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Abstract: It is well known that not every symmetry of a classical field theory is also a symmetry
of its quantum version. When this occurs, we speak of quantum anomalies. The existence of
anomalies imply that some classical Noether charges are no longer conserved in the quantum
theory. In this paper, we discuss a new example for quantum electromagnetic fields propagating
in the presence of gravity. We argue that the symmetry under electric-magnetic duality rotations
of the source-free Maxwell action is anomalous in curved spacetimes. The classical Noether charge
associated with these transformations accounts for the net circular polarization or the optical helicity
of the electromagnetic field. Therefore, our results describe the way the spacetime curvature changes
the helicity of photons and opens the possibility of extracting information from strong gravitational
fields through the observation of the polarization of photons. We also argue that the physical
consequences of this anomaly can be understood in terms of the asymmetric quantum creation of
photons by the gravitational field.

Keywords: electric-magnetic duality symmetry; quantum anomalies; optical helicity; electromagnetic
polarization; particle creation

1. Introduction

Symmetries are at the core of well-established physical theories, and they keep playing a central
role in the mainstream of current research. Fundamental Lagrangians in physics are founded on
symmetry principles. Moreover, symmetries are linked, via Noether’s theorem, to conservations laws.
Well-known examples are the energy and momentum conservation and its relation with the invariance
under space–time translations, as well as the conservation of the net fermion number (the difference
in the number of fermions and anti-fermions that is proportional to the net electric charge) in Dirac’s
relativistic theory, which result from the global phase invariance of the action.

When the symmetries of free theories are also preserved by interactions, the conservation laws are
maintained, and they can be used to understand patterns in diverse physical phenomena. In quantum
electrodynamics, for instance, the phase invariance is preserved by the coupling of the Dirac and the
electromagnetic field, and this ensures the conservation of the net fermion number in all physical
processes [1]. Another illustrative example is the gravitationally induced creation of particles, either
bosons or fermions, in an expanding homogenous universe [2–5]. This particle creation occurs in
pairs, and the symmetry of the background under space-like translations ensures that, if one particle is
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created with wavenumber~k, its partner has wavenumber −~k. As a consequence, there is no creation of
net momentum, as expected on symmetry grounds. In a similar way, phase invariance implies that the
gravitational field cannot create a net fermion number in an expanding universe.

However, in special cases, the implications of classical symmetries do not extend to quantum
theory, and the classical charge conservation breaks down. This was first noticed by studying massless
fermions coupled to an electromagnetic field [6,7]. A massless fermion is called a (Weyl) left-handed
fermion if it has helicity h = −1/2, and a right-handed fermion if h = +1/2 (A left-handed
(right-handed) anti-fermion has helicity h = +1/2 (−1/2)). Recall that the equations of motion
for the two sectors decouple in the massless limit, and this allows one to write a theory for massless
fermions that involves only one of the two helicities, something that is not possible for non-zero mass.
The action of this theory also enjoys phase invariance, so the number of left-handed and right-handed
fermions is separately conserved. This is to say, in the classical theory, there are two independent
Noether currents, jµ

L and jµ
R, associated with left- and right-handed massless fermions, respectively,

that satisfy continuity equations ∂µ jµL = 0 and ∂µ jµ
R = 0. Rather than using jµL and jµ

R, it is more
common to re-write these conservation laws in terms of the so-called vector and axial currents, defined
by their sum and difference, respectively, jµ = jµR + jµ

L = ψ̄γµψ and jµ5 = jµ
R − jµ

L = ψ̄γµγ5ψ, where ψ

is the four-component Dirac spinor, that encapsulates both left- and right-handed (Weyl) fermions,
and γµ, γ5 are the Dirac matrices.

What is the situation in quantum theory? It turns out that the conservation law for jµ holds also
quantum mechanically, so the quantum number NR + NL (associated with the net fermion number,
i.e., the electric charge) is preserved in any physical process. For instance, in the presence of a
time-dependent electromagnetic background, charged fermions and antifermions are spontaneously
created (this is the electromagnetic analog of the gravitationally induced particle creation mentioned
above [8–10]), but in such a way that the total fermion number (or electric charge) does not change.
This is because the number of created right- or left-handed antifermions equals the number of left- or
right-handed fermions:

NR + NL = (#R
1/2 − #R

−1/2) + (#L
−1/2 − #L

1/2) = 0 . (1)

However, it turns out that the difference in the created number of right-handed and left-handed
fermions is not identically zero. This means that it is possible to create a net amount of helicity:

NR − NL = (#R
1/2 − #R

−1/2)− (#L
−1/2 − #L

1/2) = [#1/2 − #−1/2] . (2)

The simplest scenario where this is possible is for a constant magnetic field, say, in the third spatial
direction ~B = (0, 0, B), together with a pulse of electric field parallel to it, ~E = (0, 0, E(t)). One can
show that, in this situation, the net creation of helicity per unit volume V is given by (see [1] for a proof
involving an adiabatic electric pulse)

∆(NR − NL)

V
= − q2

2π2

∫ t2

t1

dt ~E · ~B , (3)

where q is the electric charge of the fermion, and the fermionic field is assumed to start in the vacuum
state at early times before the electric field is switched on. Hence, if the integral

∫ t2
t1

dt ~E · ~B is
different from zero, particles with different helicities are created in different amounts. In contrast,
NR + NL remains strictly constant. For an arbitrary electromagnetic background, the previous result
generalizes to

∆(NR − NL) = −
q2

2π2

∫ t2

t1

dt
∫

d3x ~E · ~B . (4)
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The key point is that Equation (4) is equivalent to the quantum-mechanical symmetry breaking of
the fermion chiral symmetry: ψ→ ψ′ = e−iεγ5

ψ, as expressed in the anomalous non-conservation of
the current [6,7].

∂µ〈jµ
5 〉 = −

q2h̄
8π2 Fµν

∗Fµν (5)

where Fµν is the electromagnetic field strength, ∗Fµν ≡ 1
2 εµναβFαβ its dual, and the presence of h̄ makes

manifest that this is a quantum effect. Equations (5) and (4) are connected by the standard relation
between a current and the charge associated with it:

∫
d3x〈j05〉 = h̄(NR − NL).

The discovery of the chiral anomaly of Equation (5) was not arrived at by computing the
number of fermions created, but rather by directly computing the quantity ∂µ〈jµ

5 〉. In that calculation,
the anomaly arises from the renormalization subtractions needed to calculate the expectation value
〈jµ5 〉. The operator jµ

5 is non-linear (quadratic) in the fermion field, and in quantum field theory
expectation values of non-linear operators are plagued with ultraviolet divergences. One must
use renormalization techniques to extract the physical, finite result. A detailed study shows that
renormalization methods that respect the gauge invariance of the electromagnetic background break
the fermionic chiral symmetry of the classical theory. The fact that Expression (5) was able to accurately
explain the decay ratio of processes that could not be understood otherwise, like the decay of the
neutral pion to two photons, was an important milestone in the quantum field theory and the study
of anomalies.

A similar anomaly appears when the electromagnetic background is replaced by a gravitational
field [11]. In this case, renormalization methods that respect general covariance give rise to a violation
of the classical conservation law ∇µ jµ

5 = 0, which becomes

∇µ〈jµ5 〉 = −
h̄

192π2 Rµναβ
∗Rµναβ (6)

where Rµναβ is the Riemann tensor and ∗Rµναβ its dual, and ∇µ is the covariant derivative.
For gravitational fields for which a particle interpretation is available at early and late times, this chiral
anomaly also manifests in the net helicity contained in the fermionic particles created during
the evolution:

∆(NR − NL) = −
1

192π2

∫ t2

t1

∫
Σ

d4x
√
−g Rµναβ

∗Rµναβ . (7)

Typical configurations where this integral is non-zero are the gravitational collapse of a neutron
star, or the merger of two compact objects as the ones recently observed by the LIGO-Virgo
collaboration [12,13].

In contrast to the anomaly of Equation (5) induced by an electromagnetic background, the chiral
anomaly induced by gravity affects every sort of massless spin-1/2 fields, either charged or neutral.
This is a consequence of the universal character of gravity, encoded in the equivalence principle,
that guarantees that, if Equation (6) is valid for a type of massless spin-1/2 field, it must also be valid
for any other type.

There is no reason to believe, however, that these anomalies are specific to spin 1/2 fermions,
and one could in principle expect that a similar effect will arise for other types of fields that classically
admit chiral-type symmetries. This is the case of photons. One then expects that photons propagating
in the presence of a gravitational field will not preserve their net helicity, or, in the language of particles,
that the gravitational field will created photons with different helicities in unequal amounts, in the same
way it happens for fermions (one also expects a similar effect for gravitons). For photons, the analog
of the classical chiral symmetry of fermions is given by electric-magnetic duality rotations [14]

~E′ = cos θ ~E + sin θ ~B
~B′ = cos θ ~B− sin θ ~E . (8)
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As first proved in [15], these transformations leave the action of electrodynamics invariant if
sources (charges and currents) are not present, and the associated Noether charge is precisely the
difference between the intensity of the right- and left-handed circularly polarized electromagnetic
waves, i.e., the net helicity. This symmetry is exact in the classical theory even in the presence of
an arbitrary gravitational background, as pointed out some years later in [16]. However, in exact
analogy with the fermionic case, quantum effects can break this symmetry of the action and induce
an anomaly [17,18]. In the language of particles, this would imply that the difference in the number
of photons with helicities h = ±1, NR − NL, is not necessarily conserved in curved spacetimes.
The analogy with the fermionic case also suggests that the current jµ

D associated with the symmetry
under duality rotations of the classical theory fails to be conserved quantum mechanically, with a
non-conservation law of the type

∇µ〈jµ
D〉 = α h̄Rµναβ

∗Rµναβ . (9)

where α is a numerical coefficient to be determined. In a recent work [18,19], we have proved that
this is in fact the case, and obtained that α is different from zero and given by α = − 1

96π2 . In this
paper, we will provide a general overview of these results from a different perspective, and with more
emphasis on conceptual aspects.

2. Electric-Magnetic Duality Rotations and Self- and Anti Self-Dual Fields

To study electric-magnetic rotations of Equation (8), it is more convenient to change variables to
the self- and anti-self-dual components of the electromagnetic field, defined by ~H± ≡ 1√

2
(~E± i ~B),

since for them the transformation of Equation (8) takes a diagonal form:

~H′± = e∓ iθ ~H± . (10)

A discrete duality transformation ?~E = ~B, ?~B = −~E corresponds to θ = π/2. Then, the operator
i? produces i ? ~H± = ± ~H±. It is for this reason that ~H+ and ~H− are called the self- and anti-self-dual
components of the electromagnetic field, respectively.

There are other aspects that support the convenience of these variables. For instance, under a
Lorentz transformation, the components of ~E and ~B mix with each other. Indeed, under an infinitesimal
Lorentz transformation of rapidity~η , the electric and magnetic fields transform as ~E′ = ~E−~η ∧ ~B,~B′ =
~B +~η ∧ ~E. (We recall that the rapidity ~η completely characterizes a Lorentz boost: its modulus contains
the information of the Lorentz factor γ, via cosh |~η| = γ, and its direction indicates the direction of the
boost). However, when ~E and ~B are combined into ~H±, it is easy to see that the components of ~H+ and
~H− no longer mix:

~H′± = ~H± ± i~η ∧ ~H± . (11)

Note also that, under an ordinary infinitesimal (counterclockwise) rotation of angle α > 0 around
the direction of a unit vector ~n, the complex vectors ~H± transform as ~H′± = ~H± + α~n ∧ ~H±. Hence,
a boost corresponds to a rotation of an imaginary angle. These are the transformation rules associated
with the two irreducible representations of the Lorentz group for fields of spin s = 1. In the standard
terminology [20,21], they correspond to the (0, 1) representation for ~H+, and the (1, 0) one for ~H−.
More generally, for any element of the restricted Lorentz group SO+(1, 3) (rotations + boots), the above
complex fields transform as

~H′± = e−i(α~n ±i~η)·~J ~H± (12)

where ~J are the infinitesimal generators of the group of rotations. The ± sign in the above
equation distinguishes the two inequivalent (three-dimensional) representations of the Lorentz group.
They are, however, equivalent under the subgroup of rotations. This makes transparent the fact that
electrodynamics describes fields of spin s = 1, something that is more obscure when working with ~E
and ~B, the field strength Fµν, or even the vector potential Aµ.
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Another useful aspect of self- and anti-self-dual variables concerns the equations of motion.
The source-free Maxwell equations

~∇ · ~E = 0 , ~∇ · ~B = 0
~∇× ~E = −∂t ~B , ~∇× ~B = ∂t ~E (13)

when written in terms of ~H±, take the form

~∇ · ~H± = 0 , ~∇× ~H± = ±i ∂t ~H± . (14)

Notice that, in contrast to ~E and ~B, the self- and anti-self-dual fields are not coupled by the
dynamics. The general solution to these field equations is a linear combination of positive and negative
frequency plane waves

~H±(t,~x) =
∫ d3k

(2π)3

[
h±(~k) e−i(k t−~k·~x) + h∗∓(~k) ei(k t−~k·~x)

]
ε̂±(~k) (15)

where k = |~k| and h±(~k) are complex numbers that quantify the wave amplitudes. The polarization
vectors are given by ε̂±(~k) = 1√

2
(ê1(~k)± i ê2(~k)) where ê1 and ê2 are any two real, space-like unit

vectors transverse to k̂ (we choose their orientation such that ê1 × ê2 = +k̂). Positive-frequency Fourier
modes h±(~k) e−i(k t−~k·~x) ε̂±(~k) describe waves with helicity h = 1 for self-dual fields, and with negative
helicity h = −1 for anti-self-dual fields. This is also in agreement with the general fact that a massless
field associated with the Lorentz representation (0, j) describes particles with helicity +j, while a
(j, 0)-field describes particles with helicity −j [20]. Compared with massless fermions, ~H+ is the
analog of a right-handed Weyl spinor, which transforms under the (0, 1/2) Lorentz representation,
and ~H− is the analog of a left-handed Weyl spinor.

The constraints ~∇ · ~H± = 0 can be used to introduce the potentials ~A±, as follows:

~H± = ± i ~∇× ~A±. (16)

Maxwell equations then reduce to first-order differential equations for the potentials:

± i ~∇× ~A± = − ∂t ~A± + ~∇A0
± . (17)

Both sets of equations, for the fields of Equation (14) and for the potentials of Equation (17),
can be written more compactly as follows (the equations for ~H− and ~A− are obtained by complex
conjugation)

αab
I ∂a H I

+ = 0 , ᾱab
I ∂a A+ b = 0 . (18)

The numerical constants αab
I are three 4× 4 matrices, for I = 1, 2, 3, and the bar over αab

I indicates
complex conjugation. The components of these matrices in an inertial frame are

αab
1 =


0 −1 0 0
1 0 0 0
0 0 0 i
0 0 −i 0

 αab
2 =


0 0 −1 0
0 0 0 −i
1 0 0 0
0 i 0 0

 αab
3 =


0 0 0 −1
0 0 i 0
0 −i 0 0
1 0 0 0

.

 (19)

It is trivial to check by direct substitution that Equation (18) is equivalent to Equations (14) and (17),
respectively. These anti-symmetric matrices are Lorentz invariant symbols. They are self-dual (i ? αab

I =

αab
I ), and the conjugate matrices are anti-self-dual (i ? ᾱab

I = −ᾱab
I ).

The two sets of equations in Equation (18) were shown in [19] to contain the same information.
One can thus formulate source-free Maxwell theory entirely in terms of complex potentials.
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3. Noether Symmetry and Conserved Charge

In this section, we show that electric-magnetic rotations of Equation (8) are a symmetry of the
classical theory, and obtain an expression for the associated conserved charge. This can be more
easily done by working in Hamiltonian formalism. The phase space of electrodynamics is usually
parametrized by the pair of fields (~A(~x),~E(~x)), with ~B = ~∇× ~A. The Hamiltonian of the theory is
easily obtained by the Legendre transform from the Lagrangian, and it reads

H =
1
2

∫
d3x

[
~E2 + (~∇× ~A)2 − A0 (~∇ · ~E)

]
. (20)

In this expression, A0(~x) is regarded as a Lagrangian multiplier that enforces the Gauss law constraint
~∇ · ~E = 0. The phase space is equipped with a Poisson structure given by {Ai(~x), Ej(~x′)} = δ

j
i δ(3)(~x−

~x′), which induces a natural symplectic product Ω[(~A1,~E1), (~A2,~E2)] = − 1
2

∫
d3x

[
~E1 · ~A2 − ~E2 · ~A1

]
.

From the form of the electric-magnetic rotations of Equation (8), we see that the infinitesimal
transformation of the canonical variables reads

δ~A = ~Z , δ~E = ~∇× ~A (21)

where ~Z is defined by ~E =: −~∇× ~Z; therefore, it can be understood as an “electric potential” (note
that in the source-free theory ~Z can be always defined, since ~∇ · ~E = 0).

Now, the generator of the transformation of Equation (21) can be determined by

QD = Ω[(~A,~E), (δ~A, δ~E)] = −1
2

∫
d3x [~E · δ~A− ~A · δ~E] = 1

2

∫
d3x [~A · ~B− ~Z · ~E] . (22)

QD is gauge invariant, and one can easily check that it generates the correct transformation by
computing Poisson brackets

δ~B = {~B, QD} = {∇× ~A, QD} = −~E
δ~E = {~E, QD} = ~B . (23)

It is also straightforward to check that δH = {H, Q} = 0. Therefore, the canonical transformation
generated by QD, i.e., the electric-magnetic duality transformation of Equation (21), is a symmetry of
the source-free Maxwell theory, and QD is a constant of motion.

Taking into account the form of the generic solutions, Equation (15), to the field equations,
the conserved charge reads

QD =
∫ d3k

(2π)3 k

[
|h+(~k)|2 − |h−(~k)|2

]
. (24)

This expression makes it clear that QD is proportional to the difference in the intensity of the self-
and anti-self-dual parts of field or, equivalently, the difference between the right and left circularly
polarized components. In the quantum theory, QD/h̄ measures the difference in the number of photons
with helicities h = +1 and h = −1. For this reason, we recognize QD as the V-Stokes parameter that
describes the polarization state of the electromagnetic radiation.

Although we have restricted here to Minkowski spacetime, the argument generalizes to situations
in which a gravitational field is present [16]. A generally covariant proof in curved spacetimes in the
Lagrangian formalism is given in [19], where the associated Noether current was obtained:

jµD =
1
2

[
Aν

?Fµν − Zν Fµν
]

. (25)
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4. Analogy with Dirac Fermions and the Quantum Anomaly

The goal of this section is to compute the vacuum expectation value of the current jµ
D associated

with the symmetry under electric-magnetic rotations, and to use the result to evaluate whether these
transformations are also a symmetry of the quantum theory. A convenient strategy to achieve this is to
realize that, in the absence of electric charges and currents, Maxwell’s theory can be formally written as
a (bosonic) spin 1 version of the Dirac theory for a real spin 1/2 field. The convenience of writing the
theory in this form is that it allows one to take advantage of numerous and powerful tools developed
to compute the chiral anomaly for fermions. Hence, we will start in Section 4.1 by summarizing the
theory of massless spin 1/2 fermions and the calculation of the fermionic chiral anomaly, and we will
come back to the electromagnetic case in Section 4.2.

4.1. Fermions in Curved Spacetime

To better motivate the analogy between electric-magnetic rotations and chiral rotations of fermions,
it is convenient to write the Dirac field in terms of two Weyl spinors ψL and ψR as follows (see for
instance [1,22]):

ψ ≡
(

ψL
ψR

)
, ψ̄ ≡ ψ†β = (ψ†

L, ψ†
R) (26)

where β is the matrix

β ≡
(

0 I
I 0

)
. (27)

The spinor ψL transforms according to the (1/2, 0) representation of the Lorentz algebra, while the
spinor ψR transforms with the (0, 1/2) representation. The Dirac equation

iγµ∂µψ = mψ (28)

takes the form

i

(
0 σµ

σ̄µ 0

)(
ψL
ψR

)
= m

(
ψL
ψR

)
(29)

where σµ = (I,~σ) and~σ are the Pauli matrices. Numerically β agrees with the Dirac matrix γ0, and it
is for this reason that the two matrices are commonly identified (although they have a different index
structure; see e.g., [22]). For massless fermions, the theory is invariant under the chiral transformations
ψ→ ψ′ = eiθγ5 ψ, with γ5 = i

4! εαβγδγαγβγγγδ

γ5 =

(
−I 0
0 I

.

)
(30)

Therefore,

ψ =

(
ψL
ψR

)
→ ψ′ = eiγ5θψ =

(
e−iθψL
eiθψR

.

)
(31)

Noether’s theorem associates with this symmetry transformation the chiral current jµ
5 = ψ̄γµγ5ψ.

The spatial integral of its time-component is the charge

Q5 =
∫

d3x(ψ†
RψR − ψ†

LψL) , (32)
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and it is classically conserved.
This charge counts the difference in the number of positive and negative helicity states, in close

analogy to the dual charge of Equation (24) for the electromagnetic case. As we mentioned in the
introduction, this quantity is a constant of motion in the quantum theory in Minkowski space, but this
is not necessarily true in the presence of a gravitational background, as we now explain in more detail.

In the presence of gravity, the Dirac equation for a massless spin 1/2 fields takes the form (see,
for instance, [23])

iγµ(x)∇µψ(x) = 0 (33)

where γµ(x) = eµ
a (x)γa are the Dirac gamma matrices in curved space, eµ

a (x) is a Vierbein or
orthonormal tetrad in terms of which the curved metric gµν is related to the Minkowski metric
ηab by gµν eµ

a eν
b = ηab, while γa are the Minkowskian gamma matrices (that satisfy {γa, γb} = 2ηab).

∇µ is the covariant derivate acting on spin 1/2 fields:

∇µψ = (∂µ + iωµabΣab)ψ (34)

where Σab = − 1
8 [γ

a, γb] are the generators of the (1/2, 0)
⊕
(0, 1/2) representation of the Lorentz

group, and wµ is the standard spin connexion, defined in terms of the Vierbein and the Christoffel

symbols Γα
µβ by (wµ)a

b = ea
α∂µeα

b + ea
αeβ

b Γα
µβ.

The axial symmetry is maintained at the classical level, or in other words, the conservation law
∇µ jµA = 0 holds for any solution of the equations of motion. Quantum mechanically, to check whether
the symmetry is maintained one needs to evaluate the vacuum expectation value of the operator∇µ jµ

A.
The result, originally computed in [11], is given by

〈∇µ jµA〉 =
2ih̄

(4π)2 tr[γ5E2(x)] (35)

where E2(x) is the second DeWitt coefficient (see the appendix for a sketch of the derivation, and [23]
for a pedagogical calculation using different renormalization methods). In short, the DeWitt coefficients
are local functions constructed from curvature tensors that encode the information of the short distance
behavior (x′ → x) of the solution K(τ, x, x′) of a heat-type equation associated with the Dirac operator
D ≡ iγµ∇µ (for this reason, this function K is called the Heat-Kernel):

i∂τK(τ, x, x′) = D2K(τ, x, x′) . (36)

The asymptotic form of K(τ, x, x) as τ → 0 defines the En(x) coefficients by

K(τ, x, x) ∼ −i
(4πτ)2

∞

∑
n=0

(iτ)nEn(x) . (37)

E(x) are local quantities encoding analytical information of the Klein–Gordon operator D2 in
Equation (36)

D2ψ = (gµν∇µ∇ν +Q(x))ψ = 0 (38)

and are determined by the geometry of the spacetime background. The result for the E2(x) is [23]

E2(x) =

[
− 1

30
�R +

1
72

R2 − 1
180

RµνRµν +
1

180
RαβµνRαβµν

]
I (39)

+
1

12
WµνWµν +

1
2
Q2 − 1

6
RQ+

1
6
�Q
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where Wµν is defined by Wµνψ = [∇µ,∇ν]ψ, and

Q =
1
4

R , Wµν = −iRµναβeα
a eβ

b Σab. (40)

The non-trivial contribution to the axial anomaly comes entirely from the WµνWµν term
and produces

〈∇µ jµ
A〉 =

2ih̄
(4π)2 tr[γ5E2(x)] = − 2ih̄

(4π)2
1

12
RµνabRµνcdtr[γ5ΣabΣcd]

=
h̄

192π2 Rµνλσ
?Rµνλσ . (41)

If, in addition to the gravitational background, the fermion field propagates also on an
electromagnetic background, there is another contribution to the anomaly (this one is proportional
to the square of the electric charge q of the fermion). The extra contributions to Wµν and Q are
Wµν = iqFµν and Q = 2qFµνΣµν, and the expression for 〈∇µ jµA〉 becomes

〈∇µ jµ
A〉 =

h̄
192π2 Rµνλσ

?Rµνλσ − h̄q2

8π2 Fµν
?Fµν . (42)

To finish this section, recall that there is another type of spin 1/2 fermions known as Majorana
spinors. They are the “real” versions of Dirac’s spinors. Mathematically, while for Dirac massless
fermions the two Weyl spinors ψL and ψR in Equation (26) are independent of each other, this is
not true for Majorana spinors, for which there is an extra condition ψR = iσ2ψ∗L [1]. Furthermore,
the Lagrangian density for Majorana spinors carries an additional normalization factor 1/2 compared
to Dirac’s Lagrangian. Since Majorana spinors do not carry an electric charge (q = 0), the presence of
an electromagnetic background does not induce any anomaly, and the coefficient in the gravitational
sector of the anomaly is half of the value obtained for a Dirac fermion.

4.2. Electrodynamics in Curved Spacetime

Consider Maxwell theory in the absence of electric charges and currents. This theory can
be described by a classical action that is formally analog to the action of a Majorana 4-spinor.
Rather than proving from scratch that the familiar Maxwell action can be re-written in the form
just mentioned (see [19]), we will simply postulate the new action and show then that it reproduces
the correct equations of motion. Consider then the following action in terms of self-dual and anti
self-dual variables:

S[A+, A−] = −1
4

∫
d4x
√
−g Ψ̄ iβµ∇µΨ (43)

where

Ψ =


A+

H+

A−

H−

 , Ψ̄ = (A+, H+, A−, H−) , βµ = i


0 0 0 ᾱµ

0 0 −αµ 0
0 αµ 0 0
−ᾱµ 0 0 0

.

 (44)

Note that Ψ is formally analog to a Majorana 4-spinor rather than a Dirac one, since its lower
two components are complex conjugate from the upper ones. Therefore, the action of Equation (43)
is the analog of Majorana’s action. The independent variables in this action are the potentials Aµ

±,
and the fields ~H± are understood as shorthands for their expressions in terms of the potentials (see
Section 2). Note also that Equation (43) is a first-order action (i.e., first-order in time derivatives),
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while the standard Maxwell’s action is second order. ∇µ in Equation (43) is the covariant derivative
acting on the field Ψ, given by

∇µΨ = (∂µ + iωµab Mab)Ψ (45)

and Mab is

Mab =


Σab 0 0 0
0 +Σab 0 0
0 0 Σab 0
0 0 0 −Σab

 (46)

where Σσρ
αβ = δ

ρ
αδσ

β − δ
ρ
βδσ

α is the generator of the (1/2, 1/2) representation of the Lorentz group, while
+Σσρ

I J and −Σσρ

İ J̇ are the generators of the (0, 1)⊕ (0, 0) and (1, 0)⊕ (0, 0) representations, respectively.
Using some algebraic properties of the matrices α (see [19] for more details), it is not difficult to

find that βµ satisfies the Clifford algebra

{βµ, βν} = 2gµνI . (47)

It can also be checked that ∇νβµ(x) = 0. These matrices can then be thought of as the spin 1
counterpart of the Dirac γµ matrices. Furthermore, one can also introduce the “chiral” β5 matrix in a
similar way:

β5 ≡
i

4!
εαβγδβαβββγβδ =


−I 0 0 0
0 −I 0 0
0 0 I 0
0 0 0 I

,

 (48)

satisfying properties analogous to the Dirac case:

{βµ, β5} = 0 , β2
5 = I . (49)

Further details and properties of these matrices can be studied in [19].
Although the basic variables in the action are the potentials A±µ , at the practical level one can

work by considering Ψ and Ψ̄ as independent fields. Note that this is the same as one does when
working with Majorana spinors. The equations of motion take the form

δS
δΨ̄

= 0 −→ iβµ∇µΨ = 0 . (50)

They contain four equations, one for each of the four components of Ψ. The upper two are the
equations ᾱ

µν

İ ∇µ A+
ν = 0 and α

µν
I ∇µH I

+ = 0. The lower two are complex conjugated equations.
Since these equations are precisely Maxwell’s equations written in self- and anti-self-dual variables,
this proves that the action of Equation (43) describes the correct theory.

Now we study how the classical electric-magnetic symmetry and its related conservation law
arise in this formalism. By means of the chiral matrix β5, an electric-magnetic duality rotation can be
written in the following form, manifestly analog to a chiral transformation for Dirac fields:

Ψ→ eiθβ5 Ψ , Ψ̄→ Ψ̄eiθβ5 . (51)

Recalling the explicit form of β5 in Equation (48), one infers that the upper two components of
Ψ, namely (A+, H+), encode the self-dual, or positive chirality sector of the theory, while the lower
two components (A−, H−) describe the anti-self-dual or the negative chiral sector. The Lagrangian
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density in Equation (43) remains manifestly invariant under these rotations, and in the language of Ψ
the Noether current reads

jµ
D =

1
4

Ψ̄βµβ5Ψ . (52)

The corresponding Noether charge yields

QD =
∫

Σt
dΣµ jµD =

1
4

∫
Σt

dΣ3 Ψ̄β0β5Ψ (53)

where dΣ3 is the volume element of a space-like Cauchy hypersurface Σt. This formula for QD is in full
agreement to that calculated in previous sections (see Equation (22)), generalized to curved spacetimes.

The calculation of the vacuum expectation value 〈∇µ jµD〉 in the quantum theory follows exactly
the same steps shown above for fermions. Namely, 〈∇µ jµ

D〉 is given again [18,19] in terms of the second
DeWitt coefficient E2(x) by

〈∇µ jµ
D〉= − i

h̄
32π2 tr[β5E2] , (54)

where E2(x) is now obtained from the heat kernel K associated with the Maxwell operator D = iβµ∇µ,
rather than the Dirac operator iγµ∇µ. The DeWitt coefficient is still given by Equation (39), but now
Equation (40) needs to be replaced by

QΨ ≡ 1
2

β[α βµ] Wαµ Ψ (55)

and
WαµΨ ≡ [∇α,∇µ]Ψ =

1
2

Rαµσρ MσρΨ . (56)

With this, Equation (54) becomes

〈∇µ jµD〉ren = − h̄
96π2 Rαβµν

?Rαβµν . (57)

This result reveals that quantum fluctuations spoil the conservation of the axial current jµ
D and

break the classical symmetry under electric-magnetic (or chiral) transformations, if the spacetime
curvature is such that the curvature invariant Rαβµν

?Rαβµν is different from zero.

5. Discussion

The result shown in Equation (57) implies that the classical Noether charge QD is not necessarily
conserved in the quantum theory, and its change between two instants t1 and t2 can be written as

∆ 〈QD〉 = −
h̄

96π2

∫ t2

t1

∫
Σ

d4x
√
−g Rαβµν

?Rαβµν = − h̄
6π2

∫ t2

t1

dt
∫

Σ
d3x
√
−g EµνBµν (58)

where in the last equality we have written Rαβµν
?Rαβµν in terms of the electric Eµν and magnetic Bµν

parts of the Weyl curvature tensor. Note the close analogy with the chiral spin 1/2 anomaly shown
in Equation (4). This result implies that the polarization state of the quantum electromagnetic field
can change in time, even in the complete absence of electromagnetic sources, due to the influence of
gravitational dynamics and quantum electromagnetic effects (notice the presence of h̄). In this precise
sense, one can think about the spacetime as an optically active medium.

Since ∆ 〈QD〉 is proportional to h̄, one could expect the net effect of the anomaly to be small.
However, recall that ∆ 〈QD〉 = h̄(NR − NL). Thus, the net number NR − NL is only given by the
(dimensionless) geometric integral on the RHS of Equation (58). A sufficiently strong gravitational
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background could lead to a significant effect. It is also important to remark that Expression (58)
accounts for the net helicity created out of an initial vacuum state—we call this spontaneous creation
of helicity. However, it is well-known in the study of particle creation by gravitational fields that the
spontaneous creation effect for bosons always comes together with the stimulated counterpart, if the
initial state is not the vacuum but rather contains quanta on it (see [2,24,25]). The stimulated effect
is enhanced by the number of initial quanta. For the same reason, the value of ∆ 〈QD〉 is expected
to be enhanced if the initial state of radiation is not the vacuum but rather an excited state, as for
instance a coherent state which describes accurately the radiation emitted by, say, an astrophysical
object. However, remember that the average number of photons in such a coherent state is macroscopic,
so it can lead to detectable effects. Therefore, it is conceivable that the change in the polarization of
electromagnetic radiation crossing a region of strong gravitational field, produced for instance by the
merger of two compact objets, takes macroscopic values. The computation of the exact value of the
RHS of Equation (58) in such a situation requires the use of numerical relativity techniques, and this
will be the focus of a future project.

Finally, we want to mention that the experimental investigation of this anomaly could be relevant
in other areas of physics, as in condensed matter physics [26], non-linear optics [27], or analogue
gravity in general. For instance, metamaterials can be designed to manifest properties that are
difficult to find in nature [28]. In this case, the medium, and not a distribution of mass-energy,
can originate effective geometries [27]. They thus may mimic a curved spacetime with optimal
values of Equation (58) and could serve to test the photon right–left asymmetry originating from the
electric-magnetic quantum anomaly.
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Appendix A. Some Details Regarding the Calculation of ∇µ jµ
A in Curved Spacetimes

In this appendix, we give a sketch of the derivation of Equation (35). The operator of interest,
∇µ jµA, is quadratic in the fermion fields, and thus suffers from ultraviolet (UV) divergences. As a
consequence, its vacuum expectation value must incorporate renormalization counterterms in order to
cancel out all of them and to provide a finite physically reasonable result:

〈∇µ jµ
A〉ren = 〈∇µ jµA〉 − 〈∇µ jµA〉Ad(4) . (A1)

Here, 〈∇µ jµ
A〉Ad(4) denotes the (DeWitt–Schwinger) asymptotic expansion up to the fourth

adiabatic order [23]. Namely, the renormalization method works by expressing 〈∇µ jµA〉 in terms
of the Feymann two-point function S(x, x′) = −i〈TΨ(x)Ψ̄(x′)〉 and then replacing S(x, x′) with
[S(x, x′) − S(x, x′)Ad(4)], where S(x, x′)Ad(4) denotes the DeWitt-Schwinger subtractions up to the
fourth adiabatic order, and finally taking the limit x → x′.

It is convenient to introduce an auxiliary parameter s > 0 in order to regularize spurious infrared
divergences in intermediate steps; s will be set to zero at the end of the calculation. This parameter is
introduced by replacing the wave equation DΨ = 0 by (D+s)Ψ = 0, where D ≡ iγµ∇µ. As a result,

∇µ jµ
A(x) = ∇µ [Ψ̄(x)γµγ5 Ψ(x)] = −i

[
Ψ̄(x)

←
D γ5 Ψ(x)− Ψ̄(x)γ5

→
DΨ(x)

]
= lim

s→0
x→x′
−2i s Ψ̄(x)γ5Ψ(x′) = lim

s→0
x→x′
−2i s Tr[γ5Ψ(x)Ψ̄(x′)] (A2)
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where we have used {γµ, γ5} = 0. Picking up an arbitrary vacuum state |0〉, we have

〈∇µ jµA〉 = lim
s→0
x→x′

2 s Tr
[
γ5 S(x, x′, s)

]
, (A3)

and the renormalized expectation value is given by

〈∇µ jµ
A〉ren = lim

s→0
x→x′

1
2

s Tr
[
γ5

(
S(x, x′, s)− S(x, x′, s)Ad(4)

)]
. (A4)

Here, S(x, x′, s) encodes the information of the vacuum state, and the role of S(x, x′, s)Ad(4) is to
remove the ultra-violet divergences—which are the same regardless of the choice of vacuum. It is now
useful to write S(x, x′, s)Ad(4) = [(Dx − s)G(x, x′, s)]Ad(4), since it is known that [23]

G(x, x′, s) ∼ h̄∆1/2(x, x′)
16π2

∞

∑
k=0

Ek(x, x′)
∫ ∞

0
dτ e−i (τs2+ σ(x,x′)

2τ ) (iτ)(k−2) . (A5)

In this expression, σ(x, x′) represents half of the geodesic distance squared between x and x′,
∆1/2(x, x′) is the Van Vleck-Morette determinant, and Ek(x, x′) are the DeWitt coefficients introduced
in the main text (Ek(x) ≡ limx′→x Ek(x, x′)).

We can safely take now the limit x = x′ in which the two points merge. Due to the symmetry of
the classical theory, the bare contribution S(x, x′, s) in Equation (A4) vanishes for any choice of vacuum
state. As a result, 〈∇µ jµ

A〉ren arises entirely from the subtraction terms, S(x, x′, s)Ad(4). This means that
〈∇µ jµA〉ren is independent of the choice of vacuum. On the other hand, it is not difficult to see that only
the terms with k = 2 in Equation (A5) produce a non-vanishing result. Additionally, terms involving
derivatives of E2(x, x′) must be disregarded because they involve five derivatives of the metric and
hence are of the fifth adiabatic order. With all these considerations, Expression (A4) leads then to
Formula (35).
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