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Abstract: In this paper, we will construct a new multilevel system in the Fourier domain using the
harmonic wavelet. The main advantages of harmonic wavelet are that its frequency spectrum is
confined exactly to an octave band, and its simple definition just as Haar wavelet. The constructed
multilevel system has the circular shape, which forms a partition of the frequency domain by shifting
and scaling the basic wavelet functions. To possess the circular shape, a new type of sampling grid,
the circular-polar grid (CPG), is defined and also the corresponding modified Fourier transform. The
CPG consists of equal space along rays, where different rays are equally angled. The main difference
between the classic polar grid and CPG is the even sampling on polar coordinates. Another obvious
difference is that the modified Fourier transform has a circular shape in the frequency domain while
the polar transform has a square shape. The proposed sampling grid and the new defined Fourier
transform constitute a completely Fourier transform system, more importantly, the harmonic wavelet
based multilevel system defined on the proposed sampling grid is more suitable for the distribution
of general images in the Fourier domain.

Keywords: harmonic wavelet; filtering; multilevel system

1. Introduction

Wavelet multiresolution representations are one of the effective techniques for analyzing signals
and images. The wavelet multiresolution analysis (MRA) technology has been widely used in signal
and image processing. It was first given by Mallat [1], and the authors study the difference of
information between approximation of a signal at the resolution 2j+1 and 2j, by decomposing this
signal on a wavelet basis of L2(R). The 2D general MRA technique possesses a square shape in the
frequency domain [2–4]. To design the filter of circular-shape in the Fourier domain, the classical
polar Fourier transformation is considered. However, the classical polar Fourier transform retains the
same shape as in the space domain, so new approaches are investigated. One way is to redefine the
sampling grid in the Fourier domain. In [5], the authors introduce a pseudo-polar Fourier transform
that samples the Fourier transform on the pseudo-polar grid, also known as the concentric squares
grid. We will give more details in Section 3. In addition, [6] samples on points that are equally spaced
on an arbitrary arc of the unit circle, which brings about the Fractional Fourier transform; and, in [7],
the sampling is on spirals of the form AWk, with A, W ∈ C. Using this type of sampling, the authors
develops a computation algorithm for numerically evaluating the z− trans f orm. Our goal is to obtain
the sampling grid in a circular shape; therefore, we hope to design a new type of sampling that ensures
the sampling points concentrated in a circular region. Then, the sampling grid has a circular shape in
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the Fourier domain. Inspired by the pseudo-polar Fourier transform in [5], we will also redefine the
Fourier transform on circular sampling grid.

In recent years, many kinds of directional wavelets filters have been designed, in order to further
efficiently capture the details of signals. The most widely used directional multilevel system includes
curvelets [8], contourlets [9] and shearlets [10,11]. What these wavelets have in common is that they
have compact support multiscale structure in the space domain. In the Fourier domain, the support of
a multilevel system constitutes a high redundant partition. To reduce the redundancy, we consider
designing the multilevel system in the frequency domain directly. We also must ensure that the
multilevel system constructs the basis of L2(R) in the space domain.

To design the multilevel system in the Fourier domain, wavelets with compact support in
frequency are needed. According to the definition of the harmonic wavelet [12–15], it is suitable
to construct a directional multilevel structure with harmonic wavelets whose Fourier transforms are
compact and are constructed from simple functions like Haar wavelets [16] in the space domain. We
will review the basic definition and property of harmonic wavelet in Section 2.

In this work, by defining the circular-shape Fourier transform (CFT), we will construct the
circular-shape directional multilevel system (CMS) in the Fourier domain due to the compact support
of harmonic wavelets [12–15,17]. The specific structure is totally different from the general Cartesian
system. By introducing the CFT, we plan to give a parallel analogy with the general classical Descartes
Fourier transform, and the corresponding circular-shape directional multilevel system is constructed
naturally, which is suitable for the circular shape of images in the Fourier domain. More details will be
given in Section 4.

This paper is organized as follows: Section 2 reviews the basic definition and property of harmonic
wavelets. The design of CFT is given in Section 3. Then, in Section 4, the multilevel system in the
frequency domain based harmonic wavelet is constructed. The quantitative test measures and test
results are displayed in Sections 5 and 6.

2. Preliminary

2.1. The Basic Definition

Harmonic wavelets are complex wavelets defined in the Fourier domain. It is consists of an
even function He(ω) (see Figure 1a) as the real part and an odd function Ho(ω) (see Figure 1b) as the
imaginary part, which are defined by

(a) (b) (c)

Figure 1. The harmonic wavelet function. (a) the even part He(ω) ; (b) the odd part Ho(ω); (c) the
harmonic wavelet function H(ω).
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He(ω) =

{
1/4π, ω ∈ [−4π,−2π) ∪ [2π, 4π),

0, otherwise.
Ho(ω) =


i/4π, ω ∈ [−4π,−2π),

− i/4π, ω ∈ [2π, 4π),

0, otherwise.

(1)

Combining He and Ho, we get the harmonic function

H(ω) = He(ω) + iHo(ω). (2)

From Label (1), we have

H(ω) =

{
1/2π, ω ∈ [2π, 4π),

0, otherwise.
(3)

This is shown in Figure 1c.
The corresponding scaling function S is given in the same way, and the even and odd functions

are defined as

Se(ω) =

{
1/4π, ω ∈ [−2π, 2π),

0, otherwise.
So(ω) =


i/4π, ω ∈ [−2π, 0),

− i/4π, ω ∈ [0, 2π),

0, otherwise.

(4)

so that, from Label (4),
S(ω) = Se(ω) + iSo(ω). (5)

Therefore, we have

S(ω) =

{
1/2π, ω ∈ [0, 2π),

0, otherwise,
(6)

shown in Figure 2.

(a) (b) (c)

Figure 2. The harmonic scaling function. (a) the even part Se(ω); (b) the odd part So(ω); (c) the scaling
function S(ω).

Then, the shifting and scaling of basic functions are denoted as Sj,`(ω) and Hj,`(ω), which are
given as

Sj,`(ω) = 1/2jS(ω/2j − `),

Hj,`(ω) = 1/2j H(ω/2j − `),
(7)
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where j ∈ Z is the scaling parameter, and ` ∈ R is the shifting parameter. According to Label (7),
the harmonic wavelet system constructs a basis of L2(R) in the frequency domain; then, for f ∈ L2(R),
we have

f (ω) =
+∞

∑
j=−∞

+∞

∑
`=−∞

aj,`H(2jω− `), (8)

f (ω) =
+∞

∑
`=−∞

a`S(ω− `) +
+∞

∑
j=0

+∞

∑
`=−∞

aj,`H(2jω− `), (9)

where

a` =
∫ +∞

−∞
f (ω)S(x− `)dx, aj,` =

∫ +∞

−∞
f (ω)H(2jx− `)dx. (10)

3. The Circular-Shape Fourier Transform (CFT)

This section describes the circular-shape Fourier transform (CFT). We begin with the sampling
grid in the Fourier domain, including the Cartesian coordinates (see Figure 3a) for classical Fourier
transform and the pseudo-polar grid in [5] (see Figure 3b). This grid samples points of equally spaced
long rays but not equally angles. In order to have a circular structure, the sampling grid in concentric
circles (see Figure 3c) is designed, which has equally arc and angle in each circle. This type of sampling
is consistent with the distribution of images in the frequency domain.

(a) (b) (c)

Figure 3. Three different grids.

3.1. The Pseudo-Polar Grid

The pseudo-polar grid ΩR is given as

ΩR = Ω1
R ∪Ω2

R, (11)

where
Ω1

R ={(−4`k
RN

,
2k
R
) : |`| ≤ N/2, |k| ≤ RN/2},

Ω2
R ={(2k

R
,− 4`k

RN
) : |`| ≤ N/2, |k| ≤ RN/2},

(12)

with R = 2 the oversampling parameter. The nod of Ω1
R is on the solid line in Figure 3b and the nod of

Ω2
R is on dotted line.

For an N × N image u, the general discrete Fourier transform û is evaluated on the N × N
Cartesian grid in the form

û(ωx, ωy) =
N/2−1

∑
x,y=−N/2

u(x, y)e−
2πi
N (xωx+yωy), (13)
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where {(ωx, ωy) : ωx, ωy = −N/2, ..., N/2.}, and

N/2−1

∑
x,y=−N/2

|u(x, y)|2 =
1

N2

N/2−1

∑
ωx ,ωy=−N/2

|û(ωx, ωy)|2. (14)

Analogously, the pseudo-polar Fourier transform is the same as (13) (see [5]), but {(ωx, ωy) ∈
ΩR.}. According to the Plancherel theorem, (14) can be modified by introducing the weighting function
w

N/2−1

∑
x,y=−N/2

|u(x, y)|2 =
N/2−1

∑
(ωx ,ωy)∈ΩR

w(ωx, ωy)|û(ωx, ωy)|2. (15)

3.2. The Circular-Polar Grid (CPG)

In this section, the circular-polar grid (CPG) is designed (see Figure 3c), which is defined as

CR = C0
R ∪ C]

R; (16)

where C0
R = {(0, 0)} and C]

R = C1
R ∪ C2

R

C1
R ={(r cos(

`π

m0
), r sin(

`π

m0
)) : 1 ≤ |r| ≤ R, |`| ≤ m0

2
},

C2
R ={(r sin(

`π

m0
), r cos(

`π

m0
)) : 1 ≤ |r| ≤ R, |`| ≤ m0

2
},

(17)

where m0 is the sampling number in each circle.
As can be seen from Figure 3c, the nod of C1

R is on a solid line and the nod on a dotted line belongs
to C2

R. In addition, r in (17) serves as the radius and ` serves as the parameter of angle. m0 = 16 is the
sampling number. In the CPG coordinates, the nod has the following characteristics, for

C1
R(ωx, ωy) = (r1, θ1), C2

R(ωx, ωy) = (r2, θ2), (18)

where
r1 = k1, r2 = k2,

θ1 = `1π/m0; θ2 = `2π/m0.
(19)

ki = 0, ...R; i = 1, 2 and `i = −m0/2, ...m0/2; i = 1, 2. For each fixed angle θ, the samples of the
CPG are equally spaced in the radial direction, and, for each fixed radius r, the grid possesses the
same angle. Formally,

∆r1 , (k1 + 1)− k1 = 1; ∆r2 , (k2 + 1)− k2 = 1,

∆θ1 , (`1 + 1)π/m0 − `1π/m0 = π/m0,

∆θ2 , (`2 + 1)π/m0 − `2π/m0 = π/m0,

(20)

where r1, r2 and θ1, θ2 are given by (19).
For an N × N image u, the CFT of û on CPG holds

N/2−1

∑
x,y=−N/2

|u(x, y)|2 = ∑
(ωx ,ωy)∈CR

wc(ωx, ωy)|û(ωx, ωy)|2, (21)

and

ûCR(ωx, ωy) =
N/2−1

∑
x,y=−N/2

u(x, y)e−
2πi

Rm0+1 (xωx+yωy). (22)
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Using operator notation, we denote the refined CFT of an image u as Fp, where

(Fpu)(r, `) , ûCR(r, `), (23)

with r = −R, ..., R, ` = −m0/2, ..., m0/2. Now, our goal is to choose weight wc, such that wc

satisfies (21), and we have

∑
(ωx ,ωy)∈CR

wc(ωx, ωy)|û(ωx, ωy)|2

= ∑
(ωx ,ωy)∈CR

wc(ωx, ωy)|
N/2−1

∑
x,y=−N/2

u(x, y)E(x, y)|2

= ∑
(ωx ,ωy)∈CR

wc(ωx, ωy)[
N/2−1

∑
x,y=−N/2

N/2−1

∑
x′ ,y′=−N/2

u(x, y)E(x, y)u(x′, y′)E(x′, y′)]

= ∑
(ωx ,ωy)∈CR

wc(ωx, ωy)
N/2−1

∑
x,y=−N/2

|u(x, y)|2

+ ∑
(x,y) 6=(x′ ,y′)

u(x, y)u(x′, y′)[ ∑
(ωx ,ωy)∈CR

wc(ωx, ωy)E(x, y)E(x′, y′)],

(24)

where E(x, y) , e−
2πi

Rm0
(xωx+yωy). Compared with the left of equation (21), the weights wc holds

∑
(ωx ,ωy)∈CR

wc(ωx, ωy)e−
2πi

Rm+1 (xωx+yωy) = δ(x, y); (25)

with −N/2 ≤ x, y ≤ N/2− 1.

3.3. The Choice of Weights wc

In the following, we present the basic condition of weights wc, according to (25), which
satisfies that

0 = ∑
(ωx ,ωy)∈C]

R

wc(ωx, ωy)[cos(
2π

Rm0 + 1
xωx) cos(

2π

Rm0 + 1
yωy)

− sin(
2π

Rm0 + 1
xωx) sin(

2π

Rm0 + 1
yωy)];

0 = ∑
(ωx ,ωy)∈C]

R

wc(ωx, ωy)[sin(
2π

Rm0 + 1
xωx) cos(

2π

Rm0 + 1
yωy)

+ cos(
2π

Rm0 + 1
xωx) sin(

2π

Rm0 + 1
yωy)].

(26)

According to the symmetry of the CFT, the weighting function wc is assumed to satisfy

wc(ωx, ωy) = wc(ωy, ωx), (ωx, ωy) ∈ CR,

wc(ωx, ωy) = wc(ωy,−ωx), (ωx, ωy) ∈ CR,

wc(ωx, ωy) = wc(−ωy,−ωx), (ωx, ωy) ∈ CR,

(27)

where four equations of (27) describe the (ωy = ωx)-symmetry, (ωy = −ωx)-symmetry and the
origin-symmetry.

In addition,

∑
(ωx ,ωy)∈CR

wc(ωx, ωy) = 1. (28)
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To avoid high complexity, we choose the weight w(ωx, ωy) in the form:

w(ωx, ωy) =
w0(ωx, ωy)

∑ωx ,ωy w0(ωx, ωy)
, (29)

where
w0(ωx, ωy) =

1
m0r

, {(ωx, ωy) : ω2
x + ω2

y = r2}, (30)

with r ∈ [1, R], and w(0, 0) = 1.

4. The Construction of Multilevel System in Frequency Domain

In this section, we construct a new type multilevel system on CPG in the frequency domain.

4.1. 2D Basic Harmonic Function

First, we define the 2D basic harmonic wavelet functions in the Fourier domain. For deriving
convenience, the wavelet function H and scaling function S can be normalized in the form given by
Definition 1.

Definition 1. The 2D harmonic basic functions are defined as

H(r, θ) :, H(2π|r| cos(|θ|))S(2π|r| sin(|θ|)),
S(r, θ) :, S(2π|r| cos(|θ|))S(2π|r| sin(|θ|)),

(31)

with r ∈ [−R, R], θ ∈ [0, π].

Then, the support of H(r, θ) and S(r, θ) are investigated, according to (3) and (6),

H(2π|r| cos(|θ|)) 6= 0, S(2π|r| sin(|θ|)) 6= 0 (32)

hold simultaneously; therefore,

1 ≤ |r| cos(|θ|) ≤ 2, 0 ≤ |r| sin(|θ|) ≤ 1. (33)

Thus, the support of H(r, θ) is given as

√
2 ≤ |r| ≤ 2, |θ| ≤ π/4. (34)

Similarly,
suppS(r, θ) = {(r, θ) : 0 ≤ |r| ≤ 1, |θ| ≤ π/4}. (35)

Next, the 2D scaling and shifting of H(r, θ) and S(r, θ) are defined.

Definition 2. The 2D scaling and shifting of harmonic basic functions in the frequency domain are defined as

Hj,`(r, θ) :, H(2π2−j|r| cos(2j|θ − `|))S(2π2−j|r| sin(2j|θ − `|)),
Sj,`(r, θ) :, S(2π2−j|r| cos(2j|θ − `|))S(2π2−j|r| sin(2j|θ − `|)),
H∗j,`(r, θ) :, H(2π2−j|r| sin(2j|θ − `|)S(2π2−j|r| cos(2j|θ − `|)),

S∗j,`(r, θ) :, S(2π2−j|r| sin(2j|θ − `| − π

2
))S(2π2−j|r| sin(2j|θ − `|)),

(36)

with j, ` ∈ R.
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4.2. The Polar Harmonic Multilevel System in the Frequency Domain (PHMS) on CPG

In this section, we give the definition of the polar harmonic multilevel system (PHMS) defined
on CPG.

Definition 3. The 2D PHMS on CPG is defined as

PHMS :, Hj,`j
(r, θ) ∪ Sj,`j

(r, θ) ∪ H∗j,`j
(r, θ) ∪ S∗j,`j

(r, θ), (37)

where Hj,`, H∗j,`, Sj,` and S∗j,` are given in (36). The level parameter j ≤ [log2 R], the shifting parameter is

related to j, and we defined the `j = `2−j π
4 with |`| ≤ 2j, ` ∈ Z.

From |`| ≤ 2j, we have 2(2j+1 + 1) subbands in each level j, in order to reduce the overlap,
we choose 2(2j+1) subbands; then, the PHMS constructs a partition of the Fourier domain. We
displayed the PHMS structure in Figure 4.

Figure 4. The polar harmonic multilevel system (PHMS) in the Fourier domain j ≤ 2, `j ∈ Z and
−2j ≤ `j < 2j.

For a signal or image u, the corresponding PHMS transform P(u) in the frequency domain can be
defined as

P(u) ,< ûCR , PHMS > =
J

∑
j=0

`(2−j π
4 )

∑
`j=−`(2−j π

4 )

2j

∑
`=−2j

(Hj,`j
. ∗ ûCR + Sj,`j

. ∗ ûCR

+ H∗j,`j
. ∗ ûCR + S∗j,`j

. ∗ ûCR),

(38)

with `j = `2−j π
4 , |`| ≤ 2j, ` ∈ Z, where ûCR is the CPFT of u, defined in (22). In addition, ′.∗′ is the dot

product, and the matrix M1. ∗M2 is defined as

(M1. ∗M2)i,j = (M1)i,j(M2)i,j. (39)

Theorem 1. The discrete polar harmonic multilevel system PHMS defined on CPG forms a framelet of L2(R2).

According to the framelet defined in [18], for the signal U in (38),

‖U‖2 ≤ ‖ < U, PHMS > ‖2 ≤ c‖U‖2, (40)

where c < +∞ is the constant; therefore, PHMS forms a framelet of L2(R2).
Then two denoising reconstruction tests of PHMS are shown in Figure 5.
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Figure 5. Recovery results by PHMS with scale j = 4, the random noise level σ = 20.

5. Quantitative Test Measures

In the following, several performance measures are introduced to test the quality of the PHMS.
The quality measure is the Monte Carlo estimate for the different operator norm by generating
a sequence of five random images ui, i = 1, ..., 5 on CPG for R = 256, ` = 8 with standard normally
distributed entries.

1. Isometry of CFT:

(a) Closeness to tight: Mclo = maxi=1,...,5
‖F ∗pFpui−ui‖2

‖ui‖2
,

(b) Quality of preconditioning. Mqua =
λmax(F ∗pFp)

λmin(F ∗p wFp)
.

2. Tight Frame Property: The operator norm ‖P∗P − I‖op, which is defined as Mtig =

maxi=1,...,5
‖P∗Pui−ui‖2
‖ui‖2

.
3. Robustness:

(a) Thresholding: Let u be the regular sampling of a Gaussian function with mean 0 and
variance 512 on [257]2 generating an 512 × 512 image. Two types of robustness are

considered, for k = 1, 2, and Mpk =
‖P∗TpkPu−u‖2

‖u‖2
.

Tp1 : Tp1 discards 100(1− 2−p1) percent of coefficient, with p1 = [2 : 2 : 20].
Tp2 : Tp2 keeps the absolute value of coefficients bigger than m/2p2 with m is the

maximal absolute value of all coefficients, where p2 = [0.5 : 0.5 : 5].

(b) Quantization: The quality measure is given as Mp =
‖P∗QqPu−u‖2

‖u‖2
, where Qq(c) =

round(c/(m/2q)) · (m/2q), and q ∈ [5 : −0.5 : 0.5].

6. Test Results

In this section, the test results of PHMS on CPG for quantitative measure in (1)–(3) are shown.
First the performance with respect to quantitative measures in (1), (2) are presented in Table 1.
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Table 1. Results of Labels (1)–(2).

Mclo Mqua Mtig

0.00946092 1.9342627 0.1036731

From Table 1, the error of tightness Mtig for the PHMS transform is about 0.1, which confirms that
the multilevel system is indeed not a tight frame. The main reason is the redundancy of the multilevel
structure due to the radius in (36). The quantity Mclo ≈ 0.0095 and Mqua ≈ 1.934 suggests that the
circular-polar Fourier transform provides good properties in terms of isometry, which allows us to
employ the conjugate gradient method to compute the inverse of Fp. The weight w should also be
chosen carefully.

Second, the robustness measurements in (3) displayed in Table 2:

Table 2. Results of Label (3).

Mp1 3.6 × 10−6 1.7 × 10−5 5.9 × 10−3 2.1 × 10−2 0.9 × 10−2

Mp2 0.009 0.063 0.103 0.172 0.197

Mp 0.051 0.065 0.083 0.126 0.143

Table 2 shows the robustness of PHMS. Even discarding 100(1− 2−10) ≈ 99.9% of the coefficients,
the image still can be recovered with error MP1 = 0.9 × 10−2. The second row suggests that just the
coefficient greater than thresholding value m(1− 1/20.001) ≈ 0.1% can give a good reconstruction with
Mp2 = 0.009. In the third row, the quantization of robustness Mp is displayed.

7. Conclusions

In this work, we developed and implemented a polar harmonic multilevel system on the
circular-polar grid based on the multiscale theory, and testified to the performance of the PHMS
in four different quantitative measures, which suggests that the PHMS transform is suitable for the
circular-shape Fourier transform. Another advantage of the PHMS is that the circular low frequency
region in the frequency domain is consistent with the image spectrum distribution, which can process
the multilevel structure more effectively.
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