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Abstract: In this paper, we consider sums of finite products of Chebyshev polynomials of the first,
third, and fourth kinds, which are different from the previously-studied ones. We represent each
of them as linear combinations of Chebyshev polynomials of all kinds whose coefficients involve
some terminating hypergeometric functions 2F1. The results may be viewed as a generalization of the
linearization problem, which is concerned with determining the coefficients in the expansion of the
product of two polynomials in terms of any given sequence of polynomials. These representations
are obtained by explicit computations.

Keywords: Chebyshev polynomials of the first, second, third, and fourth kinds; sums of finite
products; representation

1. Introduction and Preliminaries

We first fix some notations that will be used throughout this paper. For any nonnegative integer n,
the falling factorial sequence (x)n and the rising factorial sequence < x >n are respectively given by:

(x)n = x(x− 1) · · · (x− n + 1), (n ≥ 1), (x)0 = 1, (1)

< x >n= x(x + 1) · · · (x + n− 1), (n ≥ 1), < x >0= 1. (2)

Then, we easily see that the two factorial sequences are related by:

(−1)n(x)n =< −x >n . (3)

The Gauss hypergeometric function 2F1(a, b; c; x) is defined by:

2F1(a, b; c; x) =
∞

∑
n=0

< a >n< b >n

< c >n

xn

n!
, (|x| < 1). (4)

In this paper, we only need very basic facts about Chebyshev polynomials of the first, second,
third, and fourth kinds, which we recall briefly in the following. The Chebyshev polynomials belong
to the family of orthogonal polynomials. We let the interested reader refer to [1–4] for more details
on these.

In terms of generating functions, the Chebyshev polynomials of the first, second, third, and fourth
kinds are respectively given by:
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F1(t, x) =
1− xt

1− 2xt + t2 =
∞

∑
n=0

Tn(x)tn, (5)

F2(t, x) =
1

1− 2xt + t2 =
∞

∑
n=0

Un(x)tn, (6)

F3(t, x) =
1− t

1− 2xt + t2 =
∞

∑
n=0

Vn(x)tn, (7)

F4(t, x) =
1 + t

1− 2xt + t2 =
∞

∑
n=0

Wn(x)tn. (8)

They are also explicitly given by the following expressions:

Tn(x) =2 F1

(
−n, n;

1
2

;
1− x

2

)

=
n
2

[ n
2 ]

∑
l=0

(−1)l 1
n− l

(
n− l

l

)
(2x)n−2l , (n ≥ 1),

(9)

Un(x) = (n + 1)2F1

(
−n, n + 2;

3
2

;
1− x

2

)

=
[ n

2 ]

∑
l=0

(−1)l
(

n− l
l

)
(2x)n−2l , (n ≥ 0),

(10)

Vn(x) =2 F1

(
−n, n + 1;

1
2

;
1− x

2

)
=

n

∑
l=0

(
n + l

2l

)
2l(x− 1)l , (n ≥ 0),

(11)

Wn(x) = (2n + 1)2F1

(
−n, n + 1;

3
2

;
1− x

2

)
= (2n + 1)

n

∑
l=0

2l

2l + 1

(
n + l

2l

)
(x− 1)l , (n ≥ 0),

(12)

The Chebyshev polynomials of all four kinds are also expressed by the Rodrigues formulas, which
are given by:

Tn(x) =
(−1)n2nn!

(2n)!
(1− x2)

1
2

dn

dxn (1− x2)n− 1
2 , (13)

Un(x) =
(−1)n2n(n + 1)!

(2n + 1)!
(1− x2)−

1
2

dn

dxn (1− x2)n+ 1
2 , (14)

(1− x)−
1
2 (1 + x)

1
2 Vn(x)

=
(−1)n2nn!

(2n)!
dn

dxn (1− x)n− 1
2 (1 + x)n+ 1

2 ,
(15)

(1− x)
1
2 (1 + x)−

1
2 Wn(x)

=
(−1)n2nn!

(2n)!
dn

dxn (1− x)n+ 1
2 (1− x)n− 1

2 .
(16)

They satisfy orthogonalities with respect to various weight functions as given in the following:

∫ 1

−1
(1− x2)−

1
2 Tn(x)Tm(x)dx =

π

εn
δn,m, (17)
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where:

εn =

{
1, if n = 0,
2, if n ≥ 1,

(18)

δn,m =

{
0, if n 6= m,
1, if n = m.

(19)

∫ 1

−1
(1− x2)

1
2 Un(x)Um(x)dx =

π

2
δn,m, (20)

∫ 1

−1

(
1 + x
1− x

) 1
2

Vn(x)Vm(x)dx = πδn,m, (21)

∫ 1

−1

(
1− x
1 + x

) 1
2

Wn(x)Wm(x)dx = πδn,m. (22)

For convenience, we let:

αm,r(x) = ∑
i1+···+ir+1=m

Ti1(x) · · · Tir+1(x), (m, r ≥ 0), (23)

βm,r(x) = ∑
i1+···+ir+1=m

Vi1(x) · · ·Vir+1(x), (m, r ≥ 0), (24)

γm,r(x) = ∑
i1+···+ir+1=m

Wi1(x) · · ·Wir+1(x), (m, r ≥ 0), (25)

Here, all the sums in (23)–(25) are over all nonnegative integers i1, · · · , ir+1, with i1 + i2 + · · ·+
ir+1 = m. Furthermore, note here that αm,r(x), βm,r(x), γm,r(x) all have degree m.

Further, let us put:

m

∑
l=0

∑
i1+···+ir+1=m−l

(
r + l

r

)
xlTi1(x) · · · Tir+1(x)

−
m−2

∑
l=0

∑
i1+···+ir+1=m−l−2

(
r + l

r

)
xlTi1(x) · · · Tir+1(x), (m ≥ 2, r ≥ 1),

(26)

m

∑
l=0

∑
i1+···+ir+1=l

(
r− 1 + m− l

r− 1

)
Vi1(x) · · ·Vir+1(x), (m ≥ 0, r ≥ 1), (27)

m

∑
l=0

∑
i1+···+ir+1=l

(−1)m−l
(

r− 1 + m− l
r− 1

)
Wi1(x) · · ·Wir+1(x), (m ≥ 0, r ≥ 1). (28)

We considered the expression (26) in [5] and (27) and (28) in [6] and were able to express
each of them in terms of the Chebyshev polynomials of all four kinds. It is amusing to note that
in such expressions, some terminating hypergeometric functions 2F1 and 3F2 appear respectively
for (26)–(28). We came up with studying the sums in (26)–(28) by observing that they are respectively
equal to 1

2r−1r! T(r)
m+r(x), 1

2rr! V
(r)
m+r(x), and 1

2rr! W
(r)
m+r(x). Actually, these easily follow by differentiating

the generating functions in (5), (7), and (8).
In this paper, we consider the expressions αm,r(x), βm,r(x), and γm,r(x) in (23)–(25), which are

sums of finite products of Chebyshev polynomials of the first, third, and fourth kinds, respectively.
Then, we express each of them as linear combinations of Tn(x), Un(x), Vn(x), and Wn(x). Here, we
remark that αm,r(x), βm,r(x), and γm,r(x) are expressed in terms of U(r)

m−j+r(x), (j = 0, 1, · · · , m)

(see Lemmas 2 and 3) by making use of the generating function in (6). This is unlike the previous works
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for (26)–(28) (see [5,6]), where we showed they are respectively equal to 1
2r−1r! T(r)

m+r(x), 1
2rr! V

(r)
m+r(x),

and 1
2rr! W

(r)
m+r(x) by exploiting the generating functions in (5), (7) and (8). Then, our results for

αm,r(x), βm,r(x), and γm,r(x) will be found by making use of Lemmas 1 and 2, the general formulas
in Propositions 1 and 2, and integration by parts. As we can notice here, generating functions play
important roles in the present and the previous works in [5,6]. We would like to remark here that the
technique of generating functions has been widely used not only in mathematics, but also in physics
and biology. For this matter, we recommend the reader to refer to [7–9]. The next three theorems are
our main results.

Theorem 1. For any nonnegative integers m, r, the following identities hold true.

∑
i1+···+ir+1=m

Ti1(x) · · · Tir+1(x)

=
1
r!

[m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m + r− l)!
l!(m− s− l)!(s− l)! 2F1

(
2l −m,−r− 1; l −m− r;

1
2

)
Tm−2s(x)

(29)

=
1
r!

[m
2 ]

∑
s=0

s

∑
l=0

(−1)l(m− 2s + 1)(m + r− l)!
l!(m− s + 1− l)!(s− l)! 2F1

(
2l −m,−r− 1; l −m− r;

1
2

)
Um−2s(x) (30)

=
1
r!

m

∑
s=0

[ s
2 ]

∑
l=0

(−1)l(m + r− l)!
l!
(
m−

[ s
2
]
− l
)
!
([ s

2
]
− l
)
! 2F1

(
2l −m,−r− 1; l −m− r;

1
2

)
Vm−s(x) (31)

=
1
r!

m

∑
s=0

[ s
2 ]

∑
l=0

(−1)s+l(m + r− l)!
l!
(
m−

[ s
2
]
− l
)
!
([ s

2
]
− l
)
! 2F1

(
2l −m,−r− 1; l −m− r;

1
2

)
Wm−s(x). (32)

Theorem 2. For any nonnegative integers m, r, we have the following identities.

∑i1+···+ir+1=m Vi1(x) · · ·Vir+1(x)

= 1
r! ∑m

k=0 ∑
[m−k

2 ]
l=0

(−1)m−kεk(k+2s+r)!
(s+k)!s! ( r+1

m−k−2s)2F1 (−s,−s− k;−k− 2s− r; 1) Tk(x)
(33)

= 1
r! ∑m

k=0 ∑
[m−k

2 ]
s=0

(−1)m−k(k+1)(k+2s+r)!
(s+k+1)!s! ( r+1

m−k−2s)2F1 (−s,−s− k− 1;−k− 2s− r; 1)Uk(x) (34)

= 1
r! ∑m

k=0 ∑m−k
s=0

(−1)m−k−s(k+r+s)!
(k+[ s+1

2 ])![ s
2 ]!

( r+1
m−k−s)2F1

(
−
[ s

2
]

,−
[

s+1
2

]
− k;−k− s− r; 1

)
Vk(x) (35)

= 1
r! ∑m

k=0 ∑m−k
s=0

(−1)m−k(k+r+s)!
(k+[ s+1

2 ])![ s
2 ]!

( r+1
m−k−s)2F1

(
−
[ s

2
]

,−
[

s+1
2

]
− k;−k− s− r; 1

)
Wk(x) (36)

Theorem 3. For any nonnegative integers m, r, the following identities are valid.

∑
i1+···+ir+1=m

Wi1(x) · · ·Wir+1(x)

=
1
r!

m

∑
k=0

[m−k
2 ]

∑
l=0

εk(k + 2s + r)!
(s + k)!s!

(
r + 1

m− k− 2s

)
2F1 (−s,−s− k;−k− 2s− r; 1) Tk(x)

(37)

=
1
r!

m

∑
k=0

[m−k
2 ]

∑
s=0

(k + 1)(k + 2s + r)!
(s + k + 1)!s!

(
r + 1

m− k− 2s

)
2F1 (−s,−s− k− 1;−k− 2s− r; 1)Uk(x) (38)
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=
1
r!

m

∑
k=0

m−k

∑
s=0

(−1)s(k + r + s)!(
k +

[
s+1

2

])
!
[ s

2
]
!

(
r + 1

m− k− s

)
2F1

(
−
[ s

2

]
,−
[

s + 1
2

]
− k;−k− s− r; 1

)
Vk(x) (39)

=
1
r!

m

∑
k=0

m−k

∑
s=0

(k + r + s)!(
k +

[
s+1

2

])
!
[ s

2
]
!

(
r + 1

m− k− s

)
2F1

(
−
[ s

2

]
,−
[

s + 1
2

]
− k;−k− s− r; 1

)
Wk(x) (40)

Before moving on to the next section, we would like to say a few words on the previous works
that are associated with the results in the present paper. In terms of Bernoulli polynomials, quite
a few sums of finite products of some special polynomials are expressed. They include Chebyshev
polynomials of all four kinds, and Bernoulli, Euler, Genocchi, Legendre, Laguerre, Fibonacci, and
Lucas polynomials (see [10–16]). All of these expressions in terms of Bernoulli polynomials have been
derived from the Fourier series expansions of the functions closely related to each such polynomials.
Further, as for Chebyshev polynomials of all four kinds and Legendre, Laguerre, Fibonacci, and Lucas
polynomials, certain sums of finite products of such polynomials are also expressed in terms of all
four kinds of Chebyshev polynomials in [5,6,17,18]. Finally, the reader may want to look at [19–21] for
some applications of Chebyshev polynomials.

2. Proof of Theorem 1

In this section, we will prove Theorem 1. In order to do this, we first state Propositions 1 and 2 that
are needed in proving Theorems 1–3. Here, we note that the facts (a), (b), (c), and (d) in Proposition 1
are stated respectively in the Equations (24) of [22], (36) of [22], (23) of [23], and (38) of [23]. All of them
follow easily from the orthogonality relations in (17) and (20)–(22), Rodrigues’ formulas in (13)–(16),
and integration by parts.

Proposition 1. For any polynomial q(x) ∈ R[x] of degree n, we have the following formulas.

(a) q(x) = ∑n
k=0 Ck,1Tk(x), where:

Ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x2)k− 1
2 dx,

(b) q(x) = ∑n
k=0 Ck,2Uk(x), where:

Ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
q(x)

dk

dxk (1− x2)k+ 1
2 dx,

(c) q(x) = ∑n
k=0 Ck,3Vk(x), where:

Ck,3 =
(−1)kk!2k

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x)k− 1
2 (1 + x)k+ 1

2 dx,

(d) q(x) = ∑n
k=0 Ck,4Wk(x), where,

Ck,4 =
(−1)kk!2k

(2k)!π

∫ 1

−1
q(x)

dk

dxk (1− x)k+ 1
2 (1 + x)k+ 1

2 dx,

The next proposition is stated and proven in [17].

Proposition 2. For any nonnegative integers m, k, we have the following formulas:
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(a)

∫ 1

−1
(1− x2)k− 1

2 xmdx =

{
0, if m ≡ 1 (mod 2),

m!(2k)!π
2m+2k(m

2 +k)!(m
2 )!k!

, if m ≡ 0 (mod 2).

(b)

∫ 1

−1
(1− x2)k+ 1

2 xmdx =

{
0, if m ≡ 1 (mod 2),

m!(2k+2)!π
2m+2k+2(m

2 +k+1)!(m
2 )!(k+1)!

, if m ≡ 0 (mod 2).

(c)

∫ 1

−1
(1− x)k− 1

2 (1 + x)k+ 1
2 xmdx =


(m+1)!(2k)!π

2m+2k+1(m+1
2 +k)!(m+1

2 )!k!
, if m ≡ 1 (mod 2),

m!(2k)!π
2m+2k(m

2 +k)!(m
2 )!k!

, if m ≡ 0 (mod 2).

(d)

∫ 1

−1
(1− x)k+ 1

2 (1 + x)k− 1
2 xmdx =

 −
(m+1)!(2k)!π

2m+2k+1(m+1
2 +k)!(m+1

2 )!k!
, if m ≡ 1 (mod 2),

m!(2k)!π
2m+2k(m

2 +k)!(m
2 )!k!

, if m ≡ 0 (mod 2).

The following lemma was shown in [24] and can be derived by differentiating [23].

Lemma 1. For any nonnegative integers n, r, the following identity holds:

∑
i1+···+ir+1=n

Ui1(x) · · ·Uir+1(x) =
1

2rr!
U(r)

n+k(x), (41)

where the sum is over all nonnegative integers i1, · · · , ir+1, with i1 + · · ·+ ir+1 = n.

Further, Equation (41) is equivalent to:(
1

1− 2xt + t2

)r+1
=

1
2rr!

∞

∑
n=0

U(r)
n+r(x)tn. (42)

In reference [24], the following lemma is stated for m ≥ r + 1. However, it holds for any
nonnegative integer m, under the usual convention (r+1

j ) = 0, for j > r + 1. Therefore, we are going to
give a proof for the next lemma.

Lemma 2. Let m, r be any nonnegative integers. Then, the following identity holds.

∑
i1+···+ir+1=m

Ti1(x) · · · Tir+1(x)

=
1

2rr!

m

∑
j=0

(−1)j
(

r + 1
j

)
xjU(r)

m−j+r(x),
(43)

where (r+1
j ) = 0, for j > r + 1.
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Proof. By making use of (42), we have:

∞

∑
m=0

(
∑

i1+···+ir+1=m
Ti1(x) · · · Tir+1(x)

)
tm

=

(
1

1− 2xt + t2

)r+1
(1− xt)r+1

=
1

2rr!

∞

∑
n=0

U(r)
n+r(x)tn

r+1

∑
j=0

(
r + 1

j

)
(−x)jtj

=
1

2rr!

∞

∑
m=0

(
min{m,r+1}

∑
j=0

(−1)j
(

r + 1
j

)
xjU(r)

m−j+r(x)

)
tm

=
1

2rr!

∞

∑
m=0

(
m

∑
j=0

(−1)j
(

r + 1
j

)
xjU(r)

m−j+r(x)

)
tm.

(44)

Now, by comparing both sides of (44), we have the desired result.

From (10), we see that the rth derivative of Un(x) is given by:

U(r)
n (x) =

[ n−r
2 ]

∑
l=0

(−1)l
(

n− l
l

)
(n− 2l)r2n−2l xn−2l−r. (45)

Especially, we have:

xjU(r)
m−j+r(x) =

[
m−j

2

]
∑
l=0

(−1)l
(

m− j + r− l
l

)
(m− j + r− 2l)r2m−j+r−2l xm−2l . (46)

In this section, we will show (29) and (31) of Theorem 1 and leave similar proofs for (30) and (32)
as exercises to the reader. As in (23), let us put:

αm,r(x) = ∑
i1+···+ir+1=m

Ti1(x) · · · Tir+1(x),

and set:

αm,r(x) =
m

∑
k=0

Ck,1Tk(x). (47)

Then, we can now proceed as follows by using (a) of Proposition 1, (43) and (46), and integration
by parts k times.
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Ck,1 =
(−1)k2kk!εk

(2k)!π

∫ 1

−1
αm,r(x)

dk

dxk (1− x2)k− 1
2 dx

=
(−1)k2kk!εk
(2k)!π2rr!

m

∑
j=0

(−1)j
(

r + 1
j

) ∫ 1

−1
xjU(r)

m−j+r(x)
dk

dxk (1− x2)k− 1
2 dx

=
(−1)k2kk!εk
(2k)!π2rr!

m

∑
j=0

(−1)j
(

r + 1
j

) [m−j
2

]
∑
l=0

(−1)l
(

m− j + r− l
l

)

× (m− j + r− 2l)r2m−j+r−2l
∫ 1

−1
xm−2l dk

dxk (1− x2)k− 1
2 dx.

=
2kk!εk

(2k)!π2rr!

m

∑
j=0

(−1)j
(

r + 1
j

) [m−j
2

]
∑
l=0

(−1)l
(

m− j + r− l
l

)

× (m− j + r− 2l)r2m−j+r−2l(m− 2l)k

∫ 1

−1
xm−k−2l(1− x2)k− 1

2 dx

=
2kk!εk

(2k)!π2rr!

[m−k
2 ]

∑
l=0

m−2l

∑
j=0

(−1)j
(

r + 1
j

)
(−1)l

(
m− j + r− l

l

)

× (m− j + r− 2l)r2m−j+r−2l(m− 2l)k

∫ 1

−1
xm−k−2l(1− x2)k− 1

2 dx.

(48)

Now, from (a) of Proposition 2 and after some simplifications, we see that:

αm,r(x) =
1
r! ∑

0≤k≤m, k≡m(mod2)

[m−k
2 ]

∑
l=0

m−2l

∑
j=0

εk(−1)j
(

r + 1
j

)
2−j

× (−1)l(m− j + r− l)!(m− 2l)!

l!(m− j− 2l)!
(

m+k
2 − l

)
!
(

m−k
2 − l

)
!
Tk(x)

=
1
r!

[m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m− 2l)!
l!(m− s− l)!(s− l)!

×
m−2l

∑
j=0

2−j(−1)j(m + r− l − j)!(r + 1)j

j!(m− 2l − j)!
Tm−2s(x)

=
1
r!

[m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m + r− l)!
l!(m− s− l)!(s− l)!

×
m−2l

∑
j=0

2−j(−1)j(m− 2l)j(r + 1)j

j!(m + r− l)j
Tm−2s(x)

(49)

=
1
r!

[m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m + r− l)!
l!(m− s− l)!(s− l)!

×
m−2l

∑
j=0

2−j < 2l −m >j< −r− 1 >j

j! < l −m− r >j
Tm−2s(x)

=
1
r!

[m
2 ]

∑
s=0

s

∑
l=0

εm−2s(−1)l(m + r− l)!
l!(m− s− l)!(s− l)!

×2 F1

(
2l −m,−r− 1; l −m− r;

1
2

)
Tm−2s(x),

where we note that we made the change of variables m− k = 2s.
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This completes the proof for (29). Next, we let:

αm,r(x) =
m

∑
k=0

Ck,3Vk(x). (50)

Then, we can obtain the following by making use of (c) of Proposition 1, (43) and (46), and
integration by parts k times.

Ck,3 =
k!2k

(2k)!π2rr!

[m−k
2 ]

∑
l=0

m−2l

∑
j=0

(−1)j
(

r + 1
j

)
(−1)l

(
m− j + r− l

l

)
(m− j + r− 2l)r2m−j+r−2l

× (m− 2l)k

∫ 1

−1
xm−2l−k(1− x)k− 1

2 (1 + x)k+ 1
2 dx.

(51)

where we note from (c) of Proposition 2 that:

∫ 1

−1
xm−2l−k(1− x)k− 1

2 (1 + x)k+ 1
2 dx

=


(m−2l−k+1)!(2k)!π

2m+k−2l+1(m+k+1
2 −l)!(m−k+1

2 −l)!k!
, if k 6≡ m (mod 2),

(m−2l−k)!(2k)!π
2m+k−2l(m+k

2 −l)!(m−k
2 −l)!k!

, if k ≡ m (mod 2).

(52)

From (50)–(52), and after some simplifications, we get:

αm,r(x) = ∑1 + ∑2, (53)

where:

∑1 =
1
r! ∑

0≤k≤m, k 6≡m(mod2)

[m−k
2 ]

∑
l=0

m−2l

∑
j=0

(−1)j
(

r + 1
j

)
2−j−1

× (−1)l(m− j + r− l)!(m− 2l)!(m− 2l − k + 1)

l!(m− j− 2l)!
(

m+k+1
2 − l

)
!
(

m−k+1
2 − l

)
!

Vk(x),

∑2 =
1
r! ∑

0≤k≤m, k≡m(mod2)

[m−k
2 ]

∑
l=0

m−2l

∑
j=0

(−1)j
(

r + 1
j

)
2−j

× (−1)l(m− j + r− l)!(m− 2l)!

l!(m− j− 2l)!
(

m+k
2 − l

)
!
(

m−k
2 − l

)
!
Vk(x).

(54)

Proceeding analogously to the case of (29), we observe from (54) that:

∑1 =
1
r!

[m−1
2 ]

∑
s=0

s

∑
l=0

(−1)l(m + r− l)!
l!(m− s− l)!(s− l)!

×
m−2l

∑
j=0

2−j(−1)j(r + 1)j(m− 2l)j

j!(m + r− l)j
Vm−2s−1(x)

=
1
r!

[m−1
2 ]

∑
s=0

s

∑
l=0

(−1)l(m + r− l)!
l!(m− s− l)!(s− l)!

×2 F1

(
2l −m,−r− 1; l −m− r;

1
2

)
Vm−2s−1(x),

(55)
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∑2 =
1
r!

[m
2 ]

∑
s=0

s

∑
l=0

(−1)l(m + r− l)!
l!(m− s− l)!(s− l)!

×
m−2l

∑
j=0

2−j(−1)j(r + 1)j(m− 2l)j

j!(m + r− l)j
Vm−2s(x)

=
1
r!

[m
2 ]

∑
s=0

s

∑
l=0

(−1)l(m + r− l)!
l!(m− s− l)!(s− l)!

×2 F1

(
2l −m,−r− 1; l −m− r;

1
2

)
Vm−2s(x).

(56)

We now obtain the result in (31) from (53), (55) and (56).

3. Proofs of Theorems 2 and 3

In this section, we will show (34) and (36) for Theorem 2, leaving (33) and (35) as exercises to the
reader, and note that Theorem 3 follows from (33)–(36) by simple observation. The next lemma can be
shown analogously to Lemma 1.

Lemma 3. For any nonnegative integers m, r, the following identities are valid.

∑
i1+···+ir+1=m

Vi1(x) · · ·Vir+1(x)

=
1

2rr!

m

∑
j=0

(−1)j
(

r + 1
j

)
U(r)

m−j+r(x),
(57)

∑
i1+···+ir+1=m

Wi1(x) · · ·Wir+1(x)

=
1

2rr!

m

∑
j=0

(
r + 1

j

)
U(r)

m−j+r(x),
(58)

where (r+1
j ) = 0, for j > r + 1.

As in (24), let us set:

βm,r(x) = ∑
i1+···+ir+1=m

Vi1(x) · · ·Vir+1(x),

and put:

βm,r(x) =
m

∑
k=0

Ck,2Uk(x). (59)

First, we note:

U(r+k)
m−j+r(x) =

[
m−j−k

2

]
∑
l=0

(−1)l
(

m− j + r− l
l

)
(m− j + r− 2l)r+k2m−j+r−2l xm−j−k−2l . (60)

Then, we have the following by exploiting (b) of Proposition 1, (57) and (60), and integration by
parts k times.
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Ck,2 =
(−1)k2k+1(k + 1)!

(2k + 1)!π

∫ 1

−1
βm,r(x)

dk

dxk (1− x2)k+ 1
2 dx

=
(−1)k2k+1(k + 1)!
(2k + 1)!π2rr!

m

∑
j=0

(−1)j
(

r + 1
j

) ∫ 1

−1
U(r)

m−j+r(x)
dk

dxk (1− x2)k+ 1
2 dx

=
2k+1(k + 1)!
(2k + 1)!π2rr!

m−k

∑
j=0

(−1)j
(

r + 1
j

) ∫ 1

−1
U(r+k)

m−j+r(x)(1− x2)k+ 1
2 dx

=
2k+1−r(k + 1)!
(2k + 1)!πr!

m−k

∑
j=0

(−1)j
(

r + 1
j

) [m−j−k
2

]
∑
l=0

(−1)l
(

m− j + r− l
l

)

× (m− j + r− 2l)r+k2m−j+r−2l
∫ 1

−1
xm−j−k−2l(1− x2)k+ 1

2 dx

(61)

where we note from (b) of Proposition 2 that:

∫ 1

−1
xm−j−k−2l(1− x2)k+ 1

2 dx

=

 0, if j 6≡ m− k (mod 2),
(m−j−k−2l)!(2k+2)!π

2m−j+k−2l+2
(

m−j+k
2 +1−l

)
!
(

m−j−k
2 −l

)
!(k+1)!

, if j ≡ m− k (mod 2).

(62)

From (59), (61) and (62), and after some simplifications, we obtain:

βm,r(x) =
1
r!

m

∑
k=0

∑
0≤j≤m−k,j≡m−k(mod2)

[
m−k−j

2

]
∑
l=0

(−1)j
(

r + 1
j

)
(k + 1)

× (−1)l(m− j + r− l)!

l!
(

m−j+k
2 + 1− l

)
!
(

m−j−k
2 − l

)
!
Uk(x)

=
1
r!

m

∑
k=0

[m−k
2 ]

∑
s=0

(−1)m−k(k + 1)(k + 2s + r)!
(s + k + 1)!s!

(
r + 1

m− k− 2s

)
×

s

∑
l=0

(−1)l(s + k + 1)l(s)l
l!(k + 2s + r)l

Uk(x)

=
1
r!

m

∑
k=0

[m−k
2 ]

∑
s=0

(−1)m−k(k + 1)(k + 2s + r)!
(s + k + 1)!s!

(
r + 1

m− k− 2s

)
×

s

∑
l=0

< −s >l< −s− k− 1 >l
l! < −k− 2s− r >l

Uk(x)

(63)

=
1
r!

m

∑
k=0

[m−k
2 ]

∑
s=0

(−1)m−k(k + 1)(k + 2s + r)!
(s + k + 1)!s!

(
r + 1

m− k− 2s

)
×2 F1 (−s,−s− k− 1;−k− 2s− r; 1)Uk(x).

This completes the proof for (34). Next, we let:

βm,r(x) =
m

∑
k=0

Ck,4Wk(x). (64)

Then, from (d) of Proposition 1, (57) and (60), and integration by parts k times, we have:
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Ck,4 =
k!2k−r

(2k)!πr!

m−k

∑
j=0

(−1)j
(

r + 1
j

) [m−j−k
2

]
∑
l=0

(−1)l
(

m− j + r− l
l

)

× (m− j + r− 2l)r+k2m−j+r−2l
∫ 1

−1
xm−j−k−2l(1− x)k+ 1

2 (1− x)k− 1
2 dx

(65)

From (d) of Proposition 2, we observe that:

∫ 1

−1
xm−j−k−2l(1− x)k+ 1

2 (1− x)k− 1
2 dx

=


− (m−j−k−2l+1)!(2k)!π

2m−j+k−2l+1
(

m−j+k+1
2 −l

)
!
(

m−j−k+1
2 −l

)
!k!

, if j 6≡ m− k (mod 2),

(m−j−k−2l)!(2k)!π

2m−j+k−2l
(

m−j+k
2 −l

)
!
(

m−j−k
2 −l

)
!k!

, if j ≡ m− k (mod 2).

(66)

By (64)–(66), and after some simplifications, we get:

βm,r(x) = − 1
2r!

m

∑
k=0

∑
0≤j≤m−k,j 6≡m−k(mod2)

(−1)j
(

r + 1
j

) [m−j−k
2

]
∑
l=0

× (−1)l(m− j + r− l)!(m− j− k− 2l + 1)

l!
(

m−j+k+1
2 − l

)
!
(

m−j−k+1
2 − l

)
!

Wk(x)

+
1
r!

m

∑
k=0

∑
0≤j≤m−k,j≡m−k(mod2)

(−1)j
(

r + 1
j

) [m−j−k
2

]
∑
l=0

× (−1)l(m− j + r− l)!

l!
(

m−j+k
2 − l

)
!
(

m−j−k
2 − l

)
!
Wk(x)

=
1
r!

m

∑
k=0

[m−k−1
2 ]

∑
s=0

(−1)m−k
(

r + 1
m− k− 2s− 1

)
(k + 2s + r + 1)!
(s + k + 1)!s!

×
s

∑
l=0

(−1)l(s + k + 1)l(s)l
l!(k + 2s + r + 1)l

Wk(x)

+
1
r!

m

∑
k=0

[m−k
2 ]

∑
s=0

(−1)m−k
(

r + 1
m− k− 2s

)
(k + 2s + r)!
(s + k)!s!

×
s

∑
l=0

(−1)l(s + k)l(s)l
l!(k + 2s + r)l

Wk(x).

(67)

Further modification of (67) gives us:
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βm,r(x) =
1
r!

m

∑
k=0

[m−k−1
2 ]

∑
s=0

(−1)m−k (k + 2s + r + 1)!
(s + k + 1)!s!

(
r + 1

m− k− 2s− 1

)
×2 F1(−s,−s− k− 1;−k− 2s− r− 1; 1)Wk(x)

+
1
r!

m

∑
k=0

[m−k
2 ]

∑
l=0

(−1)m−k (k + 2s + r)!
(s + k)!s!

(
r + 1

m− k− 2s

)
×2 F1(−s,−s− k;−k− 2s− r; 1)Wk(x)

=
1
r!

m

∑
k=0

m−k

∑
s=0

(−1)m−k(k + r + s)!(
k +

[
s+1

2

])
!
[ s

2
]
!

(
r + 1

m− k− s

)

×2 F1

(
−
[ s

2

]
,−
[

s + 1
2

]
− k;−k− s− r; 1

)
Wk(x).

(68)

This finishes up the proof for (36).

Remark 1. We note from (57) and (58) that the only difference between βm,r(x) and γm,r(x) (see (24) and (25))
is the alternating sign (−1)j in their sums, which corresponds to (−1)m−k in (33)–(36). This remark gives the
results in (37)–(40) of Theorem 3.

4. Conclusions

Our paper can be viewed as a generalization of the linearization problem, which is concerned
with determining the coefficients in the expansion an(x)bm(x) = ∑n+m

k=0 ck(nm)pk(x) of the product
an(x)bm(x) of two polynomials an(x) and bm(x) in terms of an arbitrary polynomial sequence
{pk(x)}k≥0. Our pursuit of this line of research can also be justified from another fact; namely,
the famous Faber–Pandharipande–Zagier and Miki identities follow by expressing the sum
∑m−1

k=1
1

k(m−k)Bk (x) Bm−k (x) as a linear combination of Bernoulli polynomials. For some details on this,
we let the reader refer to the Introduction of [15]. Here, we considered sums of finite products of the
Chebyshev polynomials of the first, third, and fourth kinds and represented each of those sums of finite
products as linear combinations of Tn(x), Un(x), Vn(x), and Wn(x), which involve some terminating
hypergeometric function 2F1. Here, we remark that αm,r(x), βm,r(x), and γm,r(x) are expressed in terms
of U(r)

m−j+r(x), (j = 0, 1, · · · , m) (see Lemmas 2 and 3) by making use of the generating function in
(6). This is unlike the previous works for (26)–(28) (see [5,6]), where we showed they are respectively
equal to 1

2r−1r! T(r)
m+r(x), 1

2rr! V
(r)
m+r(x), and 1

2rr! W
(r)
m+r(x) by exploiting the generating functions in (5), (7)

and (8). Then, our results for αm,r(x), βm,r(x), and γm,r(x) were found by making use of Lemmas 1
and 2, the general formulas in Propositions 1 and 2, and integration by parts. It is certainly possible to
represent such sums of finite products by other orthogonal polynomials, which is one of our ongoing
projects. More generally, along the same line as the present paper, we are planning to consider some
sums of finite products of many special polynomials and want to find their applications.
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