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Abstract: In this paper, the stability of translation-invariant spaces of distributions over locally
compact groups is stated as boundedness of synthesis and projection operators. At first,
a characterization of the stability of spline-type spaces is given, in the standard sense of the stability for
shift-invariant spaces, that is, linear independence characterizes lower boundedness of the synthesis
operator in Banach spaces of distributions. The constructive nature of the proof for Theorem 2
enabled us to constructively realize the biorthogonal system of a given one. Then, inspired by the
multiresolution analysis and the Lax equivalence for general discretization schemes, we approached
the stability of a sequence of spline-type spaces as uniform boundedness of projection operators.
Through Theorem 3, we characterize stable sequences of stable spline-type spaces.
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1. Introduction

Common techniques in signal processing and approximation theory rely on the decomposition
of the given sampled functions using shifts of chosen discretized functions possessing optimal
localization properties [1–5]. Shift-invariant (SI) spaces are among the standard decomposition tools in
approximation and sampling theory [6–8]. Their standard construction [9–11] relies on the two main
ingredients: a set of window functions defined over Rd, and the discrete subgroup Zd. SI spaces
are built as the closed linear span over L2(Rd) of the integer shifts of the generating set. SI spaces
have been generalized over Locally Compact Abelian (LCA) groups in [12], while in [13] the first two
authors have generalized their range function approach [10] to translation-invariant (TI) space on
LCA groups to consider the shifts of a countable set of functions over a cocompact subgroup, that is,
a subgroup that builds a compact quotient space; this leads again to a SI theory restricted to L2(Rd).

In this paper we consider a finite set of generators and their shift over cocompact subgroups;
the related closure over a selected translation-invariant Banach space will be called spline-type
space (ST), as a direct continuation of the notation stated in [6,14,15]. In the standard L2(Rd)

theory [16] for signal analysis, for a countable set of functions Φ := {φi}i∈I ⊂ L2(Rd) (that are
the words of a decomposition vocabulary) the analysis operator VΦ and synthesis operator UΦ are
considered. The first measures through the L2 product 〈·, ·〉2 the presence of each φi in a given signal:
VΦ f := (〈φi, f 〉2)i∈I for f ∈ L2(Rd); the latter produces a signal starting from a sequence in L2(I):
UΦc := ∑i∈I ciφi for c ∈ L2(I). The concept of frames and Riesz basis are countable sets which ensure
boundedness of the analysis and synthesis, respectively. In this paper we use the duality principle [17],
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which has been extended to Banach spaces [18], in its formulation for continuous systems [19] to
study the property of ST space through continuous Riesz basis. We develop in this paper the typical
computational approach of SI spaces for a general ST space generated by Φ building the biorthogonal
Φ̃ system which ensures the reproduction formula:

f = ∑
i∈I
〈φ̃i, f 〉 φi,

∑ being the summation over the subgroup that generates the ST space and 〈·, ·〉 the action of
a distribution onto a function.

Boundedness of the synthesis operator will be named stability, referring to the literature of SI
spaces as boundedness of the synthesis operator and reproduction formula [9,11].

Another aspect is related to the analysis of the projection into ST spaces that could be accounted
under the same name stability. To clear this ambiguity comes from our interest of laying the
foundations for the stability and the consistency of general discretization schemes [20] in the sense of
the Lax–Richtmyer equivalence [21] for the space of multipliers over LCA groups. In the equivalence
theorem, stability of discretization method is defined as boundedness of the family of operators,
independently from the discretization parameter, that is, uniform boundedness of the family. In analogy
with multi-resolution discretization, for example, wavelets systems, we will build a sequence of ST
spaces generated by an original ST space and the operator induced by an automorphism over the LCA
group, extending the standard construction of the dyadic contraction operator f (x) 7→ f (2x) induced
by the expansive automorphism x 7→ 2x over the LCA group Rd over L2(Rd).

The outline of the present paper is the following: In Section 2 we introduce basic concepts of
locally compact (LC) groups [22–24] to define ST spaces, continuous measurable mappings, p-frames
and q-Riesz basis in Banach spaces [19] which correspond to measurable synthesis operators [25].
In Section 3 we generalize in this framework the theory of SI space [11] to obtain a constructive
realization of the biorthogoonal system which leads to the non-orthogonal expansion of distributions.
Theorem 2 is turned into pseudocode in Algorithm 1 to highlight its computational nature. Finally in
Section 4 we introduce the concept of sequence of ST spaces generated by automorphisms of the LCA
group, and find the characterization of the induced operators which give stability in the Lax sense.

2. Notation and Mathematical Preliminaries

Locally compact (LC) groups are topological groups such that every point has a compact
neighbourhood. Notable examples are compact and discrete groups, Rn and Qp. If the group is
Abelian we will shortly say that it is an LCA group. The left translation operator is defined as the
operator acting on a function or distribution f defined over the LC group G as:

Ly f (x) := f (y−1x), y, x ∈ G.

A space of function X is called translation invariant if f ∈ X → Lx f ∈ X for all x ∈ G.
The first important property of an LC group is the existence and the uniqueness of the Haar

measure, that is, a positive measure invariant under left translation. Lebesgue spaces Lp(G) are
defined according to this measure, since the standard Lebesgue measure on Rd coincides with the Haar
measure of the LCA additive group Rd.The morphisms from G into the torus T are called characters of
the group. The set of continuous characters of an LC group G form together with the multiplication
over T an LC group Ĝ called the topological dual group.

For an LCA group G, the topological dual of Ĝ is isomorphic to G, hence characters x̂ ∈ Ĝ can be
represented as x 7→ 〈x, x̂〉 for x ∈ G and the element of x ∈ G as x̂ 7→ 〈x, x̂〉 , x̂ ∈ Ĝ.

We will use during the paper the same notation for dual of a vector space V: given a vector v ∈ V
and a continuous linear functional w ∈ V∗, the brackets notation 〈v, w〉 express the application of
w on v.

The Fourier transform of a function in L1(G) is defined as:
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f̂ (x̂) :=
∫

G
f (x)〈x, x̂〉dx x̂ ∈ Ĝ,

while the convolution can be defined for the space K(G) of compactly supported functions:

f ∗ g :=
∫

G
f (x)Lxg(y)dx

and extended to the whole L1(G) as in the case of standard real analysis. It is important to notice
that convolution is not commutative for a general LC group. We will denote for a subgroup H the
convolution f ∗H g :=

∫
H f (x)Lxg(y)dHx.

Another strength of LCA group theory is the possibility to develop distribution theory.
Schwartz class space was generalized by Bruhat for the case of LCA groups by considering them direct
limits of elementary LCA groups [26]. It is possible to characterize such a space without the use of
smooth structure and differential operators but only by means of the decay property of a function and
its Fourier transform [27]: We consider the set A(G) of functions f ∈ L∞(G) for which there exist a
compact neighbourhood of the identity C f ⊂ G such that for all n ∈ N there exist Mn > 0 such that:

‖ f |G\Ck
f
‖∞≤ Mnk−n

for all k ≥ 1. A(G) is translation invariant, closed under multiplication with L∞ function, dense in L1

and a convolution algebra.
The Schwartz–Bruhat space is equivalent to the definition:

S(G) =
{

f ∈ A(G) : f̂ ∈ A(G)
}

,

and the space of distributions is defined as its dual.
Translation and convolution are weakly extended to distribution in the following way:

Lx : S(G)∗ 7→ S(G)∗, 〈 f , Lxφ〉 := 〈Lx−1 f , φ〉 , ∀g ∈ S(G)

and

∗ : S(G)× S(G)∗ 7→ S(G)∗, 〈g, f ∗ φ〉 =
〈

f̃ ∗ g, φ
〉

, ∀g ∈ S(G),

where f †(x) = f (x−1). These definitions are well posed also for bounded functions and compactly
supported distributions.

The Schwartz–Bruhat space, and its dual, are reflexive space invariant up to translation, character
multiplication and convolution with bounded functions.

A consequence of the Paley–Wiener theorem [27] is that the Fourier transform of a compactly
supported distribution is a function defined over Ĝ with:

〈〈·, x̂〉 , φ〉 = φ̂†(x̂).

We introduce spline-type spaces as subspaces of translation-invariant Banach spaces.

Definition 1. Given G an LC group, H a subgroup of G, and Φ = {φi : G → C}R
i=1 a finite set of

functions or distributions in a translation-invariant Banach space (B, ‖ · ‖B), the collection of left shift
(Φ, H) := {Laφi : a ∈ H, i = 1, . . . , R} is called the spline-type system of generating set Φ and subgroup
H, while its closed span in B is called and spline-type space generated by Φ and H, which will be indicated
as S(Φ, H).

In signal analysis, fundamental operators are the analysis and synthesis operators. They are
closely related to the vector Lebesgue space over LC group
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(Lp(H))R :=
{

c(a) = (ci(a))i=1,...,R
a∈H

:

‖ c ‖
(Lp(H))I := max

i=1,...,R

(∫
H
|ci(a)|pdξ

) 1
p
< ∞

}
.

Since we do not restrict our study to discrete sampling, we have to introduce the concept
of continuous analysis and synthesis [19]. Given a measure space (Ω, µ), a Banach space X and
a measurable mapping F : Ω→ X∗, the synthesis of F is weakly defined as UF : Lq(G)→ X∗

UFc( f ) :=
∫

H
c(ω) 〈 f , F(ω)〉 dµω.

For the case of an ST space generated by a a subgroup H and a finite set of distributions
Φ = (φi)i=1,...,R, we consider the measure space (Ω, µ) := (H, µH) and F(ω) := (Lωφi)i=1,...,R so
the synthesis operator has the form:

UΦ,Hc( f ) :=
R

∑
i=1

∫
H

ci(a) 〈 f , Laφi〉 dHa. (1)

Predominant role will have KΦ,H , the kernel of the synthesis of the (Φ, H) ST system.
The analysis of a measurable mapping F : Ω→ X∗ is the operator VF : X → Lq(G)defined as:

VF f (ω) := 〈 f , F(ω)〉 f ∈ X, ω ∈ Ω.

Since we will consider a dual pair of ST spaces, we are interested in mappings G Ω→ S(G)∗∗ for
the reflexive Schwartz–Bruhat space. We will consider analysis in S∗(G) of an ST space generated by
Φ∗ =

(
φ∗i
)

i=1,...,R ⊂ S(G)∗∗ = S(G) on a subgroup H as:

VΦ,H f := 〈Laφ∗i , f 〉 i = 1, . . . , R, a ∈ H.

Our definition of ST spaces does not ensure boundedness of these operators between the space of
coefficients and the ST space. To introduce the theory of frames and basis, we want to mention the
following theorem from ([28], Lemma 3.4.1).

Theorem 1. Consider a bounded linear map T : B1 → B2 between Banach spaces. If there exist a bounded
linear map R : B2 → B1 such that:

R ◦ T f = f for all f in a dense subspace of B1 (2)

then

(I) R can be extended to T(B1), i.e., it is a left inverse for T
(II) T is a Banach space isomorphism from B1 onto T(B1); in particular there exist C1, C2 > 0 such that:

C1 ‖ h ‖B1≤‖ Th ‖B2≤ C2 ‖ h ‖B1 ∀h ∈ B1. (3)

(III) R is surjective and such that:

if Rh = f → ‖ h ‖B2≤ C2 ‖ f ‖B1 .

(IV) P = T ◦ R is a bounded projection in B2 onto T(B1). In particular T(B1) is complementable in B2, i.e.,
∃W ⊂ B2 a closed subspace such that B2 = T(B1)⊕W.

The strength of the stability theory of linear operator on Banach space relies on the possibility to
establish particularly stable algorithms (projections) without the need of working on Hilbert spaces.
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Equalities (3) are used in signal analysis over Hilbert spaces to characterize useful dense sets in
space of functions [16]: a (not necessarily ([13], Definition 5.1)) countable family of functions in L2 is
called a (continuous) frame if (3) express the boundedness of the l2 norm of the coefficients obtained
through analysis operator by the L2 norm of the analyzed function; it is called a (continuous) Riesz basis
if the inequalities hold for its synthesis. We could extend the Frame–Riesz terminology to a spline-type
space, once convergence of the integral over the subgroup is attained, but we prefer to require the
more restricting property (2) for the synthesis operator, since standard inequality requirements follow
and from property 1 we see that it is the perfect setting for a possible multiresolution approach.
We explicitly define frames and bases in Lp Banach spaces.

Definition 2. A weakly measurable mapping F : Ω→ X∗ is called a continuous p-frame for X if there exist
A, B > 0 such that:

A ‖ x ‖≤
(∫

Ω
|〈x, f (ω)〉|p dω

)1/p
≤ B ‖ x ‖ .

A Bessel mapping is a weakly measurable mapping which ensures the upper bound. The mapping is called
a continuous q Riesz basis for X∗ if 〈x, F(ω)〉 ∀ω ∈ Ω→ x = 0 and there exist A, B > 0 such that:

A ‖ c ‖q≤‖ UFc ‖≤ B ‖ c ‖q c ∈ Lq(Ω, µ). (4)

The synthesis operator of F on Lq is, for p such that 1
p + 1

q = 1, the dual (up to isometric
isomorphism from Lp to Lq) of the analysis with value in Lp. Analogous reasoning can be done for the
analysis being the dual of the synthesis for a reflexive Banach space X.

If X is reflexive, then F is a continuous p frame if UF is well defined and bounded, and it has
bounds ‖ (U∗F)

−1 ‖ and ‖ UF ‖ ([19], Theorem 2.6).
In the representation of signals through a discrete set of functions, central roles have biorthogonal

systems [29–31].

Definition 3. Given a Banach space X and its dual X∗, a biorthogonal system in X×X∗ is a family (φi, φ∗i )i∈I

such that
〈

φi1 , φ∗i2

〉
= δi1,i2 .

A biorthogonal system is a projection basis in X0 ⊂ X if it is a basis for X0 and

P( f ) := ∑
i∈I
〈 f , φ∗i 〉 φi ∀ f ∈ X. (5)

A family is a Riesz projection basis if:

1. There is a solid Banach space of coefficients s.t. the synthesis map is a well-defined continuous bijection.
2. The synthesis operator has a bounded left inverse.

In the theory of measurable mappings a continuous p-Bessel mapping F : Ω → X∗ for X and
a continuous q-Bessel mapping G : Ω → X∗∗ for X∗ compose a dual pair (F, G) if an analogy of (5)
holds: For reflexive spaces, the Bessel mappings are dual if the composition of the analysis VG with
the synthesis UF gives the identity on X∗ ([19], Lemma 2.4 (ii), Theorem 5.4 (ii) and Definition 5.5).
Biorthogonal systems ensure the pair is dual.

For ST systems generated by Ψ := {ψi}R
i=1 ⊂ S(G) and a subgroup H we will shortly say that

Ψ is biothogonal to Φ := {φi}R
i=1 ⊂ S(G)∗ if 〈Laψi, Lbφj〉 = δi,jδa,b for all i, j = 1, . . . , R and a, b ∈ H.

Thanks to the Haar measure on H, the summation in (5) makes sense for f ∈ S(G)∗.
In the proof of Theorem 2 we will bound from below the synthesis through a constructive

procedure which leads to the biorthogonal ST system in S(G) for the case of a spline-type system in
S∗(G) generated by a compactly supported distribution and a proper subgroup.
Starting from a Bessel system this will lead to the characterization of ST (Lp(H))R-Riesz projection
basis for UΦ,H (Lp(H))R in the translation-invariant space in which the generating set is selected,
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and the related left inverse, which also is used in Formula (5), is the analysis with respect to the ST
biorthogonal system.

3. Lp-Stability of Spline-Type Spaces

In the literature of SI spaces the lower bound expressed in (4) characterizes the injectivity of the
synthesis operator and it is called stability of the SI system [11,32,33]. This study has been generalized
in Lp(Rd) spaces in [34] but to our knowledge there is no generalization in continuous SI space over
LCA groups, that is, ST spaces. In order to introduce the proposed characterization, we show that the
theory developed in [32] can be extended to any ST space over LCA group which consider the shifts of
a finite set of functions or distributions over an arbitrary cocompact subgroup.

We need to prove first two lemmas; the first characterizes the Fourier transform of a particular
synthesized distribution, while the second is a straightforward consequence of the first.

Lemma 1. Let G be an LCA group, H a closed subgroup, φ a compactly supported distribution on G, and
x̂ ∈ Ĥ.

Consider the distribution:

φx̂ := 〈·, x̂〉 ∗H φ = Uφ,H 〈·, x̂〉 . (6)

Then φx̂ defines a linear functional for integrable functions and, for every f ∈ L1(G), its value can be
computed in the dual domain by:

〈 f , φx̂〉 =
∫

H⊥
φ̂(β−1 x̂) f̂ (x̂−1β)dH⊥β. (7)

Proof. Because A(G) · L∞(G) ⊂ A(G), definition (6) makes sense. Because φ is continuous on S(G),
and S(G) dense in L1(G), then for all f ∈ L1(G)

〈 f , φx̂〉 = φ

(∫
H
〈α, x̂〉 f (αx)dHα

)
.

Fix x ∈ G and consider the function:

g(y) = 〈y, x̂〉 f (yx) ∈ L1(G)

as function over H. Applying the Poisson’s formula we obtain:∫
H

g(α)dHα =
∫

H⊥
ĝ(β)dH⊥β

=
∫

H⊥

〈
x, x̂−1β

〉
f̂ (x̂−1β)dH⊥β.

In this way:

〈 f , φx̂〉 = φ

(∫
H⊥

〈
x, x̂−1β

〉
f̂ (x̂−1β)dH⊥β

)
=
∫

H⊥
φ
(〈

x, x̂−1β
〉)

f̂ (x̂−1β)dH⊥β

=
∫

H⊥
φ̂
(

β−1 x̂
)

f̂ (x̂−1β)dH⊥β,

where the last equality is obtained through the definition of the Fourier transform of a distribution.

With the previous lemma we can easily prove whether a character, subsampled to a subgroup H,
belongs to the kernel Kφ,H of the synthesis operator of a principal ST space S(φ, H):
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Lemma 2. Let G be an LCA group, H a closed subgroup, φ a compactly supported distribution on G, then for
any x̂ ∈ Ĥ

〈·, x̂〉 ∈ Kφ,H iff ∀β ∈ H⊥, φ̂(β−1 x̂) = 0.

Proof. By definition, 〈·, x̂〉 ∈ Kφ,H if and only if Uφ,H 〈·, x̂〉 = 0. Since the hypothesis of Lemma 1 is
fulfilled, this is equivalent to saying that the distribution φx̂ built in (6) is an annihilator distribution.

Looking at the right hand side of (7), this can happen if φ̂(β−1 x̂) = 0 for any β ∈ H⊥.

Theorem 2. Let G be an LCA group, H a cocompact subgroup and a finite generating set Φ = {φi}R
i=1 of

compactly supported distributions.
There is equivalence between

(i) 6 ∃ f (x) = ( f1(α), . . . , fR(α)) ∈ (L∞(H))R such that UΦ,H f = 0
(ii) 6 ∃ξ ∈ H⊥ such that the functions on H⊥,

{
φ̂j(·ξ)

}
j=1,...,R are linearly dependent

(iii) ∃δ > 0 such that ∀1 ≤ p ≤ ∞, ∀ f ∈ (Lp(H))R

δ ‖ f ‖
(Lp(H))R≤‖ UΦ,H f ‖Lp(G) . (8)

Proof. Theorem 2 (i)→ Theorem 2 (ii): If we suppose that ∃ξ ∈ H⊥ and ∃(a1, . . . , aR) ∈ CR such that:

φ =
R

∑
j=1

ajφ̂j(βξ) = 0 β ∈ H⊥,

then by Lemma 2 〈·, ξ〉 ∈ Kφ,H , so by linearity,

R

∑
j=1

aj 〈·, ξ〉 ∈ KΦ,H ,

which contradicts 2.
Theorem 2 (iii) → Theorem 2 (i): It is trivial because if we can find f ∈ KΦ,H \ {0}, then

‖ f ‖
(Lp(H))R>‖ UΦ,H f ‖Lp(G)= 0.
Theorem 2 (ii)→ Theorem 2 (iii): If we consider the correlation matrix:

bj,k(α) :=
∫

G
φj(αx)φk(x)dGx (9)

as function on H, because the atoms are compactly supported we can consider the Fourier transform
on H

Aj,k(ξ) =
∫

H
bj,k(α)〈α, ξ〉dHα ξ ∈ Ĥ. (10)

We prove now that the matrix A(ξ) is positive definite for every ξ ∈ Ĥ.
Because A(ξ) is trivially Hermitian we only have to prove that:

I(ξ) =
R

∑
j,k=1

aj Aj,k(ξ)ak > 0 ∀ (a1, . . . , aR) ∈ CR \ {0}.

Once again, because we are dealing with a finitely generated spline-type scheme, we have to
manipulate general combinations of such atoms. Consider then
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I(ξ) =
∫

H

R

∑
j,k=1

(∫
G

ajφj(αx)akφk(x)dGx
)
〈α, ξ〉dHα

=
∫

H

(∫
G

φ(αx)φ(x)dGx
)
〈α, ξ〉dHα,

where φ = ∑R
j=1 ajφj.

Now, using the Weil formula and Fubini theorem we obtain:

I(ξ) =
∫

H

(∫
G

φ(αx)φ(x)dGx
)
〈α, ξ〉dHα

=
∫

H

∫
G/H

∫
H

φ(αxγ)φ(xγ)〈α, ξ〉dHγdG/H |x|dHα

=
∫

G/H

∫
H

∫
H

φ(αxγ)φ(xγ)〈α, ξ〉dHγdHαdG/H |x|

=
∫

G/H
|h(x)|2 dG/H |x|,

where h(x) :=
∫

H φ(αx)〈α, ξ〉dHα = Uφ,H (〈·, ξ〉) 6= 0 by Lemma 2.
Because it is non-null in the quotient for LCA group too, we have that I(ξ) is a positive definite.
From this we can compute the inverse of A. Since Φ = {φi}R

i=1 is a finite generating set of
compactly supported distributions, A is a matrix in CR×R whose entries are trigonometric polynomials,
hence each

(
A−1)

j,k is a quotient of trigonometric polynomial, whose denominator never vanishes.

Since H is cocompact, H⊥ is compact, thus by Wiener’s Lemma,
(

A−1)
j,k can be expressed as an

absolutely convergent integral in F 1(H)(
A−1

)
j,k
(ξ) =

∫
H

gj,k(α)〈α, ξ〉dHα, (11)

with gl,k ∈ L1(H).
Considering the vector valued functions on H, gl = (gl,1, . . . , gl,R), we build the set of functions:

ψl = UΦ,H gl l = 1, . . . , R. (12)

Fixing k ∈ {1, . . . , R} we consider for all l = 1, . . . , R and for every γ ∈ H the products:

ci,j(γ) :=
〈

ψl , φk(γ
−1·)

〉
=

R

∑
m=1

∫
G

(∫
H

gl,m(α)φm(α
−1x)φk(γ−1x)dHα

)
dGx

=
R

∑
m=1

∫
H

gl,m(α)

(∫
G

φm(α
−1x)φk(γ−1x)dGx

)
dHα

=
R

∑
m=1

∫
H

gl,m(α)bm,k(α
−1γ)dHα,

hence ∫
H

ci,j(γ)〈γ, ξ〉dHγ

=
R

∑
m=1

∫
H

∫
H

gl,m(α)bm,k(α
−1γ)dHα 〈γ, ξ〉dHγ

=
R

∑
m=1

Am,k(ξ)
(

A−1
)

l,m
(ξ) = δk,l .

This shows that:
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〈Lγψl , Lαφk〉 =
〈

Lα−1γψl , φk

〉
= δα,γδk,l ,

which means that we have built through the inversion of the matrix A in the Fourier domain, a set of
atoms Ψ = {ψ1, . . . , ψR}, which is the biorthogonal system of Φ.

The reproduction formula holds, then ∀ζ ∈ S(φ, H)

ζ = UΦ,H f =
R

∑
j=1

∫
H

f jLαφjdHα,

with

f j =
(〈

ζ, Lαψj
〉)

α∈H .

If we fix a p-norm, because φj, ψj ∈ L∞(G) for all j = 1, . . . , R and gjk ∈ L1 for all j, k = 1, . . . , R,
and apply the Young inequality for convolution twice, we obtain:

‖ f j ‖Lp(H) ≤‖ ζ ‖Lp(G)‖ ψj ‖L∞(G)

≤‖ ζ ‖Lp(G)

R

∑
m=1
‖ φm ‖L∞(G)‖ gj,m ‖L1(G) .

Then, we obtain (8) with

δ−1 = max
j=1,...,R

R

∑
m=1
‖ φm ‖L∞(G)‖ gj,m ‖L1(G) .

The Theorem is particularly appealing since it displays the constructive nature of the theory.
We can turn it into Algorithm 1. This algorithm builds the biorthogonal Φ̃ of the given ST system.
If the original preserves also an upper bound for the synthesis operator in Lq(H) then we obtain the
reproduction formula for f ∈ X∗ ,

f = PΦ,H f = UΦ,HVΦ̃,H f . (13)
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Algorithm 1 Computation of the coefficients as in (12)

Precondition: Windows Φ = {φr}R
r=1, subgroup H

1: function COEFFICIENT_COMPUTATION(Φ,H)
2:
3: for r ← 1 to R do
4:
5: φ̂r ← F (φ)
6:
7: end for
8:
9: for r, l ← 1 to R do

10:
11: Gr,l ← F−1(φ̂rφ̂l) % Convolutions in (9)
12:
13: end for
14:
15: G(s)

r,l ← Gr,l(H) % Subsampling to H
16:
17: for r, l ← 1 to R do
18:
19: Ĝ(s)

r,l ← FH(G
(s)
r,l ) % PD matrix in (10)

20:
21: end for
22:
23: for x ∈ H do
24:

25: ĝ(x)←
(

Ĝ(s)(x)
)−1

% Wiener’s inversion in (11)
26:
27: end for
28:
29: for r, l ← 1 to R do
30:
31: gr,l ← F

−1
H (G(s)

r,l ) % Coefficients (12)
32:
33: end for
34:
35: return g
36:
37: end function

4. Stability for Sequence of Projections

In the theory of numerical solutions of PDE, the term stability refers to a property of finite
difference equations with increasing finer mesh. Initially coined to express the growth of rounding
error, in the Lax theory [21] it has been reformulated as an intrinsic property of the discretization
scheme, independent of the particular initial value of the problem. In this paper we consider uniform
boundedness of the projection operators into a sequence of ST space obtained by modifying the
generating set and the subgroup through a sequence of automorphisms.

One particularly important feature of an automorphism α of an LC group is its modulus which
is the (unique) positive number ∆(α) such that the composition with the Haar measure µ on G
is α(µ) = ∆(α)µ. For each automorphism α on G the adjoint α∗ is defined as the automorphism
on Ĝ such that 〈αx, x̂〉 = 〈x, α∗ x̂〉. Modulus, adjoint and inverse of an automorphism satisfy the
following properties:

∆(α∗) = ∆(α)

∆(α−1) = ∆(α)−1,

and composition with an automorphism and Fourier transform follow the property:

f̂ ◦ α = f̂ ◦ (α∗)−1 .



Symmetry 2018, 10, 7 11 of 16

To build orthonormal wavelets over local field, in [35], expansive automorphism with respect to a
subgroup of the additive group structure was introduced. A slightly more restrictive definition is given
in [36] through contractive automorphism: The inverse of a contractive automorphism is expansive,
but the inverse of an expansive automorphism is not contractive in general. However, both definitions
display scaling property: an expansive automorphism σ has modulus ∆(σ) < 1, while a contractive
automorphism τ has modulus ∆(τ) > 1.

In the stage of stability we are not interested in contractive nor expansive automorphism;
we plan in the future to study how a contractive automorphism induces a multiresolution analysis
which provides approximation order as described for SI space in [33]. Our approach resembles the
one from [35] since it makes use of automorphisms over the LCA group, but does not require a
multiresolution framework. This type of analysis seems to be original in the literature.

We define the operator associated to an automorphism τ:

Dτ f = f ◦ τ−1.

Immediate properties of the operator Dτ are that (Dτ)
−1 = Dτ−1 and that ‖ Dτ f ‖= ∆(τ)

1
p ‖ Dτ f ‖

in Lp(G) for every 1 ≤ p ≤ ∞, that is, the operator is a scalar multiple of an isometric isomorphism.
Similarly as for the shift, we weakly define the D∗,τ operator for distribution in X∗ as the adjoint

of Dτ−1 :

〈 f , D∗,τφ〉 :=
〈

D−1
τ f , φ

〉
∀ f ∈ X.

The definition is well-posed and compatible with the definition of Dτ since for f ∈ X ⊂ X∗∗,
〈φ, D∗∗,τ f 〉 =

〈
D−1
∗,τφ, f

〉
=
〈

f , D−1
∗,τφ

〉
= 〈Dτ f , φ〉.

We now build through Dτ a sequences of projections. Given a vector space of function or
distribution S, consider the contracted space:

Sτ := {Dτs : s ∈ S} .

It is natural to define the sequence:

Sn := Sτn
n ∈ N.

Dτ do not commute with shift since:

LxDτ = Dτ Lτ−1x Dτ Lx = LτxDτ ,

and equivalent properties for D∗,τ . For this reason we also have the following:

Proposition 1. Let (Φ, H) be a stable ST system of distribution having a biorthogonal system (Φ̃, H), and τ

an automorphism.
Then the contracted space S(Φ, H)τ is the ST space S(D∗,τΦ, τH) and (DτΦ̃, τH) is the biothogonal dual.

Proof. Applying the commutation law and the definition of D∗,τ we have for all x ∈ τH〈
LxDτ φ̃i, D∗τφj

〉
=
〈

Dτ−1 LxDτ φ̃i, φj
〉〈

Lτ−1xDτ−1 Dτ φ̃i, φj
〉
=
〈

Lτ−1xφ̃i, φj
〉
= δi,jδ0,τ−1x.

Corollary 1. The projection operator into the space S(DτΦ, τH) is:

PDτΦ,τH = UDτΦ,τHVDτΦ̃,τH .
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The standard dyadic contraction D2 f (x) = 1√
2

f (2x) is a unitary operator over L2(Rd),
for example, 〈D2 f , D2g〉 = 〈 f , g〉. The couple (Dτ , D∗,τ) behaves in a similar manner since
〈Dτ f , D∗,τφ〉 = 〈 f , φ〉, even if the contractions are not isometries. Since these operators are not
isometries we are interested in how a frame or a Riesz basis are influenced by such operators.

Lemma 3. Let (Φ, H) ⊂ X a p-frame for X∗ with frame bounds 0 < A < B. Then, (DτΦ, τH) is a p-frame
having frame bounds:

0 <‖ Dτ−1 ‖−1 A <‖ Dτ ‖ B.

Let (Φ, H) ⊂ X∗ a q-Riesz basis for X∗ with bounds 0 < A < B. Then, (DτΦ, τH) is a q-Riesz basis
having bounds:

0 <‖ Dτ ‖−1 A <‖ Dτ−1 ‖ B.

Proof. Let ψ ∈ X∗; for the analysis operator of (DτΦ, τH) sums as:

∑
i

∫
τH
|〈LxDτφi, ψ〉|p dx

=∑
i

∫
τH
|〈Dτ Lτ−1xφi, ψ〉|p dx

=∑
i

∫
τH

∣∣〈Lτ−1xφi, D∗,τ−1 ψ
〉∣∣p dx

=∑
i

∫
H

∣∣〈Lxφi, D∗,τ−1 ψ
〉∣∣p dx,

hence (
∑

i

∫
τH
|〈LxDτφi, ψ〉|p dx

)1/p

=

(
∑

i

∫
H

∣∣〈Lxφi, D∗,τ−1 ψ
〉∣∣p dx

)1/p

≤ B ‖ D∗,τ−1 ψ ‖X∗≤ B ‖ D∗,τ−1 ‖‖ ψ ‖X∗

≤ B ‖ Dτ ‖‖ ψ ‖X∗ ,

while for the lower bound, consider ψ ∈ X∗

‖ ψ ‖X∗ =‖ (Dτ Dτ−1)
∗ ψ ‖X∗=‖ D∗

τ−1 D∗τψ ‖X∗

≤‖ D∗
τ−1 ‖‖ D∗τψ ‖X∗

≤ ‖ Dτ−1 ‖
A

(
∑

i

∫
H
|〈Lxφi, D∗τψ〉|p dx

)1/p

=
‖ Dτ−1 ‖

A

(
∑

i

∫
τH
|〈LxDτφi, ψ〉|p dx

)1/p

.

For the Riesz basis condition we need to consider that for all f ∈ X
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〈
f , UD∗,τΦ,τHc

〉
= ∑

i

∫
τH

c(x) 〈 f , LxD∗τφi〉 dx

= ∑
i

∫
H

c(τx) 〈 f , LτxD∗τφi〉 dx

= ∑
i

∫
H

c(τx) 〈 f , D∗τ Lxφi〉 dx

= ∑
i

∫
H

c(τx) 〈Dτ−1 f , Lxφi〉 dx

= 〈Dτ−1 f , UΦ,H Dτ−1 c〉
= 〈 f , D∗τUΦ,H Dτ−1 c〉 ,

hence for all c ∈ (Lq(τH))r ,

‖ UD∗,τΦ,τHc ‖X∗ =‖ D∗τUΦ,H Dτ−1 c ‖
≤‖ D∗τ ‖‖ UΦ,H Dτ−1 c ‖X∗

≤ B ‖ Dτ−1 ‖‖ Dτ−1 c ‖(Lq(H))r

≤ B ‖ Dτ−1 ‖‖ c ‖(Lq(τH))r ,

while for the lower bound, considering c ∈ (Lq(τH))r ,

‖ c ‖(Lq(τH))r =‖ Dτ−1 c ‖(Lq(H))r

≤ 1
A
‖ UΦ,H Dτ−1 c ‖X∗

=
1
A
‖ D∗,τ−1 D∗,τUΦ,H Dτ−1 c ‖X∗

≤ 1
A
‖ D∗,τ−1 ‖‖ UD∗,τΦ,τHc ‖X∗

=
‖ Dτ ‖

A
‖ UD∗,τΦ,τHc ‖X∗ .

Corollary 2. Let (Ψ, H) ⊂ X a p-frame from X∗ with bounds 0 < A1 < B1 and (Φ, H) ⊂ X∗ a q-Riesz basis
for X∗ with bounds 0 < A2 < B2. Then for all f ∈ X∗,

(‖ Dτ−1 ‖‖ Dτ ‖)−1 A1 A2 ‖ f ‖X∗≤‖ UDτn Φ,τn HVDτn Φ,τn H f ‖≤‖ Dτ ‖‖ Dτ−1 ‖ B1B2 ‖ f ‖X∗ .

The previous corollary gives us a strong constraint for the operator Dτ : For a general bounded
and invertible operator T on a Banach space, we have that ‖ T ‖‖ T−1 ‖≥ 1 and equality holds only if
T is a scalar multiple of isometric isomorphism. If strong inequality holds, recursive application of
Dτ would let the constant (‖ Dτ−1 ‖‖ Dτ ‖)−1 tend to zero and (‖ Dτ−1 ‖‖ Dτ ‖)−1 explode. Since we
are interested in uniform boundedness of projection operators we summarise this result in the
following theorem.

Theorem 3. For a stable ST space (Φ, H) with the Riesz bounds A2 and B2, having a biorthogonal system with
frame bounds A1 and B1, the frame bounds of the sequence of projection operators into the spaces S(Dτn Φ, τn H)

are stable in the following sense:

A1 A2 ‖ f ‖X∗≤‖ PDτn Φ,τn H f ‖≤ B1B2 ‖ f ‖X∗ f ∈ X∗,

if Dτ is a multiple of an isometric isomorphism.
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Example 1. Let G = Z and consider the subgroups Hk = 2kZ for k ∈ {4, 5, 6, 7, 8} which can be obtained
through the automorphism x 7→ 2X. The dual of G is Ĝ = S and the orthogonals of Hk are the subgroups

H⊥k = {ei l
2k , l = 0, . . . , 2k − 1}, respectively.

As a generating set, consider as a basic tool the standard Hermite cubic basis on [0, 1],

h1(t) = 2t3 − 3t2 + 1

h2(t) = t3 − 2t2 + t

h3(t) = −2t3 + 3 ∗ t2

h4(t) = t3 − t2.

At each level k we have considered the functions D1/2k hi and sampled over the integers.
On each level k the ST system ({D1/2k hi, i = 1, . . . , 4}, 2kZ) satisfied the linear independence condition 2

of Theorem 2.
In the following table we show the minimum singular value at each level k, we have considered the functions

D1/2khi and sampled over the integers in Table 1 :

Table 1. Minimum singular value at each level.

Level k = 4 k = 5 k = 6 k = 7 k = 8

Singular value 0.4299 0.7830 1.4886 2.9000 5.7229

Remark 1. Theorem 3 can be generalized for an arbitrary sequence of automorphisms: given a stable ST space
S(Φ, H), a sequence of automorphisms {τn}n≥1, we have stability for the sequence of ST spaces:{

S0 := S(Φ, H)

Sn := Sτn
n−1 n ≥ 1

only if a finite number of τn are not multiples of isometric isomorphisms.

5. Conclusions

In the present work, we proposed and characterized the stability of ST spaces using standard
techniques of SI spaces in the more general framework of continuous measurable maps over Banach
spaces. The constructive nature of the exposition has been turned into an algorithm that provides a
procedure for testing the stability of the input ST system (step 25 in Algorithm 1) and computes the
biorthogonal ST system once the test has been passed.

In the subsequent section, we have studied the uniform stability of morphed ST spaces through
automorphisms of the LCA group. The approach is original and does not resemble the standard
construction of wavelets and shearlets system [37] since no multiresolution constraint is required.
We plan to apply these results for the analysis of the stability of Petrov–Galerkin discretization schemes.
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