, and
high erodibility of the soils resulting from high rainfall intensity experienced in the area [1].

Table 2. Descriptive statistics of soil organic carbon (SOC).

n Mean Median SD Min Max 1st Quartile 3rd Quartile CV

→% ←
SOC 60 1.62 1.38 0.76 0.32 3.10 1.0 2.24 47

Furthermore, intensive cultivation depletes soil organic matter accumulation, and in turn lowers
SOC content through the increase in decomposition rate generated by the change in the aggregate
structure of the soil due to the cultivation and mixing effect of tillage [53]. The current study is
supported by the plausible reasons that intensive cultivated systems reduce SOC contents due to
increased mineralization created through soil surface disturbance [54–57].

3.2. Correlation between SOC and Environmental Variables and Soil Indicators

Figure 2 shows the correlation between SOC and environmental variables and soil indicators.
SOC was weakly correlated with b5 (r = 0.2), clay_index (r = 0.2), LST(r = −0.2), RVI (r = 0.2),
SAVI (r = 0.2) and NDVI (r = 0.2) obtained from Landsat satellite imagery. Similarly, SOC was weak
but significantly correlated with elevation (r = −0.2), total catchment area (r = 0.2), topographic wetness
index (r = 0.2) and channel network base level (r = 0.2) derived from digital elevation model (DEM).
The result obtained here showed that environmental variables obtained from Landsat imagery gave
a poor relationship with SOC in a flat topographical system. Environmental variations in areas with
a small range of topography, such as plains, are usually very small [20]. This factor including but
not limited to the time of acquiring spaceborne data and intensive crop cultivation utilizing chemical
fertilizers in the area, could be responsible for the low correlation between SOC and NDVI in the
studied soil. Furthermore, NDVI may only show a high contribution to SOC when the crops are
producing more crop biomass. The result is supported by the findings of Florinsky et al. [58] and
Mosleh et al. [10].

Additionally, the effect of environmental variables for SOC in this low-relief area was weakly
correlated, and the spatial variability of SOC cannot be obtained by total dependence on both terrain
and remote sensing parameters. On the other hand, a good relationship was obtained between SOC
and soil nutrient indicators. That is, SOC was strongly correlated with ECEC (r = 0.50), base saturation
(BS) (r = 0.60), K_Ca (r = −0.60) and moderately correlated with Ca_Mg (r = 0.40). ECEC and BS
increase with an increase in organic matter accumulation [56,59]. The observation between soil nutrient
indicators (Ca_Mg and K_Ca) and SOC represents that the accumulation of organic materials in the
soil surface may increase or decrease Ca, Mg and K in the soil.
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3.3. Modeling Approach and Variables of Importance in the Individual Models

The optimum selection strategy of covariates is that the correlation between the covariates
and the response variable is significant or high, and the covariates are obtained effortlessly [16].
Among 22 explanatory variables, only 14 of the explanatory variables that showed a significant
correlation with SOC were selected (p < 0.01). These variables were b5, clay_Index, LST, RVI, SAVI,
NDVI, elevation, total catchment area, topographic wetness index, channel network base level, ECEC,
BS, K_Ca and Ca_Mg.

For RF prediction model, as shown in Figure 3, Ca_Mg, BS, ECEC, K_Ca, topographic wetness
index best predictors to explain the variability of SOC in a flat terrain system. In addition, the result
reveals that the soil nutrient indicators contribute much more compared to environmental variables in
estimating SOC in a flat topographic system.

Similarly, the environmental variables show their inability to contribute to SOC prediction in low
relief conditions. This result is supported by Mosleh et al. [10]. They conducted a study in Iran and stated
that environmental variables are not essential relative variables in low relief conditions. Furthermore,
Solly et al.’s [60] report supported this current study through the study done in Switzerland on the
preservation of SOC using cation exchange capacity plus mean annual temperature, mean annual
precipitation, and leaf area index. Their study concludes that soil physical and chemical properties
serve as better predictors in a homogenous terrain. Similar conclusions were reported by Song et al. [61],
who noted that local environmental attributes play a less significant role than other predictors on a flat
terrain system. Li et al. [62] inferred that environmental attributes could capture large-scale influences
of soil transport but not those occurring at a flat topographic condition. Thus, the over-employment of
environmental factors in small-scale flat terrain areas reduces the prediction accuracy and increases the
calculation complexity.

Presented in Figure 4 is the cubist model prediction using the calibration set. The plot showed
a similar output with RF. Ca_Mg was the best predictor with BS, b5, ECEC and topographic wetness
index following. Similarly, in the artificial neural network model (Figure 5), the best predictor is ECEC,
closely followed by BS, Ca_Mg, K_Ca and b5. Landsat near-infrared band (b5) gave a 50% contribution
to SOC prediction, and this is reverse to a region with strong undulating topography as reported
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by Emadi et al. [15] for complex terrain. This output is also similar to the previous models and still
powerfully reveals the dominance of soil nutrient indicators in the estimation of SOC.Land 2020, 9, x FOR PEER REVIEW 11 of 21 
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According to Figure 6, MLR presented high relative importance (>50%) of the explanatory
variables. ECEC was the best predicting variable and then followed by BS, Ca_Mg, clay_index and LST.
In Figure 7, the support vector machine model followed a similar pattern as compared to other models
(i.e., RF and cubist). That is, soil nutrient indicators do a better job in estimating SOC to environmental
variables in flat terrain condition under small-scale.
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Support vector machine model yielded Ca_Mg as the best predictor and then followed by BS, ECEC,
K_Ca, b5, clay_index and topographic wetness index. The percentage contribution by topographic
wetness index to SOC prediction is above the value reported by Emadi et al. [15]. However, they follow
a similar pattern in that they contribute a little amount in SOC variability in low relief conditions.
In all the five MLAs, NDVI made little or no contribution to SOC estimation, and this is contrary to
what is experienced in more complex terrain.

3.4. SOC Estimation Using Different MLAs

Prediction model accuracy was assessed using standard validation indices such as MAE, RMSE and
R2 by 10-fold cross-validation and repeated five times. The results for both the calibration and the
validation datasets are listed in Table 3. The model output was good using the calibration dataset
(n = 48) except for MLR that gave an unacceptable prediction with calibration datasets (0 < R2 < 0.50).
In the calibration, the best performing model was ANN followed by RF, cubist, SVM and MLR with R2

values of 0.94, 0.64, 0.54, 0.52 and 0.42, respectively. Using the validation dataset, the proposed MLA
models showed their capabilities to predict SOC contents at an unsampled location in the southeastern
region of Nigeria. The best performing model was RF (R2 = 0.68) followed by the cubist model
(R2 = 0.51), SVM (R2 = 0.36), ANN (R2 = 0.36) and MLR (R2 = 0.17). According to Li et al.’s [47]
proposed model accuracy classification, RF and cubist models gave acceptable prediction as they fell
within 0.50 < R2 < 0.75, while ANN, MLR and SVM gave unacceptable prediction (0 < R2 < 0.50) for
SOC in flat terrain conditions. The R2 value reported in the current study was higher than that of Wang
et al. [20]. They achieved an R2 mean value of 0.48 of the total spatial SOC variability using the RF
algorithm in a flat terrain of semiarid pastures of eastern Australia. Using, MLR, ECEC was the most
important variable with lower R2 value when compared to Nath [63] who reported R2 of 0.31 with
curvature as the important variable.

The RF algorithm showed the lowest mean MAE value (0.17) of the five studied ML algorithms.
The cubist algorithm had the highest error with mean RMSE values of 0.57 compared with other ML
models; meanwhile, RF outperformed with the lowest mean RMSE value (0.20). Contrary to the report
by Emadi et al. [15] who stated that ANN, RF and cubist models had a similar predictive ability to forecast
SOC in the Mazandaran province of Iran, in this current study, only RF and cubist models showed similar
predictive ability. In addition, the study also contradicts the report by Taghizadeh-Mehrjardi et al. [6]
and Zhang et al. [45] that reported ANN as the best model. Concerning R2, the low predictive ability
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of ANN has been reported by Mosleh et al. [10]. However, this model could be improved by the
acquisition of large datasets and parameters in order to fit the model that yields good performance [64].

Table 3. SOC calibration and validation results of the five machine learning models by
10-fold cross-validation.

Model Calibration (n = 48) Validation (n = 12)

MAE RMSE R2 MAE RMSE R2

RF 0.15 0.17 0.64 0.17 0.20 0.68
Cubist 0.18 0.22 0.54 0.49 0.57 0.51
ANN 0.04 0.06 0.94 0.22 0.26 0.36
MLR 0.60 0.77 0.42 0.23 0.28 0.17
SVM 0.17 0.21 0.52 0.19 0.22 0.36

RF: random forest; ANN: artificial neural network; MLR: multiple linear regression; SVM: support vector machine.

Figure 8 shows the scattered plots of RF, cubist, ANN, MLR and SVM predicted versus the
measured SOC, respectively. In the figures, the central lines (1:1 line in black color) represented
(predicted = measured). In Figure 8A reveals that RF scattered plots were more closed to the measured
line than others. The plot further substantiated the MAE, RMSE, R2 values obtained here, indicating RF
as the best model predicting SOC at point scale for both calibration and test datasets using both
environmental and soil nutrient indicators as variables.Land 2020, 9, x FOR PEER REVIEW 15 of 21 
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Figure 8. Measured vs. predicted values of soil organic carbon using five machine learning
algorithms:(A) RF, (B) cubist, (C) ANN, (D) MLR and (E) SVM. (RF: random forest; cubist: regression
tree; ANN: artificial neural networks; MLR: Multiple linear regression; SVM: support vector machine).

Generally, Bou Kheir et al. [65] reported that SOC variation in the floodplain of Denmark
is explained by both environmental variables, remote sensing data, and soil-related data.
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Wiesmeier et al. [66] reported that land use, soil types, and parent materials were the most critical
variables controlling SOC distribution. Adhikari et al. [67] demonstrated the usefulness of
environmental variables plus soil-related variables in explaining the SOC distribution down the
soil depth in flat terrain. Besides the works mentioned above, this current study seems to contribute
to the variables of choice in SOC prediction by including soil nutrient indicators (Ca_Mg, ECEC, BS,
K_Ca) and these soil nutrient indicators are vital in crop growth and development. What happens
in a flat terrain condition is that there is a slow rate of organic matter degradation and since soil
organic matter has a large exchangeable site, basic cations (Ca2+, Mg2+, K+ and Na+) are absorbed into
the soil solution [68–70]. On the other hand, environmental variables that are supposed to facilitate
the process of soil organic matter decomposition are impeded because these activities are carried on
a homogenous terrain. Thus, they make very little or no contribution to SOC prediction as exposed in
this current paper.

3.5. Digital Soil Mapping of SOC

The spatial result of digital SOC maps was produced with extracted cultivated land via the
different models (RF, cubist, ANN, MLR and SVM) (Figure 9). RF and cubist models’ predicted SOC
maps (Figure 8A) were relatively similar to the measured SOC map (Figure 9B) and showed substantial
spatial variability of SOC. High predicted SOC values occurred in the center, northeastern, eastern and
northwestern and southern parts of the research area, where the land was mainly covered by groundnut,
pumpkin, litter falls as a result of dense vegetation cover. In addition, long-term application of organic
manure could explain the high SOC contents in these parts of the research area used for cultivation.
Similarly, the dominant low values were observed in all the parts of the maps were possible because of
the loss of soil nutrients in the area through active cultivation without proper management procedures.
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The maps generated by the MLR and SVM models are presented in Figure 9E,F, which highlight
the high and low values in all the geographical positions of the maps. Compared with the RF, cubist,
MLR and SVM models, the map of ANN more strongly manifested low SOC values in all the parts
with high values at the center of the study area. Moreover, the map obtained by MLR resembled that
of the SVM model (however, the map acquired by MLR ranged from 1.0 to 3.0% while SVM ranged
from 1.0 to 2.6%).

4. Conclusions

In conclusion, among several predictors considered in this current study, environmental variables
(b5, topographic wetness index and total catchment area), and soil nutrient indicators (Ca_Mg, ECEC,
BS, K_Ca) had a significant influence on SOC distribution in the study area. They are valuable indicators
in SOC prediction in flat homogenous topography. The RF model was the best model in the study.
The resulting SOC map from RF prediction showed low SOC in the east and high SOC in the west
direction of the site. The map suggests the gradual transportation and deposition of soil sediments.
The study confirmed that SOC distribution could be digitally mapped through the five models as
expected but more accurately with either RF or cubist models. Moreover, soil nutrient indicators,
topographic wetness index and total catchment area were closely related to the SOC content in flat
slope conditions.

From the study, soil nutrient program for SOC improvement could be implemented via RF
and cubist models, incorporated into the digital soil mapping approach. However, RF showed to
be a useful tool in prediction. The accuracy indicated that they act to reduce bias, and they can
accommodate random inputs and random features to produce good results in classification—less so in
regression. Cubist models generally give better results than those produced by simple techniques such
as multivariate linear regression, while also being easier to understand than ANN.

Typically, low SOC levels require the application of organic manures, fallow cropping systems,
organic fertilizer application and residual cropping to increase SOC levels. Through the application of
MLAs in conjunction with digital soil mapping, the proper understanding of existing soil conditions
may be gathered and thus allow precise soil management for sustainable crop production. This research
sets a precedent for future digital soil mapping in other regions of Nigeria. Future studies should
include other auxiliary predictors (e.g., soil physical and chemical properties, and lithological data) as
well as cover a broader range of soil types to improve model performance.
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