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Abstract: We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials and
Hermite-Bernoulli numbers attached to a Dirichlet character x and investigate certain symmetric
identities involving the polynomials, by mainly using the theory of p-adic integral on Zj,. The results
presented here, being very general, are shown to reduce to yield symmetric identities for many
relatively simple polynomials and numbers and some corresponding known symmetric identities.
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1. Introduction and Preliminaries

For a fixed prime number p, throughout this paper, let Z,, Qp, and C,, be the ring of p-adic integers,
the field of p-adic rational numbers, and the completion of algebraic closure of Q, respectively. In
addition, let C, Z, and N be the field of complex numbers, the ring of rational integers and the set
of positive integers, respectively, and let Ny := N U {0}. Let UD(Zj) be the space of all uniformly
differentiable functions on Z,. The notation [z], is defined by

= 7oL 2eCaeC\{1hg A1),

Let v, be the normalized exponential valuation on C, with |p|, = p'?P) = p=1 For f € UD(Zjp) and
q € C, with |1 —g|, < 1, g-Volkenborn integral on Z, is defined by Kim [1]

pN-1
hif) = [ Fdix) = lim o B 4" 0

For recent works including g-Volkenborn integration see References [1-10].
The ordinary p-adic invariant integral on Z, is given by [7,8]

B(f) = lim () = [ fx)ax @

q—1
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It follows from Equation (2) that

Li(f1) = h(f) + f(0), ®)
where f,(x) := f(x+n) (n € N) and f'(0) is the usual derivative. From Equation (3), one has
/ ctax= '~y gL )
Z Cet—1 "nt’

where B, are the nth Bernoulli numbers (see References [11-14]; see also Reference [15] (Section 1.7)).
From Equation (2) and (3), one gets

xtd
anpet X _1 (/ e(x+n)tdx_/ extdx)
pr ertdx  t \Jz, Zp

n—1 " o [n—1 N tk 0 tk ©)
=Y =Y | L) g=LSt-1g
j=0 k=0 \j=0 k=0
where
Se(n) =15+ 41" (keN, neNy). (6)

From Equation (4), the generalized Bernoulli polynomials B,(f‘) (x) are defined by the following
p-adic integral (see Reference [15] (Section 1.7))

14 [} n
(x+y1+ya+-+yu)t _ t Xt _ @,
Lol dyrdys - dy, (et_l) = LB %
*/
« times

in which B,(ql) (x) := By(x) are classical Bernoulli numbers (see, e.g., [1-10]).
Letd, p € Nbe fixed with (d,p) = 1. For N € N, we set

X=X =lim (z/apNz);

a—f—deZp:{xEX|an(modde)}

(anwith0§a<de); ®)
X' = |J (a+dpZy), Xi=1Z,.

O<a<dp

(a,p)=1

Let x be a Dirichlet character with conductor 4 € N. The generalized Bernoulli polynomials
attached to ) are defined by means of the generating function (see, e.g., [16])
= U
EY x()e

x j=0 t_ gy "
/XX(y)e( Wiy = Gt 1 © = ngf) Bn,x(x)a. )

Here By, := By, (0) are the generalized Bernoulli numbers attached to . From Equation (9), we have
(see, e.g., [16])

/X)((x)x”dx =B, and /X)((y)(x +y)"dy = By x(x). (10)



Symmetry 2018, 10, 675 30f10

Define the p-adic functional Ty (), n) by (see, e.g., [16])

n

Te(x,n) = Y x(O) & (keN). (11)
(=0
Then one has (see, e.g., [16])
Ber(nd) — Ber = ka_1(X, nd — 1) (k, n,dée N) (12)

Kim et al. [16] (Equation (2.14)) presented the following interesting identity

dn fX X(x) ext dx nd—1 00 tk

fX ednxt gy = é;) X(Z) el = k;) Tk(xr nd — 1) ol (n € N). (13)

Very recently, Khan [17] (Equation (2.1)) (see also Reference [11]) introduced and investigated
A-Hermite-Bernoulli polynomials of the second kind pBj(x,y|A) defined by the following
generating function

/Z(1+At)%(1+m2) dpto (1)
' (14)

1 (]
_ M(1+/\tﬁ(1+)\t2)% = Z HBm(x,y|A)
(1+At)7 —1 =0

(A, teCp with A #£0, |At] < p—pll) _

(“)(

Hermite-Bernoulli polynomials pB;’(x,y) of order a are defined by the following

generating function

t 14
<ef—1> My Z B (x,y) k' (o, x, y € C; |t| <2m) (15)

where HB]({l) (x,y) := gBi(x,y) are Hermite-Bernoulli polynomials, cf. [18,19]. For more information

related to systematic works of some special functions and polynomials, see References [20-29].

We aim to introduce arbitrary complex order Hermite-Bernoulli polynomials attached to a
Dirichlet character x and investigate certain symmetric identities involving the polynomials (15)
and (31), by mainly using the theory of p-adic integral on Z,. The results presented here, being very
general, are shown to reduce to yield symmetric identities for many relatively simple polynomials and
numbers and some corresponding known symmetric identities.

2. Symmetry Identities of Hermite-Bernoulli Polynomials of Arbitrary Complex Number Order
Here, by mainly using Kim’s method in References [30,31], we establish certain symmetry

identities of Hermite-Bernoulli polynomials of arbitrary complex number order.

Theorem 1. Letwa, x, v,z € C, 11, 12 € N, and n € Ny. Then,

-y ¥ ( )( ) B (1%, 132) Sy (2 — 1) B (ay) " gy

m=0 (=0

( ) ( >HB,5“_)m(172xn7§Z) Sm—e(m1 —1) B( Ymy) gy
- (16)



Symmetry 2018, 10, 675 4 0f 10

and 1
no M-
)3 ( ) 7y "B\ (my) wBy (ﬂzx + 2 17§Z>
m=0 j=0 m
17)
n M-
=) Z ( > 7" By (12y) By <nlx+m1,m >
m=0 j=0 1
Proof. Let
et _ 1 771f Ji% IR SER 172t o it
F(“;Wl’WZ)(t) = ot ot — 1 e’z 172 ot 1 e’z (18)

(0, x,y,z€ C; t € C\{0}; 71, 12 € N; 1* :=1).

Since lim;_,o 57t/ (e — 1) =1 = limy_o (e"* — 1)/ (nt) (7 € N), F(a; 771, 12)(t) may be assumed to be
analyticin |t| < 27t/ (n112). Obviously F(«; 11, 12)(t) is symmetric with respect to the parameters 7,
and 1.

Using Equation (4), we have

ryztudu a—1
. - "t ‘ nmmxt+ninazt? fZP ¢ 12t iyt
F(“/Wl/’?Z)(t) T (emt — 1) ez 172 fZ ety ot eyt (19)
p
Using Equations (5) and (15), we find
> Ht 1 & 2 t)"
F(a; 11, 172) E (122, 132) (’7,11!) n Z m(m —1) (sz
a = (1)’ .
-1
6:0 :
Employing a formal manipulation of double series (see, e.g., [32] (Equation (1.1)))
[ I (o) [11/}7]
Z Z Ak,n = Z Ak,n—pk (P € N) (21)
n=0k=0 n=0 k=0

with p = 1 in the last two series in Equation (20), and again, the resulting series and the first series in
Equation (20), we obtain
53§ BB B2) Sueln — 1) BV (y)

(n—m)! (m—£)!1 ! (22)

F(a;11,12)(t) =

n—m—1_,m

Ui ny .
Noting the symmetry of F(«; 11, 172)(t) with respect to the parameters 77 and 7, we also get

5§~ P B (1%, 722) S_o (72 — 1) BE ™Y (32y)

0 m=0 (=0 (n—m)! (m—£)Le! (23)

n—-m—1_,m

X1y mtt

Mg

(‘X 11, 772

n

Equating the coefficients of " in the right sides of Equations (22) and (23), we obtain the first equality
of Equation (16).
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For (17), we write

. 1 ﬂlt “ t+ 2.2 t2 e’71’72t _ 1 172t a—1 ,
F(a;11,1m2)(t) = ™ (6171t_1) nmt et o2 (I oYt (24)

Noting
61711721‘ -1 M- 1

mjt — NS e
- 2
] =) e Z(:) ennr,

j=0

we have

1 7]171 1t [ x+1772A t+ 2 Zztz Zt a—1
F(vc;m,ﬂz)(t):ﬂ— ) (em'Z_J o (e )b <evg_1> eyt (25)
]:

(26)

=0 (27)

In view of symmetry of F(«; %1, 72)(t) with respect to the parameters 77 and 7, we also obtain

H

) n M-
F(a;i,m) () =Y. ). B\ (12y)

]:
-1 n m
XHB,(;) (le—i— z) ;71‘ "

Equating the coefficients of t" in the right sides of Equation (27) and Equation (28), we have
Equation (17). O

Corollary 1. By substituting « = 1 in Theorem 1, we have
R n m 2 ¢ n—m—1_m
Yo 2 ) Uy ) aBaom(m2x,132) Sy = 1) (my)” U
SRR n m 2 ¢ n—m—=1_m
=) L ¢ ) Brm(mx,172) Spe (72 = 1) (p2y) 3™y
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and

n ol n m—1_n—m n—m M. 2
Lo 2 () T )" B 2+

m=0 j=0 n
Y 29)
n 1o _ ,
=) L <m> my ™ ()" " 1B (mx+mmﬁ2)-
m=0 j=0 2
Corollary 2. Taking « = 1 and z = 0 in Theorem 1, we have
- n m 0 n—m—=1_m
X ) (m) ( E) Bum (112%) Sm—e (11 = 1) () 1y ™"
m=0 (=0
n m n m o
=) ) (m) (£> Bum (1) e (72 = 1) (2) ™" !
m=0 (=0
and
nom-l /.,
) <m) m " (my) """ B <nzx+ mj)
LN 1 n—m m 0
Py L (m) " ()" By (m y

3. Symmetry Identities of Arbitrary Order Hermite-Bernoulli Polynomials Attached to a Dirichlet
Character x

We begin by introducing generalized Hermite-Bernoulli polynomials attached to a Dirichlet
character x of order « € C defined by means of the following generating function:

-1
EY x(f)e' a o
j=0 tHy? _ (@)
( edt — 1 > et = ngOHBn,X(x/y)

t?’l

" (31)

(0, x, y e C),

where x is a Dirichlet character with conductor 4.

Here, B;[X%(x) = HBY(,'Q(X,O), B,(la))( = HB,(&(O,O), and B, = HBﬁ,}))((O,O) are called
the generalized Hermite-Bernoulli polynomials and numbers attached to )y of order a and
Hermite-Bernoulli numbers attached to ), respectively.

Remark 1. Taking y = 0 in Equation (31) gives HB,(&(x, 0) :=y B,%)((x), cf. [33].
Remark 2. Equation (15) is obtained when x := 1 in Equation (31).

Remark 3. The Hermite-Bernoulli polynomials yB,(x,y) are obtained when x = 1 and « = 1 in
Equation (31).

Remark 4. The generalized Bernoulli polynomials 37(1«) (x) is obtained when x := 1and y = 0 in Equation (31).

Remark 5. The classical Bernoulli polynomials attached to x is obtained when x = 1 andy = 0 in
Equation (31).



Symmetry 2018, 10, 675 7 of 10

Theorem 2. Letwa, x, v,z € C, 11, 12 € N, and n € Ny. Then,

s n « a—
) (m> ( g)n? "y By (2 32) Bl ) (my) oG dm —1)

(32)
n m n 1
=2 ) (m) <€)’7.721 "y HBgl“—)m,x (le'”%z) Biiz,;( (my) Te(x, dip2 — 1)
m=0/¢=0
and
n ! (w) T2\ )
Z Z X ( > T uBy m,x <q2x+ " /’72Z> B,y (1Y)
33
n d772 1 » @ o o) (33)
Z Z xlt ( ) T HBy Ly (’71x+,72f’712> Buy " (12y),
where x is a Dirichlet character with conductor d.
Proof. Let
d 771t Z X( )eﬁ?lf ®
. R ] t+ 2.2 t2
G(a, 171,’72)(t) o fx edmmut gy, ( ed’ht -1 eI
(34)

12t Z x(j) et
X <> 3771772]/t

edmt —1
(0, x,y,z€ C;t € C\{0}; 1, 12 € N; 14 :=1).

Obviously G(a;11,12)(t) is symmetric with respect to the parameters 77; and 7,. As in the function
F(a;1,12)(t) in Equation (18), G(&; 1, 172) (t) can be considered to be analytic in a neighborhood of
t = 0. Using Equation (9), we have

Z x(j)emt «

d [y x(u)er" du fr22at?
Glasm ) (1) = EAGE L | e
(35)
"2t Z x(j) et a1
t
X <ed;72t_1> eyt
Applying Equations (13) and (31) to Equation (35), we obtain
H" & - £)m
G(w;m1,12)(8) = ,7 Z HBiy (’72x 7722) n ) Y Bix' (my) (17;,)
=0 :
- (121’ o
2
X Z TE(X/ dr]l - 1) /!
(=0 ’
Similarly as in the proof of Theorem 1, we find
o n om ’7n—m—1’731
G(a; 11, = 1
() () =) ) ) (= m)i(m — 0171 (37)

X 1By (ﬂzx, 1732) By o) () Te(x,dim = D) t".
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In view of the symmetry of G(«; 771, 772) (t) with respect to the parameters 7, and 7, we also get

nml

Glumm® =2 Y. Y ¢ —Wrzn).(m i

xuBy (1 3z) BY ) (2y) TeGrds = 1)

(38)

Equating the coefficients of t" of the right sides of Equations (37) and (38), we obtain Equation (32).
From Equation (13), we have

d [ x(u)ertdy 1 dm 1 ot
e A MO (39)

Using Equation (39) in Equation (35), we get

dni—1 mt E x(j)emt «
(rx 771/772 ﬂlX) X (d’(?)fl e(’72X+é:7L12>’71t+'712'7§zt2
et
(40)
1ot b X(j) et a1
% <]d”2t1> iyt
e J—
Using Equation (31), similarly as above, we obtain
[e] n M- g 5
(‘X 771/772 :Z Z Z n mx<nx+17/’722>
n=0m=0 (=0 U (41)
(B () T
Y= m) tm!
Since G(«;11,12)(t) is symmetric with respect to the parameters 771 and 7,, we also have
.1 y p P n Ui
S (@) tn
Glosm )0 = 32 37 3 x(O) b (mx-+ )
n=0m=0 (=0 (42)
(a-1) "y
o— n
X B,y (12y) Wt :

Equating the coefficients of t" of the right sides in Equation (41) and Equation (42), we get
Equation (33). O

4. Conclusions

The results in Theorems 1 and 2, being very general, can reduce to yield many symmetry identities
associated with relatively simple polynomials and numbers using Remarks 1-5. Setting z = 0 and
« € N in the results in Theorem 1 and Theorem 2 yields the corresponding known identities in
References [33,34], respectively.
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