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Abstract: Helicenes are unique helical chromophores possessing advanced and well-controlled 

spectral and chemical properties owing to their diverse functionalization and defined structures. 

Specific modification of these molecules by introducing aromatic rings of differing nature and 

different functional groups results in special chiroptical properties, making them effective chiral 

auxiliaries and supramolecular chirogenic hosts. This review aims to highlight these distinct 

structural features of helicenes; the different synthetic and supramolecular approaches responsible 

for their efficient chirality control; and their employment in the chirogenic systems, which are still 

not fully explored. It further covers the limitation, scope, and future prospects of helicene 

chromophores in chiral chemistry. 
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1. Introduction 

Aromatic characteristics in organic compounds are very interesting due to the resonance 

electronic features, stability, and inter- and intramolecular π-π interactions along with the specific 

geometric properties and reactivity, making it an important topic for researchers. Among the diverse 

aromatic compounds, there is a class of the molecules carrying ortho-annulated polyaromatic 

structures, classified as helicenes. In order to understand their unique structural features, helicenes 

should be compared with the conventional aromatic molecules (Figure 1). 

 

Figure 1. Conventional aromatic compounds, 1–3, and helicene compounds, 4–6 (numbers in bracket 

represent ortho-fused aromatic rings). 

Benzene 1, naphthalene 2, and phenanthrene 3 are spatially flat aromatic structures (Figure 1); 

hence, they are not helicenes. As the number of ortho-fused aromatic rings is increased beyond three 

units, such as in 4–6 (Figure 1), the space constraint in the molecule is also enhanced, forcing it to 

adopt a nonplanar helical arrangement. These types of aromatic structures are called helicenes. As a 

consequence, the electron resonance ability is restricted throughout the molecule. Similar to 

conventional aromatics, helicenes can be functionalized by various synthetic protocols to further 
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enhance their spectral and chemical properties. However, the diversity of helical aromatic structures 

makes helicenes into unique and advanced chromophoric systems with tunable electronic and steric 

properties for corresponding applications in all types of stereochemical processes, including chiral 

auxiliaries and supramolecular chirogenesis. It is of note that, whilst there is a great variety of 

aromatic structures used in different chiral fields [1], helicenes still lag behind, despite their attractive 

properties discussed below. 

2. Overview of Latest Reviews 

Firstly, the existing reviews on helicenes from within the last five years should be briefly 

analyzed. Indeed, the chemistry of helicenes has existed for more than a century. However, this topic 

has been reviewed only recently to a rather limited extent [2–11]. Furthermore, these reviews mainly 

focused on the synthesis of helicenes and much less on their applications. One of the most 

comprehensive reviews was published in 2012 by Chen et al., describing helicene synthesis and 

applications [2]. In 2013, Gingras accumulated three sets of reviews targeting only carbohelicenes and 

covering the topics of its non-stereoselective [3] and stereoselective synthesis, chiral separation [4], 

and applications, along with the corresponding properties [5]. Yet, in 2014, three small review articles 

appeared on the topics of photochemical methods of helicene synthesis [6], helicene-based transition 

metal complexes [7], and helicene-like chiral auxiliaries [8]. Further, in 2015, Virieux [9] summarized 

the synthesis and application of helical phosphorus derivatives, where the helicene-based 

phosphorus ligands were also described. Thus, it is clear that—despite several consecutive reviews 

and monographs—this field is not fully covered, especially from the point of view of chiral 

applications. Further, the helicenes, being polyaromatic compounds, have been discussed in several 

chapters of a few books devoted to polyaromatic compounds and material chemistry [10]. Very 

recently, in 2017, a book on helicene chemistry [11] was published, covering most of the topic as it 

had appeared in previous reviews and presenting the progress up until the period of 2015. 

Despite these recent efforts described above, a general tutorial and critical summary devoted to 

the design and tuning of helicene structures for suitable general and specific applications in the areas 

of chiral auxiliaries and chirogenesis is not yet available. Hence, the present review aims to fill in this 

gap, with a specific focus on the potential applicability and usefulness of helicene chemistry in these 

chirality fields—including the latest updates. 

3. Classification and Nomenclature 

3.1. Structural Diversity 

In order to understand the structure and type of helicene molecules, a brief introduction into the 

classification and nomenclature should be made. As a part of classical organic chemistry, helicenes 

can be structurally divided into two major groups: carbohelicenes and heterohelicenes. 

3.1.1. Carbohelicenes 

Carbohelicenes are all benzenoid (aromatic) ortho-fused systems and named as [n]helicenes, 

where n represents the number of rings forming a helix in the ortho-fused fashion. Thus, the structures 

4 [12], 5 [13,14], and 6 [15,16], are [4]helicene, [5]helicene, and [6]helicene, respectively (Figure 1). 

However, any fused ring which is not present in the ortho-fused manner is not included in the n 

counting. For example, structures 7 [17], 8 [18], and 9 [19] are all [5]helicenes, but not [6]helicenes, 

despite the presence of six aromatic rings in total (Figure 2). The functionalized helicenes such as 10 

[20], 11 [21], and 12 [22] (Figure 2) which have a heteroatom as a substituent on the aromatic ring, as 

in the case of amino, hydroxyl (phenolic or alcoholic), thiol, or phosphorus-containing groups, are 

still carbohelicenes but not heterohelicenes. In order to specify the position of functional group(s), a 

numbering system is used, as shown in the structure 10. The numbering starts from the innermost 

position at one end and goes to another end via the outer helical core in such a way that the functional 

group has the minimal number. Secondly, only unfused carbons (with hydrogen or other groups as 

substituents) are counted sequentially (shown in blue), whereas fused carbon atoms (of the helicene 
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core) have the previous number with the corresponding a, b, c suffixes based on the sequence order 

of fused 1, 2, 3 atoms, and so on (shown in red). Thus, the structure 10 can be named as 2-

acetoxy[5]helicene. 

In the case of nonsymmetric heterohelicene, the numbering should be started from the 

peripheral ring which will give the least number to the heteroatomic ring core. In the case of more 

than one substituent, a general nomenclature rule of numbering should be applied. Yet, in both the 

cases mentioned, one should always follow the sequential numbering of the helicene core (starting 

from one innermost atom to another innermost atom of the two peripheral rings). 

 

Figure 2. Examples of carbohelicenes: [5]carbohelicenes 7–9 with additional fused rings and 

functionalized [5]-10, [6]-11, and [7]-12 carbohelicenes. 

3.1.2. Heterohelicenes 

Another class of helicenes is the heterohelicenes, in which one or more benzenoid ring is 

substituted with a heteroatomic ring (Figure 3). Heterohelicenes are generally based on five-

membered rings such as thiophene, pyrrole, furan, etc., and six-membered rings mostly containing 

pyridine. Additionally, they can be fused and functionalized. 

The corresponding heteroatom must be a part of the ring present in the fused ortho fashion but 

not as the substituent either in a functional group or in a heteroatomic ring. In the latter, whilst the 

overall molecule is heterocyclic, the helicene core is not. Further, depending on the heteroatom 

nature, the helicene structures are named aza[5]helicenes (13 [23], 14 [24]), oxa[5]helicenes (15 [25]), 

and thia[7]helicenes (16 [26]). If there is more than one heteroaromatic ring or heteroatom, the 

helicene names are simplified as hetero[n]helicenes, [n]heterohelicenes, or simply [n]helicenes. For 

two or three similar heteroatomic rings, the prefixes “di”, “tri”, etc., are added with or without 

indicating the exact position. For example, the structure 17 [27] is called 7,8-dioxa[6]helicene or 

simply dioxa[6]helicene. Heterohelicenes containing phosphorus 18 [28], silicon 19 [29], and boron 

20 [30] atoms are relatively rare and their chiral properties have not been well studied so far; 

therefore, they are excluded from this review. 
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Figure 3. Examples of heterohelicenes, 13–20. 

3.1.3. Charged Helicenes 

Helicenes can also be categorized into neutral and charged helicene molecules. Most of the above 

examples are neutral helicene molecules, where the charge of the aromatic moiety is zero. However, if 

there is a charge on the helicene structure, a counter ion should be presented to balance the overall 

charge, hence resulting in different properties and applications. In such helicenes, exchanging the 

counter ion can easily enhance a number of the corresponding derivatives, controlling the solubility 

and pH effect. This counter ion exchange can sometimes offer a new approach towards optical 

resolution by changing an achiral counter ion to a chiral one in the case of thermodynamically stable 

structures. For example, quarternized azahelicene 21 [31] and cationic helicene 22 [32] stabilized by 

electron resonance/conjugation represent typical charged helicenes (Figure 4). 

 

Figure 4. Charged helicenes, 21–22. 

3.1.4. Special Structural Type of Helicene-Like Molecules 

Besides the traditional definition of helicene molecules, there are several special cases which 

belong to this structural category but are not associated with the above-described major groups of 

carbo- and heterohelicenes; these are discussed below. Naphthalene 2 and phenanthrene 3 are the 

simplest ortho-fused flat molecules without any steric constraint and, hence, are not helicenes, whilst 

four fused aromatic rings induce a certain steric hindrance at the innermost peripheral hydrogen 
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atoms, setting up the first member of helicene family. Thus, in [n]helicenes, n should be >3 to be 

classified as a helicene molecule. However, there are some exceptions to this general rule. 

Interestingly, phenanthroline-N,N-dioxide 23 [33] (Figure 5) is also classified as a helicene in the 

literature, despite the fact that n = 3. This is due to the fact that the N,N-dioxide functionalities at the 

peri positions in the bay area of the phenanthroline are able to introduce the corresponding spatial 

constraint to force the molecule to adopt a configurationally stable helical conformation. 

 

Figure 5. Special structural types of helicene 23 and helicene-like molecules 24–25. 

Besides the well-defined helicene molecules, there also exist helical structures, such as 24 [34] 

and 25 [35], called helicene-like molecules or helicenoids (Figure 5). Helicenoids usually contain at 

least one saturated atom as a part of the ring system in the helicene-type core system. Thus, the 

saturated ring is not able to adopt a flat structure, resulting in the enhancement of helicity. For 

example, a series of 1,1′-Bi-2-naphthol (BINOL)-based helical systems, sometimes referred to as 

oxahelicenoids, have been reported so far as configurationally stable structures [34,35]. Other types 

of saturated hydrocarbon-containing helicenoids, which are actually dihydrohelicenes, are also well 

documented in literature as precursors for helicene synthesis. 

3.2. Spatial Diversity 

Besides the structural diversity described above, helicenes can also be categorized, based on their 

stereochemistry, into four different categories: achiral (flat structures), stereodynamically labile 

(when P and M spatial conformations are in fast equilibrium; for the P and M definitions, see Section 

3.2.1), chiral (enantiomerically stable structures), and meso helicenes (helical structure with some 

symmetry elements). This categorization is highly important for their applications in chiral auxiliaries 

and for chirogenic systems. 

3.2.1. Chiral (Configurationally Stable) Helicenes 

In order to understand the helicene spatial structures and this classification, the term “in-plane 

turn angle” needs to be introduced. Due to the ortho fusion mode, each aromatic ring contributes to 

the overall helicity of the molecule via an in-plane turn angle (Figure 6a). When the sum of the in-

plane angles of the contributing rings becomes 360° or more, the helicene is forced to adopt a helically 

chiral structure caused by the corresponding steric clashes between the terminal/peripheral rings. 

Conventional six-membered (hexagon) aromatic rings such as benzene and pyridine have an in-plane 

turn angle of 60° [36]. However, in the case of five-membered heteroaromatic (pentagon) rings, the 

value is considerably smaller at 45° (thiophene), 35° (pyrrole), and 32° (furan) [36] due to the different 

geometric properties of aromatic rings as a result of the variable atomic sizes of heteroatoms and 

bond length of C–X bond (X = heteroatom S, N, O in the five-member aromatic rings, 

correspondingly). Therefore, the helicenes with at least one five-membered heteroaromatic ring need 

n > 6 to become intrinsically chiral, whereas for the helicenes containing all six-membered 

carbo/hetero aromatic rings, n = 6 is sufficient to make them helically chiral. 
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Figure 6. Schematic representation of (a) in-plane turn angle and (b) helicity and enantiomers of [6]helicene. 

In general, a chiral helicene molecule exists in two enantiomeric forms. The right-handed helical 

structure (moving from up to down) is assigned the name (P)-enantiomer, whereas the left-handed 

helical structure (moving from up to down) is designated the (M)-enantiomer, according to the Cahn–

Ingold–Prelog rule (Figure 6b). This type of helicene tends to give configurationally stable 

enantiomers as the racemization process is expected to go through the highly energetic, strained Cs-

symmetrical transition state [37]. Along with this thermodynamic stability of enantiomers, helicenes 

also exhibit notable enhanced (chir)optical properties, making them suitable candidates for chiral 

auxiliaries and other chirogenic processes. Interestingly, in general, (P)-carbohelicenes are observed 

as dextrorotatory, whereas (M)-enantiomers display a levorotatory nature [38]. 

3.2.2. Achiral Helicenes 

Another type of helicene is the achiral flat molecules; for example, ortho-condensed polyaromatic 

molecules consisting of four rings with at least one ring being a five-membered (pentagon) 

heteroaromatic ring, as in [4]heterohelicenes. Whilst these structures are less interesting from the 

viewpoint of chirality, they possess enhanced conjugation, electron transfer, and emission properties, 

making them suitable candidates for various material chemistry applications. 

3.2.3. Stereodynamic Helicenes 

Holding an intermediate position between the chiral and achiral helicenes are the stereodynamic 

helicene structures. The geometry of these molecules is close to flat, whilst the van der Waals radii of 

the innermost hydrogens touch each other, making the structure stereodynamic and nonresolvable in 

solution, owing to the low (P)–(M) interconversion energy barrier. These include helicenes consisting 

of five benzenoid (hexagon) rings or [6]heterohelicenes with two five-membered (pentagon) 

heteroaromatic rings. However, in a solid state, these structures are able to adopt a chiral helical 

conformation. The dioxa[6]helicene 16 [27] is a typical example of such a system. 

Stereodynamic helicenes are also highly fluorescent in nature due to the extended conjugation, 

whilst lacking any intrinsic chiroptical properties in solution. Yet, applying host–guest chemistry 

with suitable enantiopure guests, the corresponding chiroptical properties can be induced and 

controlled in this type of helicene. Additionally, the stereodynamic helicenes can be made helically 

chiral by introducing a bulky substitution at the innermost (C1) carbon atom. Computational analysis 

confirmed that attachment of just one methyl group at the innermost position results in the same 

steric strength as introduction of one additional ortho-fused benzene ring. Thus, [5]helicene with a 

methyl group at the innermost position has a structure more helical than that of [6]helicene, thus 

increasing the racemization barrier for the former [37]. 

3.2.4. Meso Helicenes 

Meso helicenes are achiral, yet need to be classified separately. Two helicene fragments in one 

molecule, with the presence of a plane of symmetry, produce an achiral meso helicene. Each 

equivalent helical part of this molecule possesses the opposite helical sense, whilst the whole 



Symmetry 2018, 10, 10  7 of 48 

 

molecule is symmetrical. Potentially, it can be suitably desymmetrized by a covalent bond or 

supramolecular interaction, making it chiroptically active and, hence, usable in various chirogenic 

processes. However, this area has not been well investigated yet, as selective modification of only 

one helicene moiety out of two is an arduous task; this is due to the fact that both the helicene parts 

are chemically equivalent. For example, carbocyclic helicene 26 [39] and heterocyclic helicene 27–28 

[40] are meso double helicenes (Figure 7). It should be noted that the double helicenes have three 

stereoisomers, out of which two are optically active ((P,P) and (M,M)) and one is optically inactive 

((P,M) or (M,P)), defined as a meso structure. 

 

Figure 7. Examples of meso double helicenes 26–28. 

4. General Description and Main Synthetic Approaches toward Helicene-Based Chirogenic Systems 

The early pioneering work on helicene synthesis, resolution, and chiroptical properties has been 

performed by Newman [15,16,41], Wynberg [36,38], Martin [42], and Katz [26]. In general, classical 

methods of helicene synthesis include the following approaches: oxidative photocyclization, Diels–

Alder reactions, and various aromatic and metal-catalyzed coupling reactions [2–6,11]. The synthesis 

of helicenes is always a challenging task for organic chemistry due to the steric factors involved and 

difficulty in controlling the regioselectivity of reactions. The same factors are also responsible for the 

unique reactivity of the helicene skeleton. 

The current advances in synthetic chemistry, resolution, and chiral separation are essentially 

helpful in designing and obtaining novel enantiopure helicene molecules in sufficient quantities to 

be used for various applications. As BINOL, (2,2′-bis(diphenylphosphino)-1,1′-binaphthyl) (BINAP), 

and related biaryl systems have been successfully applied as ligands, catalysts, and hosts in 

stereodiscriminating processes [43–45], it is theoretically possible to thoroughly design helicene-

based helical systems possessing advantageous chiral properties. Progress in this area is highlighted 

below with several selected examples. 

Let us look closely at a general structure of (M)-[6]helicene 6 (Figure 8a), where the benzene 

rings at the beginning and at the end of the helical arrangement are called the terminal or peripheral 

rings. It can be clearly seen that the helix experiences steric clashes towards the inner sides (interior), 

called the helicene’s inner core. This structural organization results in a helical chiral cavity. The 

restricted space available between and around the two peripheral rings can be explored effectively 

for various chiral discriminating processes. In general, the introduction of suitable functional groups 

at the peripheral rings can act as a binding site to hold the reactant or guest molecules to facilitate the 

enantioselectivity, where the chiral cavity space of the helicene is able to influence the corresponding 

(diastereomeric) transition state and/or complexation mode. In contrast, the opposite outer skeleton 

of the helicene, termed as the helicene outer core (exterior), can be functionalized and used to 

covalently link these molecules on surfaces and for other applications. 

The tailor-made design of helicenes for a suitable application can be of two types; first, where 

the functionalization at one peripheral ring is sufficient (monodentate), and second, where 

functionalization on both the terminal rings is required (bidentate) (Figure 8b). The bidentate 

helicenes can be C2-symmetric (R = R’) or nonsymmetric (R ≠ R’) molecules. In accordance with the 
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structural features and substituent patterns of helicenes, their efficiency in chirogenic processes is 

observed, as demonstrated throughout this review. 

 

Figure 8. (a) General explanation of terms used for helicene structures and chiral cavity (shaded area); (b) 

representative [6]- and [7]helicenes (R = R’ or R ≠ R’) with mono- or di-functionalized peripheral rings. 

However, since the majority of recently published reviews [2–6] have focused on helicene 

synthetic chemistry, there is no need to describe this topic here in detail. Alternatively, this review 

addresses the structural design and stereochemical aspects of helicene chromophores suitable for 

various applications in chiral processes, whilst synthesis of these molecules will only be highlighted 

in brief upon necessity to emphasize their spatial and chiral properties. 

5. Helicenes as Chiral Auxiliary/Reagent or Additive 

Due to the difficulties associated with the synthesis of helicenes and obtaining the corresponding 

enantiopure forms in sufficient amounts, their application as a chiral auxiliary in stoichiometric 

reactions is limited. However, one of the first results on the use of helicenes as chiral auxiliaries in 

few diastereoselective reactions was reported in 1985–1987 by Martin et al. with racemic 2-

substituted-[7]helicene [46–50]. Hence, racemic 29 was employed as an inbuilt chiral auxiliary for the 

diastereoselective reaction of the carbonyl group of α-keto esters upon reduction with NaBH4, 

yielding 30 (99% yield; 100% de) [46], and on the nucleophilic addition of Grignard reagent to give 31 

(95% yield; 100% de) [47] (Scheme 1). 

 

Scheme 1. Diastereoselective reaction using racemic [7]helicene 29 as a chiral auxiliary. 

Although high diastereoselectivity (100%) was observed, the overall process requires attaching 

(protection) and detaching (deprotection) the helicene auxiliary, thereby making it difficult to scale 
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up. Similarly, [7]helicene-attached unsaturated ester 32 was also utilized for the highly 

diastereoselective ene reaction with cyclohexene 33 in the presence of SnCl4 to afford 34 with high 

yield (86%) and 100% de [48] (Scheme 2). 

 

Scheme 2. Diastereoselective ene reaction using racemic [7]helicene 32 as a chiral auxiliary. 

Further, hydroxyamination of E-stilbene 35 under the Sharpless condition by using helicene 36 

as a chiral auxiliary resulted in 37 with 32% yield with 100% de [49] (Scheme 3). 

 

Scheme 3. Diastereoselective hydroxyamination of stilbene reaction using racemic [7]helicene 33 as a 

chiral auxiliary. 

Another example is based on enantioenriched 2-cyano-[7]helicene 38 employed as a 

stoichiometric chiral additive (reagent) for the epoxidation of alkenes 35 and 39 using H2O2 as an 

oxidant to give enantiopure epoxides 40 (92%, 99% ee) and 41 (84%, 97% ee), respectively [50] (Scheme 

4). The mechanism includes the initial reaction between enantiopure 2-cyano-[7]helicene 37 and H2O2 

to generate in situ the corresponding chiral hydroperoxyimine, which serves as a chiral oxidizing 

reagent for the subsequent epoxidation of alkenes 35 and 39, whilst itself converting finally to 

[7]helicene-2-carboxamide 42. 

These examples (Schemes 1–4) [46–50] are the first cases of helicenes being used as chiral auxiliaries 

resulting in a high asymmetric conversion (de or ee), yet noncatalytic in nature. These excellent results 

were due to the judicious selection of [7]helicene with corresponding functionalization at the 2-position 

(monodentate) (refer, Figure 8), which locates inside the helical chiral cavity with sufficient accessibility 

to the reactants. Besides this, a geometric feature of [7]helicenes is that the two peripheral rings are located 

one above another, hence inducing steric hindrance to one of the reacting prochiral faces and generating 

high selectivity via the stereospecific approach. 

It is of note that most of the helicene-based catalytic research is focused on the use of [6]helicene 

and substituted [5]helicene-based systems. In cases where functionalization at both the rings is 

needed, substituted [5]helicenes and [6]helicenes are more suitable due to possibility of the 

geometrical accessibility of these groups (refer, Figure 8b). These groups are located on the same side; 
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hence, they are capable of coordinating or bonding together with the reactive partners. However, this 

situation is difficult to obtain in [7]helicenes, as seven benzenoid rings give the in-plane turn angle of 

420° (7 × 60°), forcing the functional groups present on the terminal rings to exist in opposite 

directions, thus unable to work co-operatively (refer, Figure 8b). Yet, when only one of the peripheral 

rings is functionalized and acts as an active catalytic site, the [7]helicene-based systems have an 

additional advantage over substituted [5]- and [6]helicenes. This is owing to the same in-plane turn 

angle property allowing another peripheral ring to block one of the prochiral faces of the reactant. 

Nevertheless, surprisingly, asymmetric catalysis with [7]helicenes is not well explored in comparison 

with that with [5]- and [6]helicenes. 

 

Scheme 4. Enantioselective epoxidation of alkenes 35 and 39 using enantioenriched [7]helicene 38 as 

a chiral additive. 

6. Helicenes as Chiral Catalysts 

Since various helicene-based phosphine-related ligands have been reviewed [2,5,7–9], only 

recent selected examples capable of delivering exceptionally high ee values are summarized here. 

In 2016, the [5]carbohelicene-based phosphine ligands 43 and 44 were rationally designed for 

application in Pd-catalyzed asymmetric synthesis [51]. Both the systems were prepared from 

corresponding rac-bromo substituted 45 via lithiation and subsequent reaction with 

chlorodiphenylphosphine followed by oxidation with hydrogen peroxide to afford rac-phosphine 

oxide 46 with 63% yield. It was successfully resolved by using spiro-TADDOL (α,α,α,α-tetraphenyl-

1,3-dioxolane-4,5-dimethanol) 47 as a resolving agent to form the insoluble diastereomer 48 with (P)-

46, which in turn gave pure (P)-46 with greater than 99% ee on subsequent treatment. Then, (P)-46 

was aromatized to 49 quantitatively by using 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Both the 

phosphine oxides 48 and 49 were reduced to the corresponding phosphines, 43 and 44, with 

trichlorosilane and P(OEt)3 with 70–72% yield and 99% ee (Scheme 5) [51]. 

In general, unsubstituted [5]helicenes are configurationally unstable and tend to racemize easily. 

However, introduction of the diphenylphosphine group at the 1-position results in the 

configurational stability of 43 and 44. Of these two structures, the 7,8-dihydro-derivative 43 tends to 

be more helical due to the saturated ethane unit, which has greater conformational flexibility. From 

X-ray analysis, it was confirmed that the helical pitch diameter of dihydrohelicene 43 is 3.54–3.50 Å, 

which is larger than that of fully aromatic 44, found to be 3.39–3.34 Å. This rationally changed spatial 

arrangement has a noticeable influence on its application as a ligand owing to the favorable geometry 

and distance, which was clearly demonstrated by the metal–ligand and arene interaction. Hence, the 

double bond (C8a–C14b) is coordinated with the palladium metal center of ligand 44 in a side-on (η 

2) fashion, which is not possible in the case of dihydrohelicene 43. This difference in geometric 
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features controls the outcome of Pd-catalyzed reactions. For example, the alkylation of rac-1,3-

diphenylallyl acetate 50 with dimethyl malonate 51 by using (M)-dihydrohelicene 43 as a chiral 

ligand was highly efficient, resulting in the corresponding (S)-enantiomer 52 with 99% yield and 94% 

ee (Scheme 6) [51]. In contrast, the fully aromatic (M)-helicene 44, whilst affording the same 

configuration of the product 52, gave similar yield, but only 71% ee (Scheme 6). This clearly 

demonstrates that the ligands’ geometry allowed them to opt for different transition states. 

 

Scheme 5. Synthesis and resolution of enantiopure phosphine ligands 43 and 44. 

 

Scheme 6. Pd-catalyzed asymmetric alkylation of rac-1,3-diphenylallyl acetate 50 using helical 

phosphine ligands 43 and 44. 

Similar types of C1 position substituted phosphinite ligands, helicenoid 53 [52] and helicene 54 

[52] (Figure 9), were also prepared and successfully explored for the Pd-catalyzed asymmetric allylic 

alkylation between 50 and 51 (see Scheme 5). In both cases, the high yields and ee of 52 were obtained 

as with 53 (96%, 90% ee) and with 54 (97%, 99% ee) [52]. It is of note that this kinetic resolution reaction 

using helicene ligand 55 [53] was firstly reported in 2000 with 100% conversion and 81% ee (Figure 

9). Although the results from using 55 are comparatively worse in terms of ee, the reaction requires 

less catalyst loading and proceeds faster compared with other ligands. Interestingly, 55, whilst being 

a bidentate ligand, still acts as a monophosphine (monodentate) ligand during the catalytic process 

owing to the large distance (6.481 Å) between the two phosphorus atoms; this was the subject of 

pioneering work by Reetz et al. [53]. Thus, one can see that all phosphine (43, 44) and phosphinite 

(53, 54) ligands prepared later, possess only a mono phosphorus atom and are suitable for application 

as monodentate ligands in this reaction. 
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ligand reaction condition yield (%) ee (%) ref. 

(P)-53 [(η3-C3H5)-PdCl]2 (2.5 mol%), (P)-53 (10 mol%), BSA, LiOAc, CH2Cl2, rt, 24 h 90 96 [52] 

(P)-54 [(η3-C3H5)-PdCl]2 (2.5 mol%), (P)-54 (10 mol%), BSA, LiOAc, CH2Cl2, rt, 24 h 97 99 [52] 

(P)-55 [(η3-C3H5)-PdCl]2 (0.25 mol%), (P)-56 (1 mol%), BSA, KOAc, CH2Cl2, rt, 4 h 100 81 [53] 

Figure 9. Other helicene-based phosphorus-containing ligands 53–55 used for Pd-catalyzed allylic 

substitution reaction of 50 and subsequent kinetic resolution. 

The corresponding enantiopure 53 and 54 were synthesized using the Ni-catalyzed [2 + 2 + 2] 

cycloaddition reaction of alkyne 56 to give 57 (97%), and the subsequent demethylation and 

esterification as (1S)-camphanate to yield the corresponding diastereomers, 58 and 59. Further, the 

separated diastereomers were hydrolyzed with alkali to quantitatively produce the enantiomer 60, 

which, on subsequent reaction with chlorodiphenylphosphine in the presence of sodium hydride, 

resulted in the tetrahydro phosphinite ligand, (P)-53. For 54, an additional step of dehydrogenation 

using triphenylmethylium tetrafluoroborate (Ph3CBF4) was required to obtain the diastereomer 61 

(92%), which upon hydrolysis gave [6]helicen-1-ol 62, which was finally converted to phosphinite 54 

with 74% yield (Scheme 7) [52]. 

 

Scheme 7. Synthesis and optical resolution of 53 and 54 by using the Ni-catalyzed [2 + 2 + 2] 

cycloaddition reaction as a key step. 

Inspired by the difference in the catalytic performance of 43 (94% ee) and 44 (71% ee) (Scheme 6) 

in Pd-catalyzed asymmetric allylic alkylation, the same group also applied these ligands in other Pd-
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catalyzed reactions. Thus, in further investigation, the dihydrohelicene ligand 43 was found to be 

highly useful in the asymmetric allylation of indoles 63 with 1,3-diphenylallyl acetate 50 to give the 

3-alkylated indole product 64 in up to 99% ee, and in the etherification with alcohols 65 to yield 66 in 

up to 94% ee (Scheme 8) [51]. 

 

Scheme 8. Pd-catalyzed asymmetric allylic substitution reactions of 50 by using (M)-helicenoid 

phosphine ligand 43 (a) with indole 63 and (b) with alcohols 65. 

In the case of fully aromatic helicene 44, the ligand was highly effective in the stereocontrol of 

helical chirality in the Suzuki–Miyaura coupling reaction between bromide derivative 67 and boronic 

acid 68, resulting in up to 99% ee for chiral biaryl products 69 of (P)-helicity (Scheme 9) [51]. 

 

Scheme 9. Pd-catalyzed asymmetric Suzuki–Miyaura coupling between 67 and 68 using (P)-44 as the 

helicene phosphine ligand. 

These examples (43 and 44) clearly show that the helicity and space available in the helical 

groove suitable for a specific transition state play a vital role in the stereoselective control of the 

reaction pathway. The DFT-based calculation at the B3PW91/6-31G* level (LANL2DZ for the Pd 

atoms) revealed that the transition state with minimum steric repulsions between the helicene 

backbone and the reactant group is responsible for the (S)-configuration products (52, 64, and 66) and 

P-configuration product (69) obtained with high ee [51]. 

Helicene-based ligands have been also successfully investigated for the rhodium-catalyzed 

asymmetric hydrogenation of alkenes. In fact, the first enantioselective catalysis using helical 

diphosphane 55 was the asymmetric reduction of itaconate 70 as a model compound under mild 

conditions using in situ generated (M)-55 and [Rh(cod)2]+BF4−. This results in the corresponding 

diester (S)-71 with 54% yield and 39% ee product, as reported by Reetz et al. [54] (Scheme 10). The 

synthesis of 55 is based on photochemical cyclization with subsequent conversion of the 

corresponding helicenedibromide derivative to phosphine 55, followed by preparative chiral HPLC 

separation of the enantiomers [54]. Yamaguchi et al. improved the yield (up to 100%) and 
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enantioselectivity up to 96% ee for (S)-71 using the (M,M,S,l)-configuration of the bis-helicenic 

phosphite ligand 72 [55] (Scheme 10). The excellent output in this reaction obtained with 72 was 

attributed to the matched (suitable) pair of asymmetries, i.e., two (M)-helical and one (S)-axial 

chirality. However, the central chirality derived from the l-menthyl part does not have much effect 

on the reaction ee outcome. 

 

Scheme 10. Comparative Rh-catalyzed asymmetric hydrogenation of itaconate ester 70 using 

helicene-based ligands 55 and 72. 

Another approach adopted was to design a helicene with the fused phosphole heterocyclic unit 

at one of the terminal rings where the phosphorus atom has an additional point chirality, denoted as 

SP or RP. A key synthetic step includes the diastereoselective photochemical cyclization reaction of a 

suitable (SP or RP) enantiopure phosphole-bearing stilbene derivative 73. The resulting regioisomeric 

[6]helicene phosphine oxide 74 and phospha[7]helicene 75 were chromatographically separated with 

32% and 28% yield, respectively [56] (Scheme 11).  
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Scheme 11. Photochemical diastereoselective synthesis of [6]helicene phosphine oxide 74 and 

phospha[7]helicene 75. 

Subsequently, enantiopure 74 was reduced and in situ reacted with gold(I) salts to generate the 

phospha-substituted helicene–gold complexes, 76 (endo) and 77 (exo). In endo-76, the gold atom 

occupies the internal chiral cavity space, approaching towards the opposite terminal ring, whereas 

in exo-77, the gold atom is situated at the external face, being away from the helical moiety. Thus, 

chromatographically separated endo-76 effectively catalyzes the enantioselective cycloisomerization 

of N-tethered 1,6-enyne 78 to give bicyclo[4.1.0]heptane 79 with 95% yield and 81% ee, whilst exo-77 

remained almost inactive [56] (Scheme 12). Meanwhile, various phosphole-containing ligands were 

also prepared and screened in similar reactions with success [8,9,57]. 

 

Scheme 12. (a) Synthesis of endo (SP,P)-76 and (b) its application as a catalyst for the enantioselective 

cycloisomerization of N-tethered enyne 78. 

However, at present, the scope of the use of helicenes containing phosphorus functionality 

appears to be limited towards the metal-catalyzed reactions, as described above. A few other 

attempted asymmetric reactions such as ketoimine reduction (22% ee), addition of thioester to 

benzaldehyde (22% ee), and reductive aldol reaction afforded quite low ee values, with 

tetrathia[6]helicene diphosphine oxides as a Lewis base catalyst [58].  

Besides these phosphorus-containing helicenes, heterohelicenes with a nitrogen atom at the 

innermost 1- or 2-position are also able to provide a chiral cavity suitable for various asymmetric 
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organocatalytic processes, where the nitrogen atom plays a crucial role as a Lewis base or hydrogen-

bonding auxiliary. The classical synthetic approach for azahelicenes having a nitrogen atom at the 

peripheral ring as the pyridine subunit is based on the preparation of the corresponding stilbene 

derivative followed by the photocyclization reaction.  

The first use of a pyridine-based helicene as a chiral organocatalyst for promoting the 

enantioselective acyl group transfer reaction and kinetic resolution of racemic phenylethanol 80 was 

reported by Stary et al. in 2009 [59]. The preparation of helicenes 81 and 82 [60] involves the [2 + 2 + 

2] cyclotrimerization of regioisomeric aromatic triynes 83 and 84 using a Co(I)-catalyzed reaction as 

the major synthetic step to obtain tetrahydrohelicenes 85 (82%) and 86 (89%), respectively (Scheme 

13). Finally, the MnO2-based oxidation resulted in rac aza[6]helicene 81 (65%) and 82 (53%). The 

optical resolution of helicene 81 was carried out through the diastereomeric salt formation with 

optically pure (+)-O,O′-dibenzoyl-D-tartaric acid, whereas enantiopure 82 was obtained by separation 

of the corresponding racemic mixture with chiral HPLC (Scheme 13) [60].  

It was found that (+)-(P)-1-aza[6]helicene 81 is an ineffective catalyst for this process with <5% 

yield, as the nitrogen atom at the most sterically congested position has very limited accessibility for 

the reactant. However, the isomeric (−)-(M)-2-aza[6]helicene 82, due to the easily accessible nitrogen 

atom position, considerably improved the catalytic performance with 46.9% conversion to 87 and 

53.1% ee for the unreacted starting alcohol 80 (R-configuration) with a selectivity factor of 7 for the 

corresponding (S)-enantiomer (Scheme 14) [59]. 

 

Scheme 13. Synthesis of azahelicenes 81 and 82 via Co+1-catalyzed [2 + 2 + 2] cyclotrimerization reaction. 

 

Scheme 14. Kinetic resolution of rac-phenylethanol 80 by (M)-81 and (M)-82. 

This example clearly demonstrates how the suitably tailor-made design of azahelicenes can 

provide a useful chiral pyridine-based nucleophilic organocatalyst comparable to other enantiopure 

amine-containing catalysts, whilst possessing different elements of asymmetry. In comparison to 
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pyridine, dimethylaminopyridine (DMAP) and DMAP-containing compounds 88-90 [61–64] (Figure 

10) are better nucleophilic catalysts for acylation of alcohols due to the enhanced nucleophilicity 

provided by the electron donating nature of the dimethylamino group at the para position. Thus, (P)-

helicenoids 88 containing a p-dialkyl amino substituent turned out to be a more effective 

enantiodifferentiating catalyst for the resolution of the (S)-enantiomer of racemic 80 with the selectivity 

factor of 17, in 5 h, as compared to 48 h with a selectivity factor of 7 using (M)-82 as the catalyst. 

The helicenoidal DMAP 88 has a nitrogen atom at the 2-position and saturated N-alkyl group, 

whilst the helicenoid core ensures two additional advantages. Firstly, it enhances the nucleophilicity 

of the pyridine nitrogen at the 2-position by its electron donating ability (+I effect), and secondly, it 

increases the conformational flexibility to accommodate reactants inside the helical chiral cavity for 

efficient enantiodifferentiating processes. The attached ethyl substituents at the central ring of the 

helical outer core were responsible for increasing the lipophilic character and, thus, the solubility in 

organic solvents for better performance [61]. The helicenoid DMAP 88 displayed a comparatively 

higher selectivity factor of 17–116, depending on the structure of the racemic aromatic ethanol. In 

comparison to 88, the axially chiral DMAP catalyst 89 [62,63] showed selectivity factors of 12–52 (in 

ether) [62] and 32–95 (in t-amyl alcohol) [63] for enantioresolution of different racemic aromatic 

ethanols. However, the planar chiral DMAP catalyst 90 [64] displayed the smaller selectivity factor 

of 8.9–29. It is of note that, with planar chiral DMAP 89, the acylating agent was acetic anhydride, 

whereas, in other cases, bulkier isobutyric anhydride was used. Thus, the helical DMAP 88 appears 

to be highly superior to 90 under similar experimental conditions. 

 

Figure 10. Structures of simple dimethylaminopyridine (DMAP) and helically, axially, and planar 

chiral DMAP catalysts 88–90, respectively. 

Indeed, the first use of unsubstituted aza[6]helicene 81 and 82 as an organocatalyst for the kinetic 

resolution of alcohols rationalized the corresponding steric constraint imposed at the 1-position for a 

bulky acyl moiety and its subsequent group transfer reaction to rac-alcohols. However, the 

additionally functionalized 1-aza[6]helicene was found to be an effective asymmetric catalyst for 

various reactions [65,66], probably due to the facile access to reactants in the chiral cavity in the 

transition state, as demonstrated in the following examples.  

The azahelicene-based systems were converted to the corresponding N-oxides and investigated 

for the asymmetric ring opening of epoxides with chloride as a nucleophile. For example, 1-

aza[6]helicene-N-oxide derivatives 91–93 (Schemes 15 and 16) [67] were prepared in the racemic form 

using a general three-step synthetic methodology, and their enantiomers were resolved over chiral 

HPLC [67]. The representative synthesis of 93 starts from the benzoquinoline aldehyde unit 94 and 

corresponding bromo-substituted phosphonium salt 95 in three steps, where the initial step involves 

the Z-selective Wittig condensation followed by the palladium-catalyzed Stille–Kelly coupling 

reaction to result in azahelicene 96. Finally, oxidation with meta-chloroperbenzoic acid gave the 

desired helicene-N-oxide 93 with 32–49% yield (Scheme 15). 
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Scheme 15. Representative general synthetic scheme for 1-azahelicene-N-oxide 93 using Stille–Kelly 

coupling reaction. 

Then, the enantiopure (P)-helical ligands 91–93 were screened for the desymmetrization of meso 

epoxide 97 with chloride as a nucleophile to obtain 98 with satisfactory yields and ee (Scheme 16) [67]. 

Similarly, enantiopure helical 2,2′-bipyridine-N-monoxide 99 was prepared in two steps from 

enantiopure 93 with 95% yield (Scheme 17a) and applied as a Lewis base type catalyst for the highly 

enantioselective reaction between aldehyde, 100, and allenyltrichlorosilane 101 to obtain 

enantiomerically enriched homopropargylic alcohol 102 [68]. The reaction displayed high conversion 

(78–97%) and 74–96% ee for various ortho- and para-substituted aromatic aldehyde derivatives, with 

18 examples in total (Scheme 17b). Further, the catalyst 99 can be recovered (~80%) without any loss 

of activity and selectivity after the reaction, making it highly attractive for industrial application.  

 

Scheme 16. Desymmetrization of meso epoxide 97 using 1-azahelicene-N-oxide 91–93 as catalysts. 

 

Scheme 17. (a) Two-step synthesis of helicene (P)-99 from (P)-93 and (b) asymmetric synthesis of (S)-

propargylic alcohols 102 from aldehyde 100 and allenyltrichlorosilane 101 by using (P)-99 as a catalyst. 
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The (S)-alcohol 102 was the major product with (P)-helicene 99 as a catalyst. It was also observed 

that ortho-substituted aldehydes 100 always provided higher ee than the corresponding para-

substituted derivatives, regardless of the functional group attached. This key experimental 

observation indicated that, out of two possible transition states (Figures 11a,b), in one of them, the 

hydrogen or substituent at the ortho position of aldehyde 100 results in steric clash with catalyst 99, 

which is responsible for the stereoselectivity. Thus, the suggested transition state model showed 

preference for the Si-face addition with π-π stacking between the bound aldehyde 100 and the 

bezofused helicene framework of 99 (Figure 11a), whereas the Re-face approach is disfavored due to 

the steric hindrance in the transition state (Figure 11b), where the reactants 100 and 101 and catalyst 

99 are coordinated through the silicon atom. A separate DFT-based computational study also 

supported this mechanism [69]. 

 

Figure 11. Proposed transition state models showing preference for (a) favorable Si-face attack and 

(b) unfavorable Re-face attack, with (P)-99 catalyst. The bottom and top parts of the transition state 

models are marked in blue and black, respectively, whilst the coordinated SiCl2 group with the 

corresponding bonds are marked in magenta. 

Azahelicenes have also been investigated as hydrogen bond donor chiral catalysts. The 

asymmetric addition of azole nucleophiles to nitroalkenes using various hydrogen bond catalysts is 

known. In this respect, aminopyridinium salts are also capable of activating nitroalkenes through the 

hydrogen bond donating ability to the nitro group. For this purpose, aza[6]helicene derivatives 103 

and 104, having a 2-aminopyridinium ring at the peripheral position, have been prepared [70]. Hence, 

the asymmetric addition of 4,7-dihydroindole 105 to nitrostyrene 106 using chiral (P)-helicenes 103 

and 104 as catalysts, followed by oxidative aromatization, afforded exclusively β-nitro-indol-2-yl 107 

with relatively high yield and ee (Scheme 18). 

It was observed that the increased bulkiness of the amino group gives a higher ee. Thus, the 

results of (P)-104 in terms of ee ratio were as follows for the corresponding R: H (69:31) = Bn (69:31) < 

t-Bu (92:8) = 1-adamantyl (92:8). Further, the yields were noticeably improved from 79% (for the t-Bu 

derivative) to 88% (for the adamantyl derivative) under similar conditions; hence, adamantyl-

containing (P)-104 is the optimal organocatalyst for this reaction (see the corresponding results 

summarized in Scheme 18). Further, the enhanced effectiveness of 104 in comparison with 103 

indicates that the benzofused helicene framework affects the ee value by covering the space beneath 

the two hydrogen bonds [70], and is thus similar to the case shown in Figure 11.  

Another example of the activation of nitroalkenes via the hydrogen bonding donor 

characteristics was demonstrated by using aminopyridinium-based (M)-[6]helicene 108 in the 

asymmetric Diels–Alder reaction between cyclopentadienes 109 and nitroethylene 110 to give the 

cycloadduct product 111 in moderate 30–40% ee [71]. A traditional hydrogen bonded catalyst 

generally requires the complementary donor–acceptor units in both reactants to orient specifically 

for asymmetric induction in the addition reaction. However, here is a case where one counterpart is 

a nonfunctionalized cyclopentadiene 109, unsuitable for hydrogen bonding. Therefore, the (M)-

helicene catalyst 108 used has a aminopyridinium peripheral ring which only binds to nitroethylene 
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110 (dienophile) through the corresponding hydrogen bonding. The stereospecificity of this reaction 

was achieved in the following manner: the helical backbone of (M)-108 blocks one of the faces of 110, 

leaving another face accessible to 109 (diene), hence making the whole reaction enantioselective in 

nature (Scheme 19). 

Most of the successful examples of azahelicenes (91–93, 99, 103, 104, 108) as organocatalysts 

described here have a nitrogen atom at the 1-position of the innermost part of the helicene with 

additional substituents at the 1- or 2-position to modify the reactivity as well as the helicity (chiral 

cavity space), to facilitate accessibility of the reactant in a stereospecific manner, and to enhance 

asymmetric output. 

 

Scheme 18. Asymmetric addition reaction between 4,7-dihydroindole 105 and nitrostyrene 106 using 

chiral (P)-helicenes 103 and 104 as hydrogen bond donor catalysts. 

 

Scheme 19. (M)-helicene 108 as a hydrogen bond catalyst for asymmetric Diels–Alder reaction 

between cyclopentadiene 109 and nitroethylene 110. 

Carbohelicenes 5 and 6 and heterohelicene 112, devoid of any functional group, are also able to 

act as chirality inducers in selected asymmetric reactions. Soai et al. have successfully used electron-
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rich nonfunctionalized carbohelicenes 5 and 6 [72] and heterohelicene 112 [73] for the nucleophilic 

addition of diisopropylzinc to electron-deficient pyrimidine-5-carbaldehyde 113. In this case, the 

chirality induction was a result of two main reasons. Firstly, the formation of a charge transfer 

complex between helicenes 5, 6, and 112 and the carbonyl group of 113 results in the blocking of one 

reactive face while another face is left to react. Secondly, the final alcohol product 114 obtained can 

catalyze this reaction by itself, leading to overall chirality amplification to yield up to 95–99% ee 

(Scheme 20). In all these cases, the use of (P)-enantiomers of 5, 6, and 112 as catalysts resulted in the 

(S)-configuration of 114, whereas the (M)-enantiomer produced the corresponding R-configuration. 

Further, even carbohelicenes 5 and 6 with a very low ee such as 0.13% and 0.54% were also able to act 

as chiral inducers, ensuring considerable stereospecificity and affording 56% and 60% ee of 114, 

respectively, as a result of chirality amplification by asymmetric autocatalysis [72].  

This is an interesting example where chiral inducers with a very low ee generate significantly 

enhanced ee of the product. This type of chiral amplification is a “soldiers-and-sergeant” principle 

and often observable in the field of supramolecular chirogenesis [1]. However, this scope appears to 

be limited in the case of asymmetric autocatalysis.  

Indeed, the asymmetric nucleophilic addition of an organozinc compound to the carbonyl group 

has been mainly investigated with the use of biaryl-based systems such as BINOL and 2,2′-Diphenyl-

(4-biphenanthrol)—axially chiral diol systems capable of coordinating to Lewis acids. Inspired by 

this, Katz et al. developed the bis[5]helicene-based diol system ([5]HELOL) 115, which contains two 

identical units of (P)-[5]helicene-1-ol 116 connected by a single biaryl bond at the 2-position. 

Interestingly, the hydroxyl group is attached at the 1-position (the innermost position of [5]helicene), 

which makes 116 configurationally stable, and hence provides increased steric hindrance for 

racemization. The HELOL 115 was synthesized in a total of eight steps on the multigram scale with 

an overall 44% yield (Scheme 21a) [74]. The helicene backbone 117 was synthesized by Diels–Alder 

reaction between protected enol ether 118 and quinone 119. The enantiopure (P)-[5]helicene-1-ol 116 

was oxidatively coupled using Ag2O, to selectively give (P,P)-[5]HELOL 115, with only ~2% of the 

meso isomer. The energy barrier for the racemization of 115 (ΔH‡ = 106 ± 3 kJ mol−1 and ΔS‡ = −10.0 ± 

0.1 J mol−1 K−1) as determined by 1H NMR was found to be even higher than that of (P)-[5]helicene 

116 (ΔH‡ = 95.8 kJ mol−1 and ΔS‡ = −17.2 J mol−1 K−1) [74] with the optical rotation value of +2580 in 

acetonitrile (c = 0.01 M). Further, the thermal racemization at 45 °C did not occur in 72 h as indicated 

by circular dichroism (CD) spectroscopy. Additionally, in degassed acetonitrile solution, it was 

configurationally stable for six days at room temperature as also analyzed by CD measurement. The 

enantiomeric stability toward conversion to the meso isomer and racemization made it a suitable 

candidate for screening in asymmetric catalysis.  

The catalyst 115 was screened for diethylzinc addition to a series of aromatic aldehydes 100. 

However, for appreciable catalytic activity, catalyst loading as high as 50 mol % was needed to obtain 

moderate to good ee values of the alcohol products (S)-119 (Scheme 21b). Under similar conditions, 

the (R)-(+)-BINOL gave lower yield (56%) and ee (34%) for (R)-119 in comparison to (P,P)-(+)-HELOL 

115 giving (S)-119 (93% yield, 81% ee). This high and opposite stereospecificity is apparently due to a 

greater steric hindrance of HELOL 115 in comparison to BINOL upon chelation of the zinc atom of 

the reactant diethyl zinc. Additionally, this crowding in 115 is also able to prevent the phenomenon 

of zinc–oxygen coordination-based aggregation, responsible for catalyst deactivation, making 115 

comparatively more reactive than BINOL [74]. Further, the opposite stereochemical outcome of 

alcohol products 119 obtained with (P,P)-(+)-[5]HELOL 115 as a catalyst and (R)-(+)-BINOL as catalyst 

is in accordance with the stereochemistry of the biaryl bond present in HELOL 115, which appears to 

be of (S)-configuration (see structure 115 in Scheme 21a).  

Whilst unsubstituted [4]helicene 4 is a planar and achiral structure, the introduction of two methyl 

groups on both the peripheral rings at the innermost positions gives rise to a helical structure with 

configurational stability. In this respect, Yamaguchi et al. have extensively explored the synthetic 

chemistry and applications of functionalized dimethyl[4]helicene in different fields [75]. Thus, (P,P)-

[4]helicene cycloamides 120–122 were prepared from well-known rac-diketone 123 via dicyanohelicene 

124, which was converted to helicene diacid 125 by alkaline hydrolysis. Then, helicene diaicid 125 was 



Symmetry 2018, 10, 10  22 of 48 

 

resolved by using the chiral base quinine through diastereomeric salt formation. Finally, (P)-125 was 

converted to acid chloride and then coupled with a suitable diamine linker 126 to obtain cycloamides 

dimer 120 (24%), trimer 121 (23%), and tetramer 122 (19%) (Scheme 22) [76].  

 

Scheme 20. Asymmetric autocatalysis initiated by carbohelicenes (P)-5, (P)-6, and heterohelicene  

(P)-112. 

 

Scheme 21. (a) Synthesis of (P,P)-HELOL 115 and (b) its application in asymmetric diethyl zinc 

addition to benzaldehydes 100. 
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Scheme 22. Synthesis of (P,P)-helicene cycloamides 120–122 from diketone 123. 

Interestingly, in this example, the functionalized amino groups are present at the outer core of the 

helicene but not at the helical chiral cavity as in previous examples; this makes it remarkably different. 

Yet, when it is dimerized with a suitable linker such as cycloamide 120, the chirality of the helicene is 

transferred to a macrocycloamide, which essentially provides a chiral pocket for the asymmetric 

catalytic transformations. Macrocycloamides such as (P,P)-120 have been applied for the asymmetric 

nucleophilic addition of diethyl zinc to aromatic aldehydes 100 with good yields (51–88%) and 

moderate enantioselectivities (27–50% ee) upon use of up to 5 mol % catalyst (Scheme 23) [76]. 

 

Scheme 23. (P,P)-helicene cycloamide dimer 120 catalyzed asymmetric diethyl zinc addition to 

aromatic aldehydes 100. 

It has been clearly demonstrated that helicene-based asymmetric organocatalysis is a highly 

promising and exciting field in terms of the enantioselectivity obtained with the lowest catalyst 
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loading. Thus, this area of chemistry has exciting prospects to explore other well-known asymmetric 

reactions by using helicenes as organocatalysts, with foreseen advances in terms of the ee values in 

comparison to conventional organocatalysts. For the most asymmetric organocatalysts, it is possible 

to design and develop helicene-based helical counterparts which are expected to give improved 

reactivity and stereoselectivity. However, the design of smart catalysts and their multigram synthesis 

in the enantiopure form still remain a major challenge to further investigations.  

7. Helicene in Supramolecular Chirogenesis 

Besides asymmetric catalysis, helicenes are efficiently used in a modern branch of chiral science 

called supramolecular chirogenesis, which covers all aspects of asymmetry induction, transfer, 

amplification, and modulation through noncovalent interactions. In numerous chromophoric 

systems [1] available to date, helicenes are also successfully employed. Indeed, helicenes have turned 

out to be one of the most attractive chromophores, which are suitable for several chirogenic 

applications including chiral recognition, sensors, and self-assembly, and are applicable to various 

areas ranging from classical solution chemistry, nanoparticles, and polymers, up to the sensing of 

biologically relevant molecules. Owing to their conjugated aromaticity, these chromophoric systems 

can be conveniently studied by diverse spectroscopic methods, such as UV, fluorescence, NMR, CD, 

etc., which are described below with selected examples.  

7.1. Helicene-Based Chiral Recognition of Small Molecules 

Since chirality is an essential part of life on Earth, its recognition and sensing play a vital role in 

such important fields of human activity as scientific research and modern technologies. Therefore, 

various methods of obtaining enantiopure molecules by optical resolution and by asymmetric 

synthesis are attractive areas of chemical research. Besides preparation, the analysis of all types of 

chiral molecules is also an equally important part of physical–organic chemistry. So far, existing 

analytical methods are based on the enantiodifferentiation procedure conventionally performed by 

using chiral HPLC, NMR, fluorescence, and CD techniques. In this respect, chiral helicenes are highly 

prospective host molecules to serve as specific chirality sensors. 

One of the first reports of such an application was published in 2001 by Reetz et al. [77]. To this end, 

2,5-dihydroxy[6]helicene 127 (HELIXOL) was prepared for chiral recognition of amines 128–131 and 

amino alcohols 132–135 by using fluorescence as a detection tool (Scheme 24). The synthetic strategy 

includes classical Wittig olefination and photochemical cyclization steps. The condensation of 136 with 

137 gives cyclic 138, ether linkage of which ensures structural control during the double photocyclization 

reaction to obtain helicene cyclophane 139. The chiral HPLC separation of racemic 139, followed by the 

deprotection of the ether group using BBr3, affords enantiopure HELIXOL 127 (Scheme 24).  

It was found that the host 127 served as an excellent fluorescent sensor, able to display 

enantioselective quenching by several amines and amino alcohols through the hydrogen bonding 

interactions. The best results were obtained for alaninol 133 with enantioselective factor α = KR/KS = 

2.1 upon using the levorotary (M)-127. Although the results obtained with 127 for chirality sensing 

are moderate, this work is a pioneering contribution for the use of helicenes for the purpose of 

chirality sensing. Further studies have demonstrated that this new, emerging area is challenging and 

highly prospective in chemical sciences.  

Meanwhile, HELIXOL 127 is a bidentate compound with two hydrogen bonding units (phenolic 

groups) in the chiral space cavity, which can be used for stereodiscriminating recognition (Figure 8). 

Thus, it was assumed that amino alcohols may form the corresponding 1:1 host–guest complex, 

resulting in stronger fluorescence quenching than amines. Indeed, the best result among amines and 

amino alcohols was obtained for alaninol 133 due to the optimal steric matching in the chiral space 

available, while displaying the strongest fluorescence quenching output. 

Another approach was demonstrated by the application of crown ether-based systems, which are 

known to bind various cations ranging from metal ions to organic ammonium ions. Hence, the helicene-

based crown ethers 140 and 141 were firstly prepared in 1983 by using 1,14-dimethyl pentahelicene and 

heptahelicene backbones [78,79]. The synthesis was performed by a classical strategy via Wittig 
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condensation followed by photochemical cyclization. Finally, the construction of crown ethers and 

subsequent resolution of enantiomers using a chiral column packed with (+)-poly-(triphenylmethyl 

methacrylate) with methanol as an eluting solvent resulted in enantiomers of 140 and 141. Then, 

enantiopure 140 and 141 were investigated towards application in the chiral discrimination of racemic 

amine salts 142–144 (Figure 12). This process was based on the selective differential transports of 

recognizable enantiomers from an aqueous solution to the corresponding organic solvent (CHCl3) by a 

liquid–liquid extraction procedure. The 1H NMR analysis of the extracted organic layer displayed two 

distinct -–CO2Me signals of the representing diastereoisomeric complexes with the guest, 142. Finally, 

the amount of transported guest was analyzed by a reverse extraction back to an aqueous acidic phase 

followed by the measurement of its UV absorption. 

 

Scheme 24. (a) Synthesis and resolution of HELIXOL host, 127; (b) Structures of chiral guest amines 

128–131 and amino alcohols 132–135 used for enantioselective recognition studies. 

 

Figure 12. [5]helicene- and [6]helicene-bearing crown ethers 140 and 141 capable of enantioselective 

extraction of chiral amine salts 142–144 from aqueous to organic layer. 

It was observed that the [5]helicene-based crown ether 140 showed higher enantioselective 

extracting ability than the [6]helicene-based crown ether 141. For example, (M)-140 was able to 

transport 6% of (S)-142, with optical purity of 75% in 6 h, comparatively better than (M)-141 with 2% 

transport of 26% optical purity of opposite enantiomer (R)-142 in the same time. The observed 
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opposite enantioselectivity extraction using helicenes 140 and 141 with the same helical sense was 

rationalized by the phenomenon of changing the crown ether conformation [80]; this is evident in 

their CPK models. Additionally, the inner methyl groups also assist in the chiral recognition process, 

as suggested by the same models [78,79]. 

Another approach to chiral recognition was undertaken by Katz et al. via developing the 

helicene-based biaryl diol compound named (M,M)-[5]HELOL, 115 [81], which was based on 

enantiopure 1-hydroxy substituted [5]helicene (see 116 in Scheme 20). The in situ generated chloro 

phosphite derivative 145 was used as a chiral NMR derivatizing agent to discriminate alcohols or 

amines serving as nucleophilic guests. From the 31P NMR analysis of diastereomeric mixture 146, the 

enantiomeric excess of guests (alcohols or amines) was easily determined. An interesting feature of 

this sensor is its ability to sense a remote chirality, which locates far away from the phosphite group. 

This is related to the fact that the combined inner cavity formed by individual helicene units and the 

biaryl bond yields an extended chiral space in 115. For example, this chiral space is able to recognize 

the asymmetric centers of 8-phenylnonanol 147 (as far as up to seven methylene units) and vitamin 

E 148 (Scheme 25). Additionally, the recognition ability of this sensor was related to 100% abundance 

of phosphorus as NMR active nuclei with high sensitivity and accuracy in measurement; thus, the 

enantiomeric excess of up to 3% can be easily analyzed [81]. The scope of this HELOL host and its 

structural analogue were further extended towards other nucleophiles such as alcohols, phenols, 

amines, and carboxylic acids, also containing a remote chirality, under similar methodology to the 
31P NMR-based enantiodiscrimination [82].  

 

 

Scheme 25. (a) 31P based diastereomeric NMR sensing of alcohols and amines using (M,M)-HELOL 

115 and (b) examples of remote chirality sensing with molecules 147 and 148. 
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A new chiral application as a chiroptical switch along with chiral recognition properties was 

demonstrated using enantiomerically pure [6]helicene o-quinone 149. The synthesis was carried out 

by using the Nickel-catalyzed [2 + 2 + 2] cyclotrimerization reaction of triyne 150, followed by the 

deprotection of the methoxy group in 151 to result in helicene diol 152 in a racemic form. The 

enantiomers of 152 were separated on chiral HPLC, followed by the silver oxide-mediated oxidation, 

to give the quinone 149 in quantitative yield (Scheme 26) [83]. 

In general, quinones are electrochemically redox active molecules which undergo reduction as 

diol anions and re-oxidation back to quinone, with the corresponding measurable structural 

transformations in chromophoric absorption (Figure 13a). Therefore, the helicene-based quinone 149 

was also tested for the same, with an additional possibility of chiroptical switching as observed by 

CD measurement. Both the enantiomers of 149 exhibited a one-electron reduction process to form the 

semiquinone radical anions, 149●−, as evident from cyclic voltammetry studies with E1/2 = −1.00 V (vs 

Fc+/0, ΔEp = 0.07 V) in acetonitrile, with a reversible electrochemical behavior. Since 149●− is a stable 

species, its UV and CD measurements were performed by using an optically transparent thin layer 

electrochemical cell. It was observed that the helicene quinone 149 is able to be reversibly reduced to 

the radical anion 149●− and re-oxidized over several cycles, and is an example of chiroptical switching 

to be conveniently monitored with CD spectroscopy at different wavelengths (Figure 13b) owing to 

the distinguishable spectral profiles of 149 and 149●−. However, as there is no change in the (P) or (M) 

helicity of the chromophore upon electrochemical transformations, the Cotton effect (CE) signs of 149 

and 149●− remained the same.  

Besides electrochemical switching, 149●− was tested for chiral recognition against 2,2′-

bis(diphenylphosphanyl)-1,1′-binaphthyldioxide (BINAPO) using electron paramagnetic resonance 

and electron–nuclear double resonance (ENDOR) spectroscopy. The diastereomeric species formed 

by coordinated lithiated semiquinone radical anions [Li+{(±)-149●−}] and enantiomers of BINAPO 

generated noticeable changes of the lithium and proton hyperfine coupling measured by ENDOR 

spectroscopy. The diastereoisomeric complex 153 exhibits a hyperfine coupling constant (A) value 

for 7Li at −1.62 MHz, in comparison to −1.76 MHz for another diastereomeric complex 154, indicating 

the appreciable difference between the diastereomers (Figure 14). It is of note that the racemic sample 

gives an average value of −1.69 MHz. 

 

Scheme 26. Synthesis and resolution of helicene quinone 149 from triyne 150 using the nickel-

catalyzed [2 + 2 + 2] cyclotrimerization reaction as a key step. 
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Figure 13. (a) Mechanism of reversible electrochemical switching of helicene quinone 149 to helicene 

semiquinone radical anions 149●−; (b) observed reversible chiroptical switching between 149 and 

149●−; monitored by CD spectroscopy in acetonitrile. Reversible electrochemical switching for several 

cycles is shown for the (M)-(−) enantiomer at two different wavelengths (top right) along with the 

corresponding CD spectra. (Figure 13b) reprinted from [83]. © 2014, American Chemical Society. 

 

Figure 14. ENDOR spectra of diastereomeric species, 153 (black) and 154 (red) in THF at 210 K, only 

the low-frequency region is shown. Reprinted from [83]. © 2014, American Chemical Society. 

The previously described examples, 127 [77] and 115 [81], represent the inbuilt chiral helicene 

chromophoric hosts for the chiral recognition of a general class of chiral molecules using some 

selected analytical techniques such as fluorescence and NMR spectroscopy. An essentially different 

approach has been recently developed by Karnik et al. on the basis of a new supramolecular 

chirogenic system, 155, the key element of which was a stereodynamic dioxa[6]helicene diol 156 

chromophore. This system was applied as a specific sensor, suitable for chirality sensing of trans-1,2-

cyclohexanediamine 157 and monitored by various spectroscopic methods [84]. The helicene 156 was 

synthesized from 2,7-dihydroxynaphthalene 158 [85]. The first step involved acid-catalyzed 

condensation between two molecules of 158 and glyoxal to obtain dihydrofurofuran 159 (>95%), 

followed by the protection of phenolic groups to give acetate 160 (95%). Then, one-pot benzylic 

bromination and dehydrobromination (aromatization) of 160 using N-bromosuccinamide led to 161 

(45%), followed by basic hydrolysis resulting in dioxa[6]helicene diol 156 (96%). Finally, selective 
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mono esterification with chiral (1S)-camphanic chloride in acetone afforded the desired host, 155, 

with 90% yield (Scheme 27) [85]. 

 

Scheme 27. Multistep synthesis of helicene camphanate 155 from 2,7-dihydroxynaphthalene 158. 

Indeed, the parent dioxa[6]helicene diol 156 is almost a flat stereodynamic-type fluorescent 

compound, which was selectively modified with a chiral (1S)-camphanate group to give 155, leaving 

one of the (phenolic) hydroxyl groups free. This inherently free phenolic group and (1S)-camphanate 

chiral handle on the opposite peripheral ring provided a suitable sui generis chiral space for guest 157. 

In particular, this perfect stereospecific matching results in an effective turn-on fluorescent sensor for 

the (S,S)-enantiomer of 157 with a relatively high enantioselective factor, α = KSS/KRR = 6.3 (in 

benzene). The favorable hydrogen-bonding interactions in nonpolar media (benzene and toluene) are 

responsible for the efficient chiral recognition observed by fluorescence spectroscopy (Figures 15a,b). 

In nonpolar media, the donor–acceptor type cooperative hydrogen bonding between host 155 and 

guest 157 (Figure 15c) resulted in a high turn-on enantioselective fluorescence response. The 

enantiodiscrimination behavior was found to be solvent-dependent as the polarity of solvent can 

influence the extent of hydrogen bonding between the host and guest. In turn, this induces a 

unidirectional switch in the helical conformation of the helicene chromophore, resulting in reverse 

selectivity for the (R,R)-enantiomer of 157 in acetonitrile, THF, and chloroform [84]. 

Further, the NMR studies performed in deuterated chloroform exhibited the chiral camphanate 

group transfer reaction (Scheme 28a) with the reaction rate of 5.83 × 10−6 and 5.97 × 10−7 mol dm−3 s−1 

for (R,R)-157 and (S,S)-157, respectively, as monitored by 1H NMR (Figure 15d). This tenfold increase 

of the reaction rate for the (R,R)-enantiomer allowed the host 155 to behave as a kinetic resolving 

agent for (R,R)-157, with up to 68% de at room temperature within 4 h (Figure 15d) [84]. 
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Figure 15. Fluorescence response of helicene camphanate 155 for trans-1,2-cyclohexanediamine 157 

(a) in benzene and (b) in toluene solvent; (c) Schematic representation of the donor–acceptor hydrogen 

bonding between 155 and 157 in nonpolar solvent with turn-on fluorescence response; (d) Time-

dependent changes observed in 1H NMR spectra of host 155 with 1:1 (R,R)-157 in CDCl3. Reprinted 

from [84]. Source: http://pubs.acs.org/doi/abs/10.1021/acsomega.6b00522. 

Indeed, this is a rare example of the sui generic host–guest pair as evident from the fact that 

diamine 157, upon supramolecular interaction with the parent stereodynamic helicene diol 156 

(Scheme 28b) is able to induce a specific helicity and shift the stereodynamic equilibrium of 156, as 

monitored by CD spectroscopy in the region of helicene chromophore absorption. 

Further, the same group also developed Cs-symmetric rigid achiral organophosphoric acid 163 in 

two steps, starting from dihyrofurofuran helicene 159 as a supramolecular chirogenic system for the 

absolute configuration determination of 1,2-amino alcohols by induced CD (ICD) studies [86]. The two-

step synthesis includes the reaction of dihyrofurofuran helicene 159 with formaldehyde to form an 

additionally bridged diol, 164, and subsequent reaction with POCl3 to obtain the target, 163 (Scheme 29). 

http://pubs.acs.org/doi/abs/10.1021/acsomega.6b00522
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Scheme 28. (a) Chiral group transfer reaction between 155 and (R,R)-157 in chloroform and (b) 

proposed shift in conformational dynamic equilibrium of 156 in the presence of (R,R)-157 in 

chloroform. 

 

Scheme 29. Synthesis of 163 from dihyrofurofuran helicene 159. 

Interestingly, due to the Cs-symmetric nature of phosphoric acid, 163 has two tautomeric 

structures. This structural feature of 163, in combination with the substituent bulkiness of the guest 

amino alcohols, together decide the preferred mode of two-point hydrogen bonding on equilibration, 

which gave a resultant ICD signal correlating with the absolute configuration of the guest [86].  

7.2. Polymeric Helicene-Based Chiral Recognition 

Polymer chains can also serve as suitable carriers for chiral helicenes, especially in the case of 

prospective applications. Thus, using 2-acetylene-[6]helicene 165, Yashima et al. prepared a series of 

polymeric helicene pendants, poly-1-166, via the rhodium-catalyzed polymerization reaction 

(Scheme 30) [87]. This polymerization reaction gave stereoregular (cis-transoidal) polyacetylenes 

bearing the corresponding helicene pendants 166 with (P)- and (M)-polymeric chains with average 

molecular weight Mn = 2.6 × 103. However, the formation of a precipitate during the reaction makes 

it difficult to reproduce. The careful analysis of the CD spectra of monomer 165 and polymers 166, 

and their corresponding differential CD spectra, suggests that the helical polyacetylenes with the 

optically active pendant group exist as a single-handed structure, apparently due to the attractive 

intramolecular π-π interactions.  
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Scheme 30. (a) One step synthesis of polymeric helicene 166 and (b) its application against 

enantioselective adsorption of racemic guests 165, 167, and 168. 

The chiral recognition abilities of these polymers were studied in the context of the enantioselective 

adsorption of three racemic guests, namely, parent helicene 165, BINOL 167, and 2,2′-dibromo-

binaphthalene 168. The enantiomers were adsorbed by the polymer in methanol solution and desorbed 

in a mixture of methanol/THF [1:1, v/v] followed by chiral HPLC analysis. The poly-1-(P)-166 

preferentially adsorbed (P)-helicene 165 with 3.6% ee; both have similar configurations. As expected, in 

the case of 166 with opposite absolute configuration, the adsorption preference was observed for (M)-

helicene 165 with a similar 3.7% ee. However, interesting results were obtained for binaphthyl derivatives 

167 and 168, where poly-1-(P)-166 selectively adsorbed the opposite (S)-enantiomers with up to 36% ee, 

whilst poly-1-(M)-166 showed similar selectivity towards the (R)-enantiomers of 167 and 168. The 

calculated separation factor was sufficiently high (1.71–2.18), indicating that these polymers can be used 

as a stationary phase for the practical separation of racemic mixtures. 

7.3. Helicene-Based Chiral Recognition via Nanoparticles 

Another prospective approach for chiral recognition by helicene structures is based on 

nanomaterials. In this respect, individually racemic, (P)-, and (M)-helicene thiols 169 were grafted onto 

gold nanoparticles of 5–22 nm [88] in a mixture of ethanol/water (1:3, v/v) under sonication to form the 

corresponding Au-(P/M)-, (P)-, and (M)-169-nanoparticles (helicene-grafted nanoparticles) (Figure 16). 

These helicene-based nanoparticles show chirality-based inter(nano)molecular attractive interaction, 

resulting in the corresponding aggregation phenomenon followed by a time-dependent precipitation 

process, as analyzed by UV spectroscopy. All three types of nanoparticles dispersed in DMF gave a stable 

solution for a period of one week. The addition of the DMF solutions to an aromatic solvent such as 

benzonitrile resulted in different colors due to the surface plasmonic bands of the gold nanoparticles, as 

studied by UV–vis spectroscopy and a dynamic light scattering technique. Additionally, the time-

dependent aggregates were of different sizes, based on the type of helicene nanoparticles present. The 

observed chiral recognition induced by the homo- (Au-(P/M)-169 nanoparticle : Au-(P/M)-169 

nanoparticle, Au-(P)-169 nanoparticle : Au-(P)-169 nanoparticle, and Au-(M)-169 nanoparticle : Au-(M)-

169 nanoparticle) and hetero self-aggregation (Au-(M)-169 nanoparticle : Au-(P)-169 nanoparticle) of the 

helicene nanoparticles was found to be enhanced according to the following sequence: Au-(P/M)-169 

nanoparticle : Au-(P/M)-169 nanoparticle < Au-(M)-169 nanoparticle : Au-(M)-169 nanoparticle = Au-(P)-

169 nanoparticle : Au-(P)-169 nanoparticle < Au-(P)-169 nanoparticle : Au-(M)-169 nanoparticle. This 

tendency relates to the interaction strength between the corresponding nanoparticles, which is controlled 

by stereochemical matching. 

Another example of optically active nanoparticles 170 with 70 nm diameter size was obtained 

by grafting (P)-1,12-dimethyl-8-methoxycarbonylbenzo[c]phenanthrene-5-carboxyamide on 3-

aminopropylated silica (Figure 17) [89,90]. These nanoparticles were prepared by reacting 3-

aminopropylated silica nanoparticles with the corresponding (P)-helicene carboxylic acid chloride by 

refluxing in isopropyl ether for 4 hours using ethyldiisopropylamine as a base. 
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Figure 16. Enantiomeric structures of helicene thiol 169 and representations of the gold nanoparticles 

formed from 169. Modified and reprinted, with permission from [88] © 2012, Royal Society of Chemistry. 

It was found that these nanoparticles enantioselectively precipitated at a faster speed with (S)-

configuration of aryl alcohols 80 (47% ee) and 171 (61% ee) [89] in m-bis(trifluoromethyl)benzene 

(Figure 17). To elucidate the corresponding ee values, the precipitate was centrifuged and separated, 

followed by mixing in 2-propanol. Then, the insoluble material (nanoparticles) was removed and the 

organic layer was concentrated and analyzed with chiral HPLC, indicating the optical resolution of 

up to 29–61% ee for various aromatic alcohols for the (S)-configuration [89]. The mechanism of this 

stereoselectivity was related to chiral recognition on the basis of the electrostatic aggregation 

phenomenon. This nanoparticle-based kinetic resolution requires a relatively smaller amount (10 mol 

%) of -nanoparticles 170 as the resolving agent compared with the requirement of conventional 0.5 

equivalence, with providing additional possibility for resolving noncrystalline substances, making it 

an attractive and greener method of choice. 

Further, the helicene-based nanoparticles 170 were able to recognize the shape of (P)-

ethynylhelicene oligomers 172 in solution [90]. It preferentially forms the precipitate with a double 

helix of the oligomeric structure of 172 in comparison to its random coil structure in 

trifluoromethylbenzene (Figure 17). The analysis was carried out by CD spectroscopy, where the 

double helix oligomer shows a strong positive CE followed by a negative one, whilst in the case of 

the random coil oligomer, a weak CE of opposite sign was observed. This phenomenon was related 

to the chiral shape recognition on the surface of the nanoparticle by stereospecific absorption, 

resulting in the visualized selective aggregation-based precipitation, which is useful for the 

separation of the double helix structure of 172 from its random coil conformation [90]. These 

examples clearly show the potential of helicene-based chiral nanomaterials for applications in the 

resolution of chiral molecules ranging from a simple alcohol to complex polymeric structures. 
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Figure 17. Helicene silica nanoparticle 170 and its ability towards chiral recognition and resolution of 

aromatic alcohol 80 and 171 and double helix oligomer 172. 

7.4. Helicene-Based Chiral Recognition Involving Biologically Relevant Molecules 

The stereodynamic helicenes are also effectively employed for the induced CD-based sensing, 

where a chiral guest can induce a specific helicity via covalent or supramolecular interactions, thus 

generating the corresponding CD signals in the helicene absorption region. The guests range from 

simple organic molecules (Scheme 28b) to complicated biological molecules, as described here. 

Thus, Yamada’s group explored hydroxymethyl trithia[5]helicene 173 [91–96], which is a 

stereodynamic compound. Both the (P)- and (M)-enantiomeric structures are configurationally labile, 

nonresolvable, and exist in a fast equilibrium. However, due to the presence of an electron-rich aromatic 

chromophore and polar hydroxymethyl group capable of hydrogen bonding, suitable complexation of 

the chiral guest (such as biomolecules) [91,93–96] is able to shift the equilibria to one of unidirectional 

helicity, which, in turn, can be monitored by CD spectroscopy (Figure 18). 

 

Figure 18. Stereodynamic hydroxymethyl trithia[5]helicene 173 and a principle of its use as an 

induced CD host. 

The corresponding host–guest studies were successfully implemented with serum albumin [91], 

(R)-2-(2,4,5,7-tetranitrofluoren-9-ylideneaminooxy)propionic acid (TAPA) [92], alkyl b-D-pyranoside 

[93], and bilayered phosphatidylcholine vesicles [94–96] using CD spectroscopy as a major tool. As 

the extent of helicity induced in 173 by these guest molecules is small, the resultant CD signals are 

also small. Yet, as CD is a highly sensitive technique, even with a small signal, it can be applied for 

understanding molecular behavior and chirality in solution. 

Tanaka et al. synthesized bis(hydroxymethyl)thia[7]helicene 174 to study its further synthetic 

chemistry and corresponding applications in the chirality recognition of biological molecules [97–100]. 

Hence, the helicene 174 was synthesized in a total of nine steps with an overall 33% yield, where the 

photochemical cyclization of alkene 175 was a key step to give silyl group protected rac-176. Further, 

deprotected racemic 174 was optically separated using the lipase-based enzymatic kinetic resolution 

method. For example, with the use of Pseudomonas cepacia enzyme, (P)-174 (44%, 98% ee) was obtained 
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as a slow reactive isomer with simultaneous formation of the corresponding mono- and diacetates, (M)-

177 and (M)-178. Similarly, the use of Candida antarctica enzyme resolved opposite (M)-174 (44%, 92% 

ee) with the formation of mono- and diacetates, (P)-177 and (P)-178 (Scheme 31) [97]. 

 

Scheme 31. Photochemical synthesis and enzymatic resolution of helicene 174; (a) hv, I2, propylene 

oxide, benzene, room temperature; (b) tetra-n-butylammonium fluoride, THF, 0 °C; (c) Pseudomonas 

cepacia, CH2Cl2, vinyl acetate, room temprature,  25 h; (d) Candida antarctica, CH2Cl2, vinyl acetate, 

28–29 °C, 9.5 h. 

Further, enantiopure alcohol 174 was converted to its dichloride 179, which was converted to 

180 [98] and cyclic thia ethers 181–183 [99] using suitable synthetic procedures (Scheme 32). These 

helicene molecules were explored in terms of possible chiral recognition of biologically relevant 

molecules such as DNA [98,100]. 

It is well known that, under physiological conditions, a DNA duplex exists as a mixture of the 

right-handed B-DNA and left-handed Z-DNA forms. The supramolecular association of chiral C2-

symmetrical 180 with DNA revealed that the (P)-enantiomer of 180 displays chiral selection for 

binding Z-DNA over B-DNA [98]. The corresponding binding constants were found to be (8.0 ± 0.5) 

× 104 M−1 and (1.4 ± 0.3) × 104 M−1 for Z- and B-DNA, as measured by fluorescence titration. Besides, 

this interaction can be clearly monitored with CD spectroscopy, where, upon binding Z-DNA, there 

is a considerable decrease in the signal intensity of (P)-180 of up to 70% at 330 nm at neutral pH. 

Under similar conditions, B-DNA failed to show any significant change in the CD spectra of (P)-180, 

indicating (P)-helicity-based recognition of Z-DNA. In contrast, although the (M)-180 also showed a 

20% reduction, it was observed upon binding both B- and Z-DNA, thus indicating the lack of its 

discrimination ability.  
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Scheme 32. Synthesis of functionalized helicene 180 and thiaethers 181–183 from [7]helicene 174. 

Additionally, it was observed that the (P)-180 not only selectively binds Z-DNA but is also able 

to force B-DNA to adopt an opposite left-handed helical form, like Z-DNA. Apparently, the 

methylene-N,N-dimethylamine functionality in (P)-180 plays a crucial role in this behavior, as the 

same helicene backbone but with hydroxy methyl substituents, as in the case of 174, did not show 

any binding response towards B- and Z-DNA. It is likely that the protonated form of amino 

substituents in 180 becomes a crucial site for binding DNA, whilst the helicene chirality is an 

important factor in the enantioselective recognition of left-handed helical Z-DNA.  

Further extending the chiral recognition research of biologically important molecules resulted in 

the development of cyclic helicenes with thiaether linkage, 181–183 (Scheme 32) [99,100]. The (M)-

enantiomers of 181–183 turned out to be potential inhibitors against telomerase enzyme activity based 

on the chiral and steric matching, while binding to the G-quadruplex superhelix structure. The 

recognition phenomenon is based on the chiral space available at the cleft-pocket and the presence of 

Z-DNA assisting this helicene binding. Initially, 180 was studied and exhibited no chiral selectivity. 

This result led to the assumption that the dihedral angle in helicene chromophores plays a key role in 

the interaction efficiency. On this basis, three different cyclic helicene thiaethers, 181–183, having 

different length of linkers, were designed to yield the dihedral angles of 22°, 53°, and 58°, respectively. 

It was shown that the (M)-enantiomer of 181 with the smallest interplanar angle was able to inhibit 

the telomerase enzyme activity efficiently, presumably as a result of the chiral and steric matching. 

However, the exact binding mode of this helicene to the G-quadruplexes is not fully understood yet. 

Here, again, the binding studies relied on CD and fluorescence spectroscopy [100].  

In 2013, chiral [5]helicene 184, containing methyl groups at the innermost positions, was suitably 

connected with the spermine moiety 185 at the outer sphere of the helicene backbone to act as a host 

capable of recognizing the DNA conformation [101]. This host was synthesized by the Suzuki–

Miyaura coupling of 8-methylnaphthalene-2-boronic acid 186 with dibromo-maleimide 187 to obtain 

188, followed by photocyclization to result in racemic 189 with 92% yield. The enantiomers of 189 
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were separated on a chiral column followed by further transformation to 190 and, finally, to the target 

enantiopure 184 (Scheme 33) [101].  

 

Scheme 33. Synthesis of helicene-spermine 184. 

The designing concept was such that the cationic spermine unit is able to provide the 

corresponding electrostatic interactions with the DNA’s phosphate backbone of the minor groove, 

whereas the chiral helicene is expected to form end-stacking mode complexes, altogether resulting in 

a strong chiral recognition. Indeed, it was demonstrated that (P)-184 binds preferentially to B-DNA 

over Z-DNA. The opposite trend was observed with (M)-184, which displayed strong binding for Z-

DNA over B-DNA, as studied by performing CD, UV melting temperature, surface plasmon 

resonance measurements, and isothermal titration calorimetry. From the examples of 180 [98] and 

184 [101], it appears that the cationic functional groups assist in binding with DNA through 

electrostatic interactions; along with this, the chiral helicity-based steric fit allows selectivity. The (P)-

180 prefers Z-DNA, whereas in the case of 184, the (M)-enantiomer binds strongly to Z-DNA. As 

structures, tetrathia[7]helicene 180 having functional groups on the terminal rings (in chiral cavity 

space) and 1,14-dimethyl[5]helicene 184, where spermine 185 is situated at the helicene outer core, 

are completely different in terms of the functional groups and their positions, therefore the exact 

mode of binding with DNA cannot be generalized and is still not completely understood. 

Chiral cationic [4]helicenes 191 (Figure 19), having methoxy substituents at the innermost 

position, were also able to bind with DNA molecules, as evident from a noticeable change in 

absorption, fluorescence, and CD spectra obtained during the corresponding host–guest studies 

[102]. It was concluded that the molecular plane of the helicene dye lies essentially parallel to the 

DNA bases, implying intercalation mode rather than groove binding. Further, the chiral selectivity 

based on association constant evaluation indicates that the (M)-enantiomer of 191 interacts more 

strongly with DNA than the corresponding (P)-enantiomer of 191.  
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Figure 19. Structure of (M)-enantiomers of 191. 

Yang et al. developed chiral 3-aza[6]helicene-modified β‑cyclodextrin 192 by reacting 6-deoxy-

6-iodo-β‑cyclodextrin 193 with (P)/(M)-helicene 194, resulting in two water soluble cationic charged 

diastereomeric species—(P)-192/β‑cyclodextrin, and (M)-192/β‑cyclodextrin (Scheme 34)—with 

different fluorescence behavior [103]. The concept was to use water-insoluble 3-aza[6]helicene 194 in 

aqueous media in combination with the β‑cyclodextrin asymmetry for the chiral recognition of amino 

acids in water. 

 

Scheme 34. Synthesis of 3-aza[6]helicene modified β‑cyclodextrin 192 as a water-soluble amino acid sensor. 

In polar solvents such as methanol, ethanol, and water, the helicene chromophore occupies the 

β‑cyclodextrin cavity to a different extent in two diastereomers: (P)-192/- and (M)-192/β‑cyclodextrin—

favoring monomeric forms rather than self-aggregated species. Both the diastereomers were investigated 

for complexation towards proteinogenic amino acids by using the fluorescence technique in an aqueous 

buffer of pH 7.3. It turned out that hydrophobic interactions appeared to be a dominant binding mode 

with additional electrostatic forces between the cationic charge of helicene and carboxylate anion of 

corresponding amino acids; besides this, π-π interaction may also contribute in the case of aromatic 

guests. The chiral discrimination abilities were also found to be highly dependent on pH. A relatively high 

L/D selectivity of amino acids, up to 12.4, was observed as a consequence of the synergetic effects of the 

helicene auxiliary and β‑cyclodextrin cavity [103].  

7.5. Helicene-Based Chiral Recognition via Self-Assembly 

A new approach for chiral recognition via self-assembly was applied by Yamaguchi et al. on the 

basis of functionalized chiral [4]carbohelicene. The overall studies demonstrated that the helicenes 

exhibit a noncovalent chiral recognition behavior via different functions, such as charge transfer 

complexation, crystallization, homocoupling reaction, layer structure formation, self-aggregation, 
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and even upon double helix formation [75]. Their observations indicated that the right-handed helix 

structure favors the same helicity of its counterpart, which is not generally observed in the case of 

point chirality (i.e., an (R)- or (S)-host does not always prefer a guest of the same absolute 

configuration). Out of several examples, the following one is sufficient to understand this helicity 

matching phenomenon. 

Tetranitro, dicyano-substituted [4]helicene 195, being an electron-deficient system, strongly 

interacts with diamino-substituted [4]helicene 196 via a charge transfer complex [104], the formation of 

which was monitored by UV and NMR techniques. Particularly, in the UV spectrum, a charge transfer 

band was observed at 500–800 nm in THF. The association constant of the complex with the same 

configuration—(M)-195 and (M)-196—was found to be 12.2 M−1; this was noticeably higher than the 

constant 10.2 M−1 observed for the opposite configuration—(P)-195 and (M)-196 (Figure 20). Further, 

the NMR-based NOE experiments revealed that the face-to-face syn-conformation of two 1,12-dimethyl 

groups was preferred over the anti-orientation in the corresponding charged transfer complexes [104]. 

 

Figure 20. Helical discrimination upon supramolecular charge transfer complexation between 

electron-deficient helicene 195 and electron-rich helicene 196. 

In related studies, a series of racemic [7]helicene derivatives, 197–199, containing pyridinone 

rings at both the terminals, were prepared using a classical methodology of Wittig olefination and 

photochemical cyclization, and were characterized both in solution and in solid state [105]. Despite a 

variety of self-assembly modes according to the stereochemical and topological relationships, these 

helicenes formed only enantiomerically pure dimers held together by two pairs of the cooperative 

hydrogen bonds. The self-assembly process was found to be enantiospecific in solution and 

diastereoselective in solid crystal (Figure 21). 

The terminal pyridinone rings were capable of hydrogen bonding via the corresponding amidic 

N–H functionalities. The solution-phase NMR studies indicated that the helicenes exist as 

enantiomeric dimers. For example, the NH proton in 2-quinolinone 200 (10−4–10−2 M), as a reference, 

appeared at 12.9 ppm, whilst the position of this proton in 198 was downfield-shifted by 1 ppm in 

dilute solution (>10−5 M), clearly indicating the cooperative hydrogen bonding and self-assembly 

phenomenon. In turn, the chemical shift was found to be concentration-independent in CDCl3 and 

THF. In pyridine, as expected, it was concentration-dependent, as pyridine itself is able to compete 

for the hydrogen bonding. Additionally, the dimeric binding model was confirmed by dilution 

experiments with the association constant of 207 M−1. The molecular modelling studies also indicated 

that each dimer is preferably constructed from a monomeric species of the same helicity. 

The X-ray crystallographic structure of 199 showed only homochiral dimers; where the R-group 

(acetyl) is present in the cis-orientation to ensure the diastereoselective recognition process during 

crystallization. These enantiopure dimers are held together by four strong intermolecular hydrogen 

bonds between two terminal pyridinones. 
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Figure 21. Hydrogen bonding-based self-assembly in pyridinone-containing helicenes 197–199 and 

2-quinolinone 200, as a NMR refrence. 

8. Enantiopure Helicenes: Enantioselective Synthesis, Chiral Separation, and Racemization 

The chiroptical properties and applications discussed above prompted the development of 

efficient synthetic procedures to obtain enantiopure helicenes in sufficient quantities required for 

these investigations [2,4]. Although this topic is not directly related to the category of helicene 

applications, it is an important background for the whole helicene chemistry; hence, a brief 

description should be included as a special section. The major methods of obtaining enantiopure 

helicenes from a racemic mixture are based on optical resolution by chiral HPLC [60,77,78,83,101], 

diastereomeric salt formation [51,60,76] (for representative resolving agents, see Figure 22), 

chromatographic separation of diastereomers [52,56,74], and enzymatic-based approaches [97].  

 

Figure 22. Selected examples of chiral reagents for helicene optical resolution. 

For example, racemic nonfunctionalized helicenes were successfully resolved through charge 

transfer complexation with electron-deficient molecules, such as TAPA [15,16] or HPLC-based 

separation with the use of silica coated with TAPA [106]. In the case of functionalized helicene-

containing phenolic groups at the terminal ring, (1S)-camphanic chloride acts as the best resolving agent 

for chromatographically separable diastereomers obtained. Furthermore, their absolute configuration 

determination was carried out by the 2D ROESY NMR technique [52,74,107]. Particularly, it was 

observed that in 19 examples of helicenes studied, (M,S)-diastereomers were less polar, whilst (P,S)-

diastereomers were more polar, hence eluting as the first and second fractions, correspondingly, upon 

the chromatographic separation on silica gel [107]. Another resolving agent, which is also frequently 

employed for optical resolution, is an l-menthyl derivative [4,56]. This approach has a distinct 

advantage of attaching and detaching a chiral auxiliary before and after the diastereomeric separation, 

making the whole procedure recyclable and highly efficient. Interestingly, in the case of azahelicene 201 

containing the chloro group as a substituent on the outer peripheral pyridine ring, the use of Pd-

catalyzed Buchwald–Hartwig coupling with (S)-phenylethyl amine gave chromatographically 

separable diastereomers 202 and 203 (Scheme 35) [108,109]. However, the absolute configuration of the 

2-ethylhexyl alkyl chain was not discussed in the paper [108]. 
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Scheme 35. Synthesis of chromatographically separable diastereomers 202 and 203 obtained by Pd-

catalyzed reaction between rac-azahelicene 201 and (S)-phenylethylamine. 

Besides the optical resolution of racemates, another approach to enantiopure helicenes is based 

on the stereospecific synthesis, where the originally chiral precursors or reagents are converted into 

the corresponding helicenes with unidirectional helicity [110]. In particular, the asymmetric synthesis 

of helicene can be performed by using various synthetic methods, such as photocyclization, Diels–

Alder reaction, or metal-catalyzed annulation, in the presence of chiral auxiliaries attached to the 

reactant(s). These topics have been comprehensively covered in previous reviews [2,4]. Therefore, 

only a few of those recently published examples of asymmetric helicene synthesis are highlighted 

below.  

In 2016, Sako et al. successfully used the modified BINOL-based vanadium(V) complex 204, 

capable of functioning both as redox and Lewis acid catalysts, for the enantioselective synthesis of 

oxa[9]helicenes 205 starting from polycyclic phenols 206. The reaction proceeds via oxidative 

coupling at first, followed by intramolecular cyclization. This results in the one-step enantioselective 

synthesis of oxa[9]helicenes in good yields with up to 94% ee [111] (Scheme 36).  

 

Scheme 36. Modified BINOL-based vanadium complex 204, catalyzed asymmetric synthesis of 

oxa[9]helicenes 205 from polycyclic phenols 206. 

In 2015, a new general asymmetric synthetic methodology was successfully developed for [5]-, 

[6]-, and [7]helicenes with ultimate enantioselectivity (ee >99) based on the controlled transfer of 

reactant point chirality to the product with unidirectional helicity [112]. At first, triyne207, having 

inbuilt point chirality, was converted into tetrahydrohelicene diastereomers 208 and 209, being in the 

thermodynamic equilibrium, by cobalt-catalyzed tandem [2 + 2 + 2] cycloisomerization. The (M)-

conformational helicity results in the 1,3-allylic strain, hence making 208 a highly energetic 

diastereomer in comparison to 209, the (P)-conformational helicity of which gives relief from this 

strain, when the point chirality is of (R)-configuration at the 9-position. Subsequently, the favored 

diastereomer under acidic conditions yielded fully aromatic helicenes 210 with greater than 99% ee 

(Scheme 37). Thus, (P)- and (M)-helicenes can be readily prepared starting from the (R)- and (S)- 

absolute configurations at the 9-position of the precursor, correspondingly. 



Symmetry 2018, 10, 10  42 of 48 

 

 

Scheme 37. Asymmetric synthesis of helicenes 210 based on the principle of point-to-helical chirality 

conversion. 

One of the most important points of chiral helicenes is their configurational stability, which can 

be analyzed by using CD spectroscopy and chiral HPLC in combination with other techniques. 

Evidently, understanding the mechanism of racemization helps in designing more stable helicene 

structures. Recently, detailed theoretical racemization studies have been performed on [n]helicenes 

where n = 4–24 [113]. Consequently, it was found that n = 4–7 involves the one-step concerted 

mechanism of racemization. The smallest member of the carbohelicene family, [4]helicene has a C2V 

symmetric transition state (TS) with an energy barrier of 4.0 kcal mol-1. However, the TS of n = 5–7 

possesses a Cs-geometry with the energy barriers of 24.4, 36.9, and 42.0 kcal mol−1, respectively. This 

is a result of the steric hindrance, which accounts for the high TS energies of racemization. For n ≥ 8, 

besides the steric hindrance, an additional factor of the π-π interaction starts to contribute to the 

overall structural stability, making the racemization process a multistep process and thus further 

increasing the energy barrier. For example, when n = 8,9, or 10, helicenes displayed 2, 4, and 6 

intermediates for the racemization process, respectively. Thus, in general, when n = 8–24, helicenes 

involve (2n - 14) consecutive displacements, traversing intermediates in the molecule during the 

racemization process for corresponding carbohelicenes. These theoretical results should be taken into 

account to control the desired properties of helicene structures in future research. 

9. Conclusions 

Helicenes are versatile compounds existing in achiral, stereodynamic, meso, and chiral forms. 

Additionally, they could be neutral, charged, carbocyclic, heterocyclic, or polymeric in nature, with 

electron-rich or -deficient characteristics. These conjugated molecules exhibit unique physical 

properties such as fluorescence and strong chiroptical features, making them exclusively useful for 

the chirogenesis processes, including chiral recognition using both fluorescence and circular 

dichroism spectroscopies. Their polyaromatic helical structures are also suitable for providing 

shielding and deshielding effects, making them potentially applicable as chiral NMR sensors. 

The high configurational stability and facile functionalization of the helicene structures open 

intriguing prospects in the fields of chiral catalysts and auxiliaries for various asymmetric reactions. 

In the last three decades, there has been much research effort focusing on newer, simpler, and 

multigram synthetic procedures including different asymmetric methodologies for obtaining 

sufficient quantities of enantiopure helicenes for various practical applications, including 

chirogenesis. It has been established that modified helicene molecules with important properties can 
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be developed by merging the helical structure with other (central, axial, and planar) chirality 

elements for specific applications. The helicity control may be conveniently achieved by means of the 

intramolecular cyclization of terminal rings, resulting in a decrease in the helicity. Alternatively, the 

introduction of functional groups on the terminal rings or presence of saturated bond(s) inside the 

molecule (helicenoid) increases the helicity. These modifications also govern the helicene chiral cavity 

space properties, and may thus be adopted for desired applications.  

Besides chiral auxiliaries and chirogenesis, the helicene structures are good candidates for material 

chemistry and nanotechnology. We believe that there is still a large and diverse scope for helicene 

chemistry and application to be studied in the upcoming future, which will result in novel and interesting 

discoveries. We are yet to fully explore the real potential of helicene and related molecules. 
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