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Abstract: Many artificial intelligence applications often require a huge amount of computing
resources. As a result, cloud computing adoption rates are increasing in the artificial intelligence
field. To support the demand for artificial intelligence applications and guarantee the service level
agreement, cloud computing should provide not only computing resources but also fundamental
mechanisms for efficient computing. In this regard, a snapshot protocol has been used to create a
consistent snapshot of the global state in cloud computing environments. However, the existing
snapshot protocols are not optimized in the context of artificial intelligence applications, where
large-scale iterative computation is the norm. In this paper, we present a distributed snapshot protocol
for efficient artificial intelligence computation in cloud computing environments. The proposed
snapshot protocol is based on a distributed algorithm to run interconnected multiple nodes in a
scalable fashion. Our snapshot protocol is able to deal with artificial intelligence applications, in which
a large number of computing nodes are running. We reveal that our distributed snapshot protocol
guarantees the correctness, safety, and liveness conditions.
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1. Introduction

Recent developments in artificial intelligence have made the innovation establish itself as an
effective and attractive way to communicate between computers and machines in an intelligent
manner. In fact, underneath the artificial intelligence, a large amount of computation is performed [1,2].
Meanwhile, recent advances in cloud computing and services have led to a proliferation of supporting
artificial intelligence applications [3,4]. The harmony of artificial intelligence and cloud computing
provides a great opportunity in that data servers and computing servers in cloud computing
environments hold the data for artificial intelligence applications and process them to make decisions,
respectively [5–7].

In addition to hardware resources, cloud computing should provide fundamental mechanisms for
efficient computing. Since many artificial intelligence applications require a huge amount of computing
resources, capturing the global state of resources in cloud computing environments can help reduce
processing time in the presence of failure [8,9]. By capturing the global state of resources periodically,
artificial intelligence applications can resume the computation from the latest snapshot, not from
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the beginning, while guaranteeing the service level agreement (SLA). However, capturing the global
state of resources in cloud computing environments is not a trivial task since individual resources are
independent units and, therefore, the snapshot protocol can only be done by passing messages due to
the lack of shared memory between the nodes in the system [10,11].

Recording the global state of a system is an important paradigm and has been widely used in
several aspects of distributed and cloud computing systems, such as deadlocks [12], termination
detection [13], mutual exclusion [14], and consensus [15]. However, since there is no shared memory
and no global clock in a cloud computing system, it is difficult to record the global state of the system
efficiently. Therefore, it is important to develop snapshot protocols for recording the global state of a
system in an efficient way.

In this paper, we present a distributed snapshot protocol for efficient artificial intelligence
computation in cloud computing environments. The proposed snapshot protocol exploits the property
of artificial intelligence applications to capture the global state of resources effectively. Note that
many artificial intelligence applications exhibit iterative computation in machine learning and data
mining [16,17]. With this in mind, we implement a distributed snapshot protocol by seamlessly
integrating with artificial intelligence computing in cloud computing environments.

Another imperative thing to note is that the proposed distributed snapshot protocol does not
require a coordinator such as a super node, which is a downside of previous research and may result in
a single point of failure. Without a super node, the proposed distributed snapshot protocol allows all
the nodes to play an independent role symmetrically by performing a predefined procedural method
in the design and implementation. In other words, nodes are functionally equal to each other in our
context. This symmetric design of the protocol is preferable in dynamic systems, including cloud
computing environments, for scalability.

The remainder of the paper is organized as follows. The next section reviews related work by
showing how our model differs from others in the literature. In Section 3, we describe the system
model and preliminary definitions and formally define the problem. The proposed distributed
snapshot algorithm for artificial intelligence computation is presented in Section 4. Section 5 presents
performance evaluation with scalability settings. Finally, Section 6 concludes the paper.

2. Related Work

In this section, we summarize the related work across two perspectives in distributed systems
including cloud computing: artificial intelligence computation and snapshot protocols. The basic idea
of our approach is to incorporate a snapshot protocol into artificial intelligence computation seamlessly
in a scalable fashion. While our analysis of the snapshot protocol assumed an independence of failures,
the proposed scheme also benefits other systems for correlated failures since our protocol design takes
modularity and portability into account.

2.1. Artificial Intelligence Computation

The artificial intelligence field was founded as an academic discipline in 1956 on the claim that
human intelligence can be so precisely described that a machine can be made to simulate it [18].
After several waves of optimism, artificial intelligence techniques have experienced a resurgence
by virtue of advances in computing power in cloud computing, big data, and practical applications.
Recently, artificial intelligence and its techniques have become a significant part of our society and
firms by solving many challenging problems in computer science and engineering [19].

In artificial intelligence techniques, a lot of computation is required and many of them are
iteration-based [20]; the computation can be performed in large-scale computing infrastructures and
cloud computing environments to reduce processing time. Since the mean time between failures
(the expected time between two failures for a repairable system) of large-scale systems is quite less than
that of a single machine system, fault tolerance schemes in large-scale systems have been developed.
Among them, a snapshot protocol is one of the fundamental mechanisms that create a consistent
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snapshot of the global state of the system. Due to the lack of globally shared memory and a global
clock, however, capturing a global state of distributed systems is not a trivial task [21].

For iterative computation in artificial intelligence applications, several studies have been
investigated in various computation frameworks to accelerate and reduce processing time. The authors
of Maiter [22] proposed a computation model called delta-based accumulative iterative computation
(DAIC), which iteratively updates the vertex values by accumulating the value changes between
iterations, not by the result from the previous iteration. Maiter is designed to perform the computation
asynchronously to bypass the high-cost synchronous barriers in large-scale systems.

In Faiter [23], fault-tolerant mechanisms are added into the iterative computation to perform
recovery with surviving data and guarantee the correctness of the computation. For load balancing
upon recovery, Faiter reassigns lost data on multiple machines in the system. In HotGraph [24],
the authors resolved the bottleneck problem caused by cross-partition state updates. HotGraph
extracts a backbone structure that spans all the partitions of the original graph and schedules for
partitions to maximize the hot graph’s effectiveness by considering locality and priority.

The authors of [25] improved the performance of the fault-tolerant framework in terms of disk
and network communication. With a cost-analysis model, it can adjust the interval of checkpoints
by considering the underlying computing workloads. However, these fault-tolerant frameworks for
iterative computation are dependent on their computing frameworks. In other words, the checkpoint
scheme can only be used in the specific framework. Therefore, the fault-tolerant scheme cannot be
used in other systems. On the other hand, our snapshot protocol is designed with modularity and
portability in mind.

2.2. Snapshot Protocols

The Chandy–Lamport algorithm [26] is a basic snapshot protocol with the assumption of no
failures and first-in-first-out (FIFO) message communication. For the practical implementation of the
snapshot protocol, the system model must consider failures and asynchronous communication [27].
In [28], a partial snapshot algorithm for a subsystem, where multiple nodes concurrently initiate the
snapshot algorithm, is proposed. In Snapify [29], a snapshot algorithm for offload applications on
Xeon Phi manycore processors is proposed. HotRestore [30] is a fast restore system for virtual machine
clusters. HotRestore minimizes performance degradation due to large snapshot files when restoring a
virtual machine cluster by mitigating the TCP backoff problem between virtual machines.

Unlike previous work, our snapshot protocol does not require a specific runtime environment
or depend on a system. For example, Snapify [29] is based on remote direct memory access and is
dependent on Xeon Phi manycore processors. Our proposed snapshot protocol is carefully integrated
with iterative computation for artificial intelligence applications in a modular fashion. In addition,
we loosen the communication model in the presence of failures.

Furthermore, most of the previous approaches are leader-based. In other words, they rely on
an explicit reader to coordinate the distributed snapshot protocol. The underlying assumption of
leader-based snapshot protocols is that the network topology is fully connected since they rely on
broadcast or multicast primitives. As far as the message complexity is concerned, our proposed
snapshot protocol differs from previous approaches in that our algorithmic design uses the one-to-one
communication model and maintains a small subset of neighbor nodes, thereby reducing the
message complexity.

Although one-to-one communication or unicast primitives are well studied for routing in the
computer networking field, no distinguishing snapshot protocol exists other than ours (especially in
cloud computing environments) to the best of our knowledge. Reducing the message complexity of the
distributed snapshot protocol has been a major concern. In this regard, one possible implementation
of a distributed snapshot protocol is based on the quorum system. In the quorum system, a quorum
is the minimum number of votes that a distributed transaction requires to perform an operation in a
distributed system [31,32].
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However, one disadvantage of using the quorum system is that it sometimes needs one or more
shared memory objects. Moreover, to safely calculate, the majority of the quorum system requires the
following condition: ∀Q1, Q2 ∈ Q, Q1 ∩ Q2 6= ∅ [33,34]. Thus, a distributed snapshot protocol based
on the quorum system is suitable for static systems. Since cloud computing systems are dynamic in
nature, a protocol based on the quorum system requires the reorganization of quorum sets each time a
node joins or departs.

3. System Model and Problem Definition

The system consists of a collection of n nodes, node1, node2, node3, ···, noden, where each node
is connected by communication channels. There is no shared memory and, therefore, a node can
communicate with others solely by passing messages. The message delivery model is asynchronous.
When asynchronous send primitives are used, the control returns to the invoking process after the
message is delivered to the buffer. Messages are delivered reliably with finite but arbitrary time delay.
The network can be described as a directed graph [35], in which vertices represent the nodes and edges
represent unidirectional communication channels. Let Cij denote the channel from nodei to nodej and
SCij denote the state of Cij.

The state of a node at any time is defined by actions, and the contents of the node are composed
of registers, stacks, local memory, distributed applications, etc. The actions performed by a node are
modeled as three types of events: local events, message-sending events, and message-receiving events.
In this respect, let mij, send(mij), and receive(mij) be a message sent by nodei to nodej, a sending event
of mij, and a receiving event of mij, respectively. The occurrence of these events leads to transitions
in the global system state. At any instant, the state of nodei (denoted by LSi) is a result of the entire
sequence of events executed by nodei up to the instant. For the channel Cij, the transit state is defined
as follows [36]:

transit(LSi, LSj) = {mij | send(mij) ∈ LSi ∧ receive(mij) /∈ LSj}. (1)

Therefore, if a snapshot protocol starts an instance to record the state of nodei and nodej, it must
include transit(LSi, LSj) and transit(LSj, LSi) as well as LSi and LSj. The communication model is
not restricted to the FIFO or causally ordered delivery model [37]. Furthermore, unlike previous
research, we do not use broadcast primitives, which simplify the design of a snapshot protocol.
In our algorithmic design, we use one-to-one communication primitives. How to accomplish the
snapshot protocol safely and efficiently with the assumption of the non-FIFO model and one-to-one
communication model is at the core of our contributions by collecting a consistent global state GS:

GS = {∪iLSi, ∪i,j SCij}. (2)

A global state is a consistent global state if, and only if, the following conditions are met [38]:

Condition 1: send(mij) ∈ LSi ⇒ mij ∈ SCij ⊕ receive(mij) ∈ LSj, (3)

Condition 2: send(mij) /∈ LSi ⇒ mij /∈ SCij ∧ receive(mij) /∈ LSj. (4)

Condition 1 states that every message mij that is recorded in LSi must be captured in the state of the
channel Cij or in the collected local state of nodej. Condition 2 states that if a message mij is not recorded
as a sent event in the local state of nodei, then it must be presented neither in the state of the channel Cij
nor in the collected local state of nodej. The proposed snapshot protocol is able to capture a consistent
global state satisfying the above conditions; the proof of the algorithm is detailed in the next section.
For node failures, we consider the fail-stop model [39], where a failed node remains halted forever.

4. The Proposed Distributed Snapshot Protocol

In this section, we describe our distributed snapshot protocol for capturing a consistent global
state with the assumption of the non-FIFO model and the one-to-one communication model; we then
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provide an illustrative example of the proposed algorithm. The correctness proof of the algorithm is
also provided.

4.1. Details of the Algorithms

What makes capturing a consistent global state in distributed and cloud computing environments
difficult is that each node has no global information of the system and has to communicate with
other nodes without broadcast primitives due to loosely coupled environments [15]. Since each node
maintains partial node information [40], it is necessary to realize a mechanism that collects local states
of the nodes in the system.

There are two threads for message exchange between nodes: active (sending) thread and passive
(receiving). Algorithm 1 shows the pseudocode of the proposed distributed snapshot algorithm for the
active thread. Before starting a round, nodei checks whether a consistent global state is collected for
failedRound (lines 16–28). If the stateNodes data structure satisfies the conditions of the GS, nodei saves
the stateNodes data structure to latestSnapshot and builds the stateChannel data structure (lines 17–21).
After setting the timestamp for the snapshot, nodei performs the proposeGS function (lines 23–24). These
procedures are performed until either continue is true or recordedRound is equal to currentRound (line 16).

At each round, nodei updates its own local information before message exchange and performs
the takeSnapshotLocal function (lines 33–35). Next, it selects a random neighbor node from its neighbor
list and then sends LSi to the selected neighbor node (lines 36–38). Note that LSi includes the stateNodes
data structure. If the result of the send function is true, the iteration is aborted (line 34). This guarantees
that nodei adheres to the exactly-once semantic for message exchange in a round.

Algorithm 2 shows the pseudocode of the proposed distributed snapshot algorithm for the
passive thread. The role of the passive thread is to wait for messages from other nodes and update the
stateNodes data structure (lines 6–8) by comparing the timestamp values of each element (lines 13–17).
It is worth noting that the algorithm can be configured to push, pull, or push–pull mode. When the
algorithm is configured to push mode, the send function in Algorithm 2 (line 9) is not performed.
In other words, in push mode, the active thread sends the LSi and not vice versa. When the protocol
is configured to pull mode, the passive thread does not receive the sending node’s stateNodes data
structure; the receive function in Algorithm 2 (line 7) is not performed.

When the push–pull mode is used, a node sends its stateNodes data structure and receives a
neighbor’s stateNodes data structure. Therefore, all of the procedures of Algorithms 1 and 2 are
performed. As far as the communication modes are concerned, the push–pull mode is the most
effective with respect to propagating information in the system. Hence, we use the push–pull mode,
and the results of this effectiveness are presented in Section 5.

Furthermore, since each node maintains a small subset of the nodes in the system, the proposed
snapshot protocol is churn-resilient. In other words, our protocol is able to take a consistent global
snapshot even when nodes are free to join or leave. If a snapshot protocol uses broadcast primitives,
each node must know all the information of the nodes in the system. This is a major drawback of
broadcast-based algorithms.

Unlike the previous algorithms, we adopt one-to-one communication primitives. Even though the
proposed snapshot protocol uses one-to-one communication primitives, our algorithm guarantees the
correctness, safety, and liveness conditions. Another benefit of the proposed snapshot protocol is that
the message complexity can be reduced in comparison to the broadcast-based protocols. The message
complexity (system-wide space complexity) of the broadcast-based protocols is O(n2) and that of the
proposed distributed snapshot protocol is O(n), where n is the number of nodes in the system [12].
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Algorithm 1. The proposed distributed snapshot algorithm for nodei (sending)

1: begin initialization
2: sta- odes[r][j]← null, ∀r ∈ {1 . . . maxround}, ∀j ∈ {1 . . . maxnode};
3: stateChannel[r][from][to]← null, ∀r ∈ {1 . . . maxround}, ∀from,to ∈ {1 . . . maxnode};
4: neighborList[p]← null, ∀p ∈ {1 . . . maxneighbor};
5: recordedRound← 0;
6: failedRound← null;
7: latestSnapshot← null;
8: currentRound← 0;
9: continue← null;
10: sended← null;
11: timestamp← null;
12: end
13: begin before starting a round
14: failedRound← recordedRound + 1;
15: continue← true;
16: while continue || recordedRound == currentRound do
17: check stateNodes[failedRound][j], ∀j ∈ {1 . . . maxnode};
18: if stateNodes[failedRound][j] satisfies the conditions of the GS do
19: latestSnapshot← stateNodes[failedRound][j];
20: recordedRound← failedRound;
21: build stateChannel[recordedRound][from][to];
22: failedRound← failedRound + 1;
23: timestamp← getCurrentTimestamp();
24: proposeGS(i, r, timestamp);
25: else
26: continue← false;
27: end if
28: end
29: end
30: begin at each round
31: sended← false;
32: currentRound← currentRound + 1;
33: updateLocalInformation();
34: while sended is false do
35: stateNodes[currentRound][i]← takeSnapshotLocal();
36: random← selectRandomNumber(1, maxneighbor);
37: neighbor← neighborList[random];
38: sended← send(LSi, neighbor);
39: end
40: end
41: function updateLocalInformation();
42: stateNodes[currentRound][i]← getlocalState();
43: stateNodes[currentRound][i].timestamp← getCurrentTimestamp();
44: end
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Algorithm 2. The proposed distributed snapshot algorithm for nodei (receiving)

1: begin initialization
2: roundStart← null;
3: neighbor← null;
4: end
5: repeat
6: neighbor← waitForMessage();
7: neighbor.stateNodes← receive(neighbor);
8: updateStateNodes();
9: send(LSi, neighbor);
10: until forever;
11: function updateStateNodes()
12: roundStart← recordedRound + 1;
13: for each stateNodes[r][j], where roundStart < r < currentRound;
14: if stateNodes[r][j].timestamp < neighbor. stateNodes[r][j].timestamp then
15: stateNodes[r][j]← neighbor. stateNodes[r][j];
16: stateNodes[r][j].timestamp← neighbor. stateNodes[r][j].timestamp;
17: end if
18: end
19: end

4.2. Illustrative Example of the Protocol

Figure 1 shows an example of executing our proposed snapshot protocol for one round with
three nodes: Node A, Node B, and Node C. The size of the neighbor list is 1; that is, each node
maintains one node in the system. Each element of the stateNodes data structure is in the form of
three-tuple. The tuple <1, blank, 0> means the round number is 1, the node’s state is blank or null,
and the timestamp value of the state is 0 or null (cf. Figure 1a). Note that to describe an instance of the
proposed algorithm, the message sequence is set to A→ B→ C for simplicity. The actual message
sequence can be different and random.

Figure 1b shows the nodes’ states after updating local information. For instance, Node A’s
state is <1, xxxxx, 123>. This means that the timestamp value of the state “xxxxx” is 123. Figure 1c
depicts the message exchange process. Suppose Node A first sends its stateNodes data structure
to Node B. After receiving Node A’s stateNodes data structure, Node B updates its stateNodes data
structure according to Algorithm 2. Then, Node B sends its stateNodes data structure to Node C.
Note that the message sent by Node B contains two elements for Node A and Node B.

After receiving Node B’s stateNodes data structure, Node C updates the stateNodes data structure
accordingly. At this stage, Node C’s stateNodes data structure contains all the elements for three nodes.
Hence, Node C can propose a consistent global state in the next round. Next, Node C sends its stateNodes
data structure to Node A. By executing Algorithm 2, Node A also updates its stateNodes data structure.

Figure 1d shows the nodes’ state after the first round. In the second round, Node A and Node C
will propose a consistent global state since their stateNodes data structures are collected. However,
Node B is not able to propose a consistent global state because one element of the stateNodes data
structure is empty. Nevertheless, Node B will be able to propose a consistent global state in the third
round after performing the message exchange process in the second round.

As for the neighbor list, each element can be constructed by the peer sampling service [41], and the
size of the neighbor list can be small regardless of the number of nodes in the system (e.g., 20) [12].
This configuration does not hinder the correctness of the algorithm and the probability of network
partitioning is exponentially low [42]. When the size of the neighbor list is set to 20, the expected
number for nodei’s information appearing in the sum of neighbor lists in the system is 20 since the
peer sampling service is based on uniformity of randomness. In this regard, the probability that other
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nodes do not contact nodei becomes extremely low as the round number increases. Hence, all the nodes’
information will be aggregated as the round progresses. In addition, our algorithmic design of the
snapshot protocol does not rely on a central authority or super node. Hence, no single point of failure
or performance bottleneck exists.
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Figure 1. An illustrative example of the proposed snapshot protocol. (a) Initial state; (b) After updating
local information; (c) Message exchange; (d) Nodes’ state after one round.

It is worth noting that a round finishes after a predefined period. Because we let individual nodes
include a round number of messages, they are able to maintain the stateNodes data structures for previous
rounds despite the expiration of the predefined period. Furthermore, if a new node is added or an existing
node is removed, the following operations are performed with the peer sampling service [41]. When a
node encounters a nonexistent node, the node calls the peer sampling service and replaces the nonexistent
node’s information with newly retrieved neighbor information from the peer sampling service.
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For newly joined nodes, the peer sampling service is involved. That is, the peer sampling service
regularly checks the newly joined nodes and pushes information of newly joined nodes to the existing
nodes. Therefore, scalability can be achieved without a bottleneck or performance overheads. As for
the stateNodes data structure, the size of one element of the stateNodes data structure is 3 × 64 bits
(node number, round number, and timestamp) + size of a state. If we assume that the size of a state is
64 bit × 50 × 50 for a 50 × 50 matrix, the size of one stateNodes data structure is about 20 KB. When we
compress the stateNodes data structure, the size is reduced by about 90% [43]. Considering the modern
network bandwidth, the network will not be congested.

4.3. Intervention of the Snapshot Protocol

Figure 2 depicts the snapshot stage in an artificial intelligence computation. A user submits
an artificial intelligence application to the cloud computing environment. We consider the artificial
intelligence application to be iterative. For input data, the cloud initiates the process of computation.
Since the artificial intelligence computation requires iterations, the output of a round feeds back to
the input for the next round. Note that a round consists of data input, iteration, and data output
(intermediate data).
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Before starting the next round, our proposed snapshot protocol fetches the state of the node
and then starts the process of taking a snapshot based on the fetched data. If a node fails, the cloud
retrieves the latest snapshot and the node can resume the artificial intelligence computation from the
latest snapshot by provisioning a new node, thereby reducing the processing time and SLA violation.
In addition, our snapshot protocol can be used in various artificial intelligence applications since our
distributed snapshot protocol is not dependent on a specific workflow.

For data storage, the proposed snapshot protocol can utilize the cloud storage system. In a typical
distributed system, data will be lost when a node fails. However, in a cloud computing environment,
the data storage of a virtual machine is connected by a block storage service. Therefore, even though
a virtual machine may fail, the data storage can be attached to a newly provisioned virtual machine.
Furthermore, snapshot data can also be stored in the cloud storage system and replicated to increase
the availability.

4.4. Proof of the Protocol

We prove that our proposed algorithms satisfy the following conditions:

Correctness: ∀i,r,t [proposeGS(nodei, r, t)⇒ consistentState(r)], (5)

where proposeGS(nodei, r, t) means that nodei proposes a consistent global state for round r at time t and
consistentState(r) indicates that there exists a consistent global state for the round r.

Safety: ∀r,i ∃t [consistentState(r)⇒ proposeGS(nodei, r, t)]. (6)

Liveness: ∀r ∃i,t [consistentState(r)⇒ proposeGS(nodei, r, t)]. (7)
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Theorem 1. The proposed distributed snapshot protocol satisfies the correctness condition.

Proof. The proof is by contradiction. Suppose that the proposed distributed snapshot protocol does
not satisfy the correctness condition. This means that it is possible that a node proposes a consistent
global state for a specific round, but no consistent global state exists for the round. Let nodei be the
node that proposes a consistent global state for a round r. Based on the specification of the proposed
algorithm, nodei waits for the stateNodes data structure to be aggregated before it proposes a consistent
global state. Since nodei is a correct node, it does not propose a consistent global state until the
stateNodes data structure is aggregated for all the nodes in the system. After aggregating the stateNodes
data structure for the round r, nodei checks whether the collected states satisfy the consistent global
state, that is, (1) send(mij) ∈ LSi ⇒ mij ∈ SCij ⊕ receive(mij) ∈ LSj and (2) send(mij) /∈ LSi ⇒ mij /∈ SCij ∧
receive(mij) /∈ LSj. If Condition 1 and Condition 2 are met for the stateNodes data structure, nodei performs
the proposeGS function with a timestamp value. Otherwise, nodei does not propose a consistent global
state. In other words, nodei proposes a consistent global state for the round r if, and only if, there
exists a consistent global state for the round r. This is a contradiction. Hence, the proposed distributed
snapshot protocol satisfies the correctness condition.

Theorem 2. The proposed distributed snapshot protocol satisfies the safety condition.

Proof. The proof is by contraposition. In logic, contraposition is an inference that says that a
conditional statement is logically equivalent to its contrapositive. The contrapositive of the statement
has its antecedent and consequent inverted and flipped. That is, the contrapositive of P→ Q is thus
Q→ P. In this regard, the contraposition of the safety condition is the same as the correctness condition.
Hence, the proposed distributed snapshot protocol satisfies the safety condition.

Theorem 3. The proposed distributed snapshot protocol satisfies the liveness condition.

Proof. The proof is by induction.
Basis: There is one node in the system.
Let nodei be the node in the system. Since there is one node in the system, nodei performs

the proposed algorithm in every round and updates its own local information. According to the
specification of the algorithm, the updated local information of nodei is stored in the stateNodes data
structure. Since the size of the stateNodes data structure is 1, checking a consistent global state is trivial.
In other words, in every round, nodei updates its local information and proposes a consistent global
state by checking Condition 1 and Condition 2. Because there is no message from the send() and receive()
functions, the state is always consistent. Hence, the proposed distributed snapshot protocol satisfies
the liveness condition when there is one node in the system.

Induction step (1): There are k nodes in the system.
Suppose the proposed distributed snapshot protocol satisfies the liveness condition when there

are k nodes in the system.
Induction step (2): There are k + 1 nodes in the system.
We consider a specific round r henceforth. Based on the induction step (1), the proposed

distributed snapshot protocol satisfies the liveness condition when there are k nodes in the system.
When there are k + 1 nodes in the system, the same is applied to prove the liveness condition when there
are k nodes in the system. Let nodek+1 be the (k + 1)th node in the system. Suppose k nodes’ stateNodes
data structures are aggregated except nodek+1. Since nodek+1 is a correct node, nodek+1 follows the
specification of the proposed snapshot protocol. Therefore, nodek+1 updates its local information and
saves it to stateNodes. The situations where a node proposes a consistent global state are twofold. One is
when nodek+1 sends its stateNodes data structure to a neighbor node. In this case, the receiving neighbor
can propose a consistent global state because the receiving neighbor’s stateNodes data structure is
aggregated for all the nodes. At the same time, nodek+1 also can propose a consistent global state by
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retrieving the receiving node’s stateNodes data structure. The other one is when nodei (nodei 6= nodek+1)
selects nodek+1 as a neighbor to target and retrieves nodek+1‘s stateNodes data structure. In this situation,
both nodei and nodek+1 can propose a consistent global state for the same reason. In short, the local
information of nodek+1 will be disseminated to all other nodes in the system and, eventually, all of the
nodes in the system can determine whether it is a consistent global state or not. Hence, the proposed
distributed snapshot protocol satisfies the liveness condition when there are k + 1 nodes.

5. Performance Evaluation

In this section, we carry out performance results to demonstrate the efficiency and effectiveness of
our proposed distributed snapshot protocol. For the artificial intelligence computation, we use a wine
quality data set (https://archive.ics.uci.edu/ml/datasets/wine+quality) to predict wine types—red or
white—and build multilayer perceptrons for classification tasks. To validate our proposed distributed
snapshot protocol, the size of the data set is shrunk and, therefore, the processing time for the artificial
intelligence computation is negligible. At the same time, we build an experimental environment
with a discrete event simulator for scalability in terms of the number of nodes. In our experiments,
we assume that there are numerous nodes in the system—from 50 to 50,000. The protocol mode is
either normal or piggyback. The normal mode does not send or receive the stateNodes data structure,
while the piggyback mode does. The size of the neighbor list is set to 20 unless specified otherwise.
In other words, each node maintains up to 20 neighbors. The iteration for the artificial intelligence
computation is set to 20. The number of rounds is set to 10. Experimental parameters and their values
are listed in Table 1.

Table 1. Experimental parameters and their values.

Parameter Value

Number of nodes 50, 500, 5000, 50,000
Protocol mode normal, piggyback

Size of neighbor list 5, 10, 20, 40
Number of rounds 10

Figure 3 shows the number of aggregated nodes in logarithmic scale for Round 1. The numbers
in the graph are averaged over the number of nodes in the system. In normal mode (cf. Figure 3a),
the number of aggregated nodes increases as the number of rounds increases. However, the requisite
number of rounds for checking a consistent global state is suboptimal. Note that to check a consistent
global state, all the elements of the stateNodes data structure need to be aggregated. In normal mode,
the requisite number of rounds is 5 when the number of nodes is 50. On the other hand, in piggyback
mode, the requisite number of rounds is 2 when the number of nodes is 50 (cf. Figure 3b).
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When the number of nodes is 500, the number of aggregated nodes is 499 in normal mode, even in
Round 10, while the number of aggregated nodes is 500 in piggyback mode in Round 2. This means
that in normal mode, no node can propose a consistent global snapshot after Round 10. On the
other hand, in piggyback mode, a node can propose a consistent global snapshot after two rounds.
In other words, if there exists a consistent global snapshot in round r, a node can propose a consistent
global snapshot in the (r + 1)th round with the proposed distributed snapshot protocol. This result
shows the effectiveness of the proposed distributed snapshot protocol.

Even when the numbers of nodes are 5000 and 50,000, the requisite number of rounds is 2 in
piggyback mode. The average number of aggregated nodes for Round 1 is depicted in Figure 4.
Note that the numbers are normalized between 0 and 1. We confirm that the performance of
another instance of the protocol (besides Round 1) is the same. For another instance of the protocol
(e.g., Round 2) the stateNodes data structure for Round 2 can also be piggybacked. Hence, the number
of messages does not increase when another instance of the protocol is in progress.
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Figure 4. The average number of aggregated nodes for Round 1. (a) Normal mode with varying
number of nodes; (b) Piggyback mode with varying number of nodes; (c) Normal mode with different
size of neighbor list when the number of nodes is 50,000; (d) Piggyback mode with different size of
neighbor list when the number of nodes is 50,000.

To show the effect of the size of the neighbor list, we vary the size of the neighbor list when
the number of nodes is 50,000 (cf. Figure 4c,d). Comparing the normal and piggyback modes,
the piggyback mode outperforms the normal mode. The effect of the size of the neighbor list is
negligible in piggyback mode. In normal mode, the worst performance can be found when the size of
the neighbor list is 5. The reason for this is that the uniformity of randomness is relatively lower when
the size of the neighbor list is small than when it is large. Nevertheless, this experiment implies that
the effect of the size of the neighbor list is insignificant, since the probability of being selected from
other nodes is 1 each round.

It is interesting to note that Figure 4a–d appear to be fairly symmetric. These results signify that
our distributed snapshot protocol is scalable in terms of the number of nodes and maintenance of the
neighbor list. More specifically, even when the number of nodes increases exponentially, the proposed
protocol guarantees effectiveness and efficiency. This is a main advantage of the unstructured overlay
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network. Note that similar results to ours can be found in [12]. In contrast, in structured overlay
networks (e.g., distributed hash table (DHT) or content addressable network (CAN)), increasing the
number of nodes results in performance degradation due to lookup time and maintenance cost.

Figure 5 shows the standard deviation of the number aggregated nodes for Round 1. Note that
the standard deviation is a measure to quantify the amount of variation or dispersion of a set of data
values. A low standard deviation indicates that the data points tend to be close to the mean of the set,
while a high standard deviation indicates that the data points are spread out over a wider range of
values. In our experiment, a low standard deviation implies more stable properties of the algorithm
than a high standard deviation. The standard deviation of the piggyback mode is relatively higher
than that of the normal mode. Specifically, the standard deviation of the normal mode in Round 1 is
about 8, 90, 900, and 9.036 when the number of nodes is 50, 500, 5000, and 50,000, respectively. On the
other hand, the standard deviation of the piggyback mode in Round 1 is about 13, 142, 1420 and 14,214
when the number of nodes is 50, 500, 5000, and 50,000, respectively. However, the standard deviation
of the piggyback mode in Round 2 is 0, regardless of the number of nodes in the system.
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As far as message complexity is concerned, the number of messages in one round is n, where
n is the number of nodes in the system, since the proposed distributed snapshot protocol uses the
one-to-one communication model. On the other hand, previous protocols based on broadcast primitives
introduce n2 messages in one round. Table 2 details the cumulative number of messages in comparison
with previous protocols when the number of nodes is 50,000. As the number of nodes increases,
the gap between previous protocols and our protocol goes far beyond logarithmic scale. Furthermore,
unlike the broadcast-based snapshot protocol, our approach maintains a small number of neighbors in
the list. This signifies the efficiency of the proposed distributed snapshot protocol.

The second category of Table 2 shows the cumulative size of received data for a node when the
number of nodes is 50,000. The uncompressed size of intermediate data including annotations and
comments is about 2.95 KB, and its compressed size is 872 B. Each node in the broadcast-based protocol
receives about 41.5 MB when the number of nodes in the system is 50,000. When the proposed protocol
is used in normal mode, each node receives 872 B. On the other hand, when the piggyback mode is
used in the proposed protocol, the size of the received data is the same as the broadcast-based protocol.
However, in Round 1, the size of the received data of the piggyback mode is about 26.2 MB since about
37% of the stateNodes data structure is empty, on average.

There is a tradeoff between the requisite number of rounds and the size of the intermediate data for
the normal mode and the piggyback mode. When the requisite number of rounds is crucial for resource
management, the piggyback mode is preferred. On the other hand, if the network traffic is a great concern
of the system, the normal mode is a better choice with marginal performance degradation. However,
when the number of nodes is small (e.g., 100), the piggyback mode will be preferable since the size of the
received data in one round for a node will be about 85.1 KB when the number of nodes is 100.
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Table 2. The cumulative number of messages and size of received data for a node in comparison with
previous protocols when the number of nodes is 50,000.

Method Category Round 1 Round 5 Round 10

Broadcast-based
Number of messages 2,500,000,000 12,500,000,000 25,000,000,000
Size of received data 41.5 MB 207.9 MB 415.8 MB

Proposed
(normal)

Number of messages 50,000 250,000 500,000
Size of received data 872 B 4.2 KB 8.5 KB

Proposed
(piggyback)

Number of messages 50,000 250,000 500,000
Size of received data 26.2 MB 192.5 MB 400.4 MB

6. Conclusions

In this paper, we proposed a distributed snapshot protocol for artificial intelligence computation.
Our proposed snapshot protocol differs from previous approaches in that our algorithmic design uses the
one-to-one communication model and maintains a small subset of neighbor nodes, thereby reducing the
message complexity. By taking advantage of the cloud computing environment, our proposed snapshot
protocol is able to deal with various artificial intelligence applications that exhibit iterative behavior.
The performance results show that our snapshot protocol performs well even when the number of nodes
increases exponentially. With our snapshot protocol, the processing time can be reduced in the presence
of failures by resuming the artificial intelligence computation from the latest snapshot, while minimizing
SLA violation. The proof of the algorithm shows that our snapshot protocol satisfies the correctness,
safety, and liveness conditions. Future work is to incorporate the proposed snapshot protocol into various
resource management modules in cloud computing environments so that a cloud administrator can
benefit from our snapshot protocol. More specifically, the proposed snapshot protocol can be used not
only for artificial intelligence computation but also for general-purpose computation by virtual machines
since our scheme is implemented in a modular way while preserving portability.
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