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Abstract: Interval neutrosophic fuzzy decision making is an important part of decision making
under uncertainty, which is based on preference order. In this study, a new multi-valued interval
neutrosophic fuzzy multiple attribute decision making method has been developed by integrating the
DEMATEL (decision making trial and evaluation laboratory) method and the TOPSIS (the technique
for order preference by similarity to an ideal solution) method. Evaluation values are given in the
form of multi-valued interval neutrosophic fuzzy values. By using DEMATEL, dependencies among
attributes can be modeled, and attribute weights are determined. The normalized Euclidean distance
and the normalized Hamming distance between multi-valued interval neutrosophic fuzzy values
are defined. Alternatives are ranked by using the TOPSIS method based on the distance measures.
The truck selection problem in the logistics industry is presented to illustrate the feasibility and
practical advantages of the proposed method. Some comparisons of the new method with other
methods are also made.

Keywords: multiple attribute decision making; multi-valued interval neutrosophic set; DEMATEL;
distance measure; TOPSIS; aggregation operator

1. Introduction

Decision making problems have become more complicated because of the increasing amount of
decision information and alternatives, the inherent uncertainty and complexity of decision problems,
the fuzzy nature of human thinking, etc. Many useful tools have been developed to model fuzzy
and uncertain information. The neutrosophic set, introduced by Smarandache [1], is a powerful
extension of some classic sets including the fuzzy set [2], the interval-valued fuzzy set [3], the
intuitionistic fuzzy set [4], the hesitant fuzzy set [5], etc. In the neutrosophic set, each element
has a truth-membership, an indeterminacy-membership and a falsity-membership belonging to
the real standard or non-standard subset of ]0−, 1+[. Compared to other tools to model fuzzy,
inconsistent and uncertain information, the neutrosophic set is more flexible and accurate, which
is based on preference order. The neutrosophic set has received broad attention and has been
applied extensively [6–12]. Wang et al. [13] proposed a single-valued neutrosophic set and studied
various properties of the single-valued neutrosophic set. Ye studied the correlation coefficient of the
single-valued neutrosophic set in [14] and presented the cross-entropy single-valued neutrosophic set
in [15]. Yang et al. [16] studied the single-valued neutrosophic relations. TOPSIS in the single-valued
neutrosophic environment has been studied by Biswas et al. [17]. Similarity and entropy in the
neutrosophic environment were studied by Majumdar and Samant [18]. Liu et al. [19] presented
some generalized neutrosophic Hamacher aggregation operators. Wang and Li [20] developed a
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multi-valued neutrosophic set and presented the TODIMmethod based on multi-valued neutrosophic
fuzzy information. Researchers further developed neutrosophic soft sets [21], trapezoidal neutrosophic
sets [22], single-valued neutrosophic linguistic sets [23], etc. In the evaluation process, decision makers
would like to evaluate with interval numbers rather than crisp numbers due to the fuzzy nature
of human thinking. Wang et al. [24] developed the set-theoretic operators on the neutrosophic set
called the interval neutrosophic set. Rdvan [25] developed some cross-entropy measures on interval
neutrosophic fuzzy sets. Liu and Tang [26] proposed some power generalized aggregation operators
for interval neutrosophic information. Liu and Shi [27] presented some generalized hybrid weighted
averaging operators for interval neutrosophic hesitant fuzzy information. Zhang et al. developed an
outranking method for interval neutrosophic sets. Yang et al. [28] proposed the linear assignment
method for interval neutrosophic sets. Chi and Liu [29] extended the TOPSIS method to the interval
neutrosophic environment. In complicated decision problems, several experts from different fields
have been invited to evaluate alternatives with respect to the attributes, and these experts can provide
several evaluation values for hesitation in decision making or can refuse to give any evaluation values
if they are unfamiliar with the attributes. Then, we can obtain multi-valued interval neutrosophic
values. Though several interval neutrosophic decision methods have been developed, most of them
are based on single-valued interval neutrosophic values, and the problems with multi-valued interval
neutrosophic values have rarely been studied. In order to deal with complicated decision problems
with multiple decision makers involved, the evaluation values of decision makers are given in the
form of multi-valued interval neutrosophic values in this paper.

DEMATEL was first developed by the Science and Human affairs Program of the Battelle Memorial
Institute of Geneva [30]. Stević et al. [31] used DEMATEL and the analytic network process (D-ANP) to
determine the weights of factors on the S&P 500 Index futures. The DEMATEL method can be used to
identify the possible interdependence among the elements by using the structural modeling technique.
The DEMATEL method has been studied extensively and applied in a broad range of fields. Lin and
Wu [32] develop a fuzzy DEMATEL method, in which the evaluation values are triangular fuzzy
numbers. Jassbi et al. [33] built a strategy map by using fuzzy DEMATEL. The DEMATEL method
in the intuitionistic fuzzy environment has been studied by Nikjoo and Saeedpoor in [34]. Govindan
in [35] applied the intuitionistic fuzzy DEMATEL to green supply chain management. DEMATEL
for the type-2 fuzzy set has been presented by Hosseini and Tarokh [36]. Abdullah and Zulkifli [37]
further extended DEMATEL to develop interval type-2 fuzzy DEMATEL, in which fuzzy AHPand
interval type-2 fuzzy DEMATEL have been integrated. DEMATEL has been applied in supply chain
management, hospital service, emergency management, investment portfolio projects, etc. DEMATEL
has been integrated with other decision making methods to solve decision problems, including the ANP,
AHP, TOPSIS, VIKOR, grey analysis, ELECTRE, etc. Though several methods based on DEMATEL
have been developed, the study of DEMATEL in the multi-valued interval neutrosophic environment
has yet to be found. How to determine attribute weights is very important in the decision making
process since reasonable weights can ensure scientific and reasonable decision results. DEMATEL can
be used to analyze the complex relationship among attributes and their model dependencies. In this
paper, the DEMATEL method has been used to determine attribute weights in the multi-valued interval
neutrosophic environment. The TOPSIS method was developed by Hwang and Yong [38], which is
based on the idea that the optimal alternative should be the one that is closest to the positive ideal
solution and farthest from the negative ideal solution at the same time. TOPSIS has been successfully
applied in a wide variety of decision problems due to its comprehensibility and simplicity [39–42].
In TOPSIS, how to determine reasonable attribute weights is very important, which could affect
whether the decision results are reasonable and efficient. The DEMATEL method can model the
relations among criteria by considering the causes and effects of criteria. Thus, more effective attribute
weights can be obtained by using the DEMATEL method compared to the existing attribute methods,
such as subjective weights or equal weights. In this paper, we integrate the DEMATEL method with the
TOPSIS method for multi-valued interval neutrosophic information. The evaluation values are in the



Symmetry 2018, 10, 115 3 of 16

form of multi-valued interval neutrosophic values, which can more accurately model the uncertainty,
hesitation and fuzziness that exist in the decision making process. The DEMATEL method has been
used to determine attribute weights, which can model the dependency among attributes. We define
the multi-valued interval neutrosophic fuzzy normalized Euclidean distance and multi-valued interval
neutrosophic fuzzy normalized Hamming distance, which can be easily used to measure the similarity
of alternatives and ideal alternatives. Based on the distance measures, the TOPSIS method has been
used to rank alternatives, which can reduce the heavy computational burden.

In order to do so, the rest of the paper is organized as follows. In Section 2, some concepts
on multi-valued interval neutrosophic sets are reviewed. Some distance measures for multi-valued
interval neutrosophic sets are developed. In Section 3, a new multiple attribute decision making
method based on DEMATEL and TOPSIS is proposed for multi-valued interval neutrosophic fuzzy
information. In Section 4, a numerical example is presented to illustrate the feasibility and practical
advantages of the new algorithm. Some conclusions are given in the last section.

2. Preliminaries

Definition 1. ([1]) Let X be a universe of discourse, with a generic element in X denoted by x. A neutrosophic
set A in X is:

A = {< x, TA(x), IA(x), FA(x) >| x ∈ X}, (1)

where TA is the truth-membership function, IA is the indeterminacy-membership function and FA is
the real falsity-membership function. TA(x), IA(x) and FA(x) are real standard or nonstandard subsets
of ]0−, 1+[. There is no restriction on the sum of TA(x), IA(x) and FA(x), and we can obtain
0− ≤ TA(x) + IA(x) + FA(x) ≤ 3+.

Definition 2. ([6]) Let X be a universe of discourse, with a generic element in X denoted by x. An interval
neutrosophic set (INS) Â in X is:

A = {< x, T̂Â(x), ÎÂ(x), F̂Â(x) >| x ∈ X}, (2)

where T̂Â is the truth-membership function, ÎA is the indeterminacy-membership function and F̂A is
the real falsity-membership function. For each point x in X, we have T̂Â(x) = [TL

Â
(x), TU

Â
(x)] ⊆

[0, 1], ÎÂ(x) = [IL
Â
(x), IU

Â
(x)] ⊆ [0, 1], F̂A(x) = [FL

Â
(x), FU

Â
(x)] ⊆ [0, 1] and sup(TU

Â
(x)) + sup(IU

Â
(x)) +

sup(FU
Â
(x)) ≤ 3.

Definition 3. ([27]) Let X be a non-empty finite set. A multi-valued interval neutrosophic fuzzy set (MVINFS)
on X is represented by:

Ã = {< x, T̃Ã(x), ĨÃ(x), F̃Ã(x) >| x ∈ X}, (3)

where T̃Ã(x) = {ξ̃ | ξ̃ ∈ T̃Ã(x)}, ĨÃ(x) = {η̃ | η̃ ∈ ĨÃ(x)} and F̃Ã(x) = {γ̃ | γ̃ ∈ F̃Ã(x)}
are sets of interval values, which are the possible truth membership degrees, indeterminacy-membership
degrees and falsity-membership degrees of element x to set Ã satisfying ξ̃ = [ξL, ξU ] ⊆
[0, 1], η̃ = [ηL, ηU ] ⊆ [0, 1], γ̃ = [γL, γU ] ⊆ [0, 1] and 0 ≤ sup ξ̃+ + sup η̃+ + sup γ̃+ ≤ 3,
where sup ξ̃+ =

⋃
ξ̃∈T̃Ã(x) max{ξ̃}, sup η̃+ =

⋃
η̃∈ ĨÃ(x) max{η̃}, sup γ̃+ =

⋃
γ̃∈F̃Ã(x) max{γ̃}.

Let ã =< T̃Ã(x), ĨÃ(x), F̃Ã(x) > be a multi-valued interval neutrosophic fuzzy element (MVINFE).

Let ã1 =< T̃1, Ĩ1, F̃1 >, ã2 =< T̃2, Ĩ2, F̃2 > be two MVINFEs, k > 0, [ξL
1 , ξU

1 ] ∈ T̃1, [ηL
1 , ηU

1 ] ∈ Ĩ1,
[γL

1 , γU
1 ] ∈ F̃1, [ξL

2 , ξU
2 ] ∈ T̃2, [ηL

2 , ηU
2 ] ∈ Ĩ2, [γL

2 , γU
2 ] ∈ F̃2. The operational laws of MVINFEs can be

defined as follows:

(1) ã1 ⊕ ã2 =< T̃1 ⊕ T̃2, Ĩ1 ⊗ Ĩ2, F̃1 ⊗ F̃2 >=< ∪{[ξL
1 + ξL

2 − ξL
1 ξL

2 , ξU
1 + ξU

2 − ξU
1 ξU

2 ]},
∪{[ηL

1 ηL
2 , ηU

1 ηU
2 ]}, ∪{[γL

1 γL
2 , γU

1 γU
2 ]} >,
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(2) ã1⊗ ã2 =< T̃1⊗ T̃2, Ĩ1⊕ Ĩ2, F̃1⊕ F̃2 >=< ∪{[ξL
1 ξL

2 , ξU
1 ξU

2 ]}, ∪ {[ηL
1 + ηL

2 − ηL
1 ηL

2 , ηU
1 + ηU

2 −
ηU

1 ηU
2 ]}, ∪ {[γL

1 + γL
2 − γL

1 γL
2 , γU

1 + γU
2 − γU

1 γU
2 ]} >,

(3) kã1 =< ∪{[1− (1− ξL
1 )

k, 1− (1− ξU
1 )

k]},∪{[(ηL
1 )

k, (ηU
1 )k]},∪{[(γL

1 )
k, (γU

1 )
k]} >,

(4) (ã1)
k =< ∪{[(ξL

1 )
k, (ξU

1 )
k]},∪{[1 − (1 − ηL

1 )
k, 1 − (1 − ηU

1 )k]},∪{[1 − (1 − γL
1 )

k, 1 − (1 −
γU

1 )
k]} >.

Definition 4. ([11]) Let ãj =< T̃j, Ĩj, F̃j > be MVINFEs and w = (w1, w2, . . . , wn) be the weight vector with
wi ≥ 0, ∑n

j=1 wj = 1. The multi-valued interval neutrosophic fuzzy weighted average (MVINFWA) operator
can be defined as:

MVINFWAw(ã1, ã2, . . . , ãn) = w1 ã1 + w2 ã2 + . . . + wn ãn. (4)

By using the operational laws of MVINFEs, we can obtain:

MVINFWAw(ã1, ã2, . . . , ãn)

= < {[1−∏n
j=1

⋃
ξ̃ j∈T̃j

(1− ξL
j )

wj , 1−∏n
j=1

⋃
ξ̃ j∈T̃j

(1− ξU
j )

wj ]}, {[∏n
j=1

⋃
η̃j∈ Ĩj

(ηL
j )

wj ,

∏n
j=1

⋃
η̃j∈ Ĩj

(ηU
j )

wj ], {[∏n
j=1

⋃
γ̃j∈F̃j

(γL
j )

wj , ∏n
j=1

⋃
γ̃j∈F̃j

(γU
j )

wj ]} >,

where ξ̃ j = [ξL
j , ξU

j ] ∈ T̃j, η̃j = [ηL
j , ηU

j ] ∈ Ĩj, γ̃j = [γL
j , γU

j ] ∈ F̃j.

Definition 5. ([27]) For an MVINFE ã =< T̃Ã(x), ĨÃ(x), F̃Ã(x) >,

s(ã) =
1
3

( 1
2l

l

∑
i=1

(ξL
i + ξU

i ) +
1

2m

m

∑
j=1

(2− ηL
j − ηU

j ) +
1

2n

n

∑
k=1

(2− γL
k − γU

k )
)

(5)

is called the score function of ã, where l, m, n are the numbers of the interval values in T̃Ã(x), ĨÃ(x), F̃Ã(x),
ξ̃i = [ξL

i , ξU
i ] ∈ T̃Ã(x), η̃i = [ηL

i , ηU
i ] ∈ IA(x), γ̃k = [γL

k , γU
k ] ∈ F̃Ã(x), respectively.

Different truth-membership functions, indeterminacy-membership functions and real falsity-
membership functions may have different numbers of interval values. In order to define
distance more clearly, MVINFEs should be extended until all truth-membership functions,
indeterminacy-membership functions and real falsity-membership functions have the same number
of interval values according to the risk attitude of decision makers. If the decision makers
are risk-seeking, the largest truth-membership, the smallest indeterminacy-membership and the
smallest falsity-membership should be added. If decision makers are risk-averse, the smallest
truth-membership, the largest indeterminacy-membership and the largest falsity-membership
should be added. If decision makers are risk-neutral, the average truth-membership, the average
indeterminacy-membership and the average indeterminacy-membership should be added.

The following equation can be used to rank interval numbers.

Definition 6. ([43]) Let a = [aL, aU ] = {x | aL ≤ x ≤ aU}. Then, a is an interval number. Let a =

[aL, aU ], b = [bL, bU ] be two interval number and la = aU − aL, lb = bU − bL. Then, the possibility of a > b
can be defined as:

p(a > b) = max
{

1−max
{ bU − aL

la + lb
, 0
}

, 0
}

. (6)

We generalize the multi-valued neutrosophic fuzzy distance measures to accommodate
multi-valued interval neutrosophic fuzzy values and develop the following distance measures.

Definition 7. Let ã1 =< T̃1, Ĩ1, F̃1 > and ã2 =< T̃2, Ĩ2, F̃2 > be two MVINFEs, then the normalized
Euclidean distance between ã and b̃ is defined as follows:
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d(ã, b̃) =
(

1
3

(
1
2l ∑l

i=1
(
(ξL

1σ(i) − ξL
2σ(i))

2 + (ξU
1σ(i) − ξU

2σ(i))
2)+ 1

2m ∑m
j=1
(
(ηL

1σ(j) − ηL
2σ(j))

2+

(ηU
1σ(j) − ηU

2σ(j))
2)+ 1

2n ∑n
k=1

(
(γL

1σ(k) − γL
2σ(k))

2 + (γU
1σ(k) − γU

2σ(k))
2)))1/2 (7)

The normalized Hamming distance is defined as:

d(ã, b̃) = 1
3

(
1
2l ∑l

i=1
(
| ξL

1σ(i) − ξL
2σ(i) | + | ξU

1σ(i) − ξU
2σ(i) |

)
+ 1

2m ∑m
j=1
(
| ηL

1σ(j) − ηL
2σ(j) | +

| ηU
1σ(j) − ηU

2σ(j) |
)
+ 1

2n ∑n
k=1

(
| γL

1σ(k) − γL
2σ(k) | + | γU

1σ(k) − γU
2σ(k) |

)) (8)

where [ξL
1σ(k), ξU

1σ(k)] ∈ T̃1, [ξL
2σ(k), ξU

2σ(k)] ∈ T̃2, [ηL
1σ(l), ηU

1σ(l)] ∈ Ĩ1, [ηL
2σ(l), ηU

2σ(l)] ∈ Ĩ2, [γL
1σ(l), γU

1σ(t)]

∈ F̃1, [γL
2σ(t), γU

2σ(t)] ∈ F̃2, l, m, n are the numbers of interval values in T̃Ã(x), ĨÃ(x), F̃Ã(x), respectively.
The distance measures can be proven to satisfy the following properties easily.

(1) d(ã, b̃) ≥ 0,
(2) d(ã, b̃) = 0, if and only if ã = b̃,
(3) d(ã, b̃) = d(b̃, ã).

3. The Multi-Valued Interval Neutrosophic Fuzzy Decision Making Method Based on DEMATEL
and TOPSIS

In this section, we develop a new multiple attribute decision making method based on DEMATEL
and TOPSIS for multi-valued interval neutrosophic fuzzy information. In this method, DEMATEL has
been used to determine attribute weights, and TOPSIS has been used to rank alternatives.

The concrete steps of the DEMATEL are as follows.
Step 1. Generate the direct-relation matrix. Decision makers are asked to assess the effect among

factor pairs. The direct-relation matrix is established as A = (aij)n×n, where A is an n× n non-negative
matrix, aij indicates the direct effect of factor i on factor j and the diagonal elements aii = 0 for
i = 1, 2, . . . , n.

Step 2. Normalize the direct-relation matrix by D = A× S, where S = 1
max1≤i≤n ∑n

j=1 aij
and obtain

the normalized initial direct-relation matrix as D = (dij)n×n.
Step 3. Set up the total-relation matrix by the following equation:

T = (tij)n×n = D(I − D)−1, (9)

where I is the n× n identity matrix and tij is the indirect effect of criterion i on criterion j.
Step 4. Sum each row and each column of matrix T by Equations (10) and (11). The sum of row i

is denoted by ri and:

ri =
n

∑
j=1

tij, i = 1, 2, . . . , n, (10)

where ri denotes the direct and indirect influence of criterion i on the other criteria and ri is called the
the degree of influential impact. The sum of column j is denoted by cj and:

cj =
n

∑
i=1

tij, j = 1, 2, . . . , n, (11)

where cj denotes the direct and indirect effect of criterion j with respect to the other criteria. ri + ci
shows all the effects of giving and receiving of criterion i. By using the ri + ci, the priority weight of
each criterion can be calculated as follows:

wi =
ri + ci

∑n
i=1(ri + ci)

, i = 1, 2, . . . , n. (12)

After obtaining the attribute weights, we can rank alternatives by using the TOPSIS method.
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Based on the above analysis, we present the new multiple attribute decision making method for
multi-valued interval neutrosophic fuzzy information based on DEMATEL and TOPSIS. For a multiple
attribute decision making problem, {A1, A2, . . . , Am} is the set of alternatives and {C1, C2, . . . , Cn}
is the set of attributes. For a complicated decision problem, decision makers would express some
extent of hesitation in evaluating alternatives and attributes. In order to model evaluation values
more accurately, we use interval neutrosophic fuzzy values, in which the truth-membership function,
the indeterminacy-membership function and the real falsity-membership function are all interval
values. Many complex decision problems need experts from different fields. Since each expert has
his/her own field of expertise, they may be familiar with some attributes and not with other attributes.
In order to obtain more accurate evaluation values, they can refuse to give evaluation values or give
several evaluation values. Then, we can obtain multi-valued interval neutrosophic fuzzy information.
In this case, the new decision making method based on DEMATEL and TOPSIS is developed in the
following steps.

Algorithm

Step 1. Decision makers provide interval neutrosophic fuzzy evaluation values in the pairwise
comparison of attributes. Then, the multi-valued interval neutrosophic fuzzy decision matrix is
formed as M̃ = (m̃ij)n×n, m̃ij =< T̃m̃ij , Ĩm̃ij , F̃m̃ij >. T̃m̃ij , Ĩm̃ij , F̃m̃ij are the sets of the truth-membership
function, the indeterminacy-membership function and the falsity-membership function, respectively.
[µL

ijk, µU
ijk] ∈ T̃m̃ij [ν

L
ijl , νU

ijl ] ∈ Ĩm̃ij , [κ
L
ijs, κU

ijs] ∈ F̃m̃ij .

M̃ =


0 m̃12 . . . m̃1n
m̃21 0 . . . m̃2n
...

...
. . .

...
m̃n1 m̃n2 . . . 0

 .

Step 2. Normalize the initial direct-relation decision matrix. Calculate the average values
of the truth-membership, the indeterminacy-membership and the real falsity-membership in each
multi-valued interval neutrosophic fuzzy value and transform the multi-valued interval neutrosophic
fuzzy decision matrix into single-valued interval neutrosophic fuzzy decision matrix M̃′ = (m̃′ij)n×n

by calculating the average values, where m̃′ij =< [µ′Lij, µ′Uij ], [ν
′L
ij, ν′Uij ], [κ′

L
ij, κ′Uij ] >, µ′Lij =

1
Kij

∑
Kij
k=1 µL

ijk,

µ′Uij =
1

Kij
∑

Kij
k=1 µU

ijk, ν′Lij =
1

Lij
∑

Lij
l=1 νL

ijl , ν′Uij =
1

Lij
∑

Lij
l=1 νU

ijl , κ′Lij =
1

Sij
∑

Sij
s=1 κL

ijs, κ′Uij =
1

Sij
∑

Sij
s=1 κU

ijs.

M̃′ =


0 m̃′12 . . . m̃′1n
m̃′21 0 . . . m̃′2n
...

...
. . .

...
m̃′n1 m̃′n2 . . . 0

 .

Normalize decision matrix M̃′ into M̃′′ = (m̃′′ij)n×n, m̃′′ij =< [µ′′Lij, µ′′Uij ], [ν
′′L

ij, ν′′Uij ], [κ′′
L
ij, κ′′Uij ] >,

µ′′Lij =
µ′Lij
µ , µ′′Uij =

µ′Uij
µ , µ = max{max

1≤i≤n
∑n

j=1 µ′Uij , max
1≤j≤n

∑n
i=1 µ′Uij }, ν′′Lij =

ν′Lij
ν , ν′′Uij =

ν′Uij
ν , ν =

max{max
1≤i≤n

∑n
j=1 ν′Uij , max

1≤j≤n
∑n

i=1 ν′Uij }, κ′′Lij =
κ′Lij
κ , κ′′Uij =

κ′Uij
κ , κ = max{max

1≤i≤n
∑n

j=1 κ′Uij , max
1≤j≤n

∑n
i=1 κ′Uij }.

Then, we can obtain:
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M̃′′ =


0 m̃′′12 . . . m̃′′1n
m̃′′21 0 . . . m̃′′2n
...

...
. . .

...
m̃′′n1 m̃′′n2 . . . 0

 ,

M̃′′
µ′′Uij

=


0 µ′′U12 . . . µ′′U1n
µ′′U21 0 . . . µ′′U2n
...

...
. . .

...
µ′′Un1 µ′′Un2 . . . 0

 ,

M̃′′
ν′′Lij

=


0 ν′′L12 . . . ν′′L1n

ν′′L21 0 . . . ν′′L2n
...

...
. . .

...
ν′′Ln1 ν′′Ln2 . . . 0

 , . . . ,

M̃′′
κ′′Uij

=


0 κ′′U12 . . . κ′′U1n

κ′′U21 0 . . . κ′′U2n
...

...
. . .

...
κ′′Un1 κ′′Un2 . . . 0

 .

Step 3. Calculate the total-relation matrix, which can be calculated by using the above six crisp
matrices and can be represented as follows.

M̃′′′ =


0 m̃′′′12 . . . m̃′′′1n
m̃′′′21 0 . . . m̃′′′2n
...

...
. . .

...
m̃′′′n1 m̃′′′n2 . . . 0

 ,

where m̃′′′ij =< [µ′′′Lij, µ′′′Uij ], [ν
′′′L

ij, ν′′′Uij ], κ′′′Lij, κ′′′Uij >. The elements in total-relation matrix can be

calculated by the following equation [µ′′′Lij] = M̃′′
µ′′Lij
× (I − M̃′′

µ′′Lij
)−1, [µ′′′Uij ] = M̃′′

µ′′Uij
× (I − M̃′′

µ′′Uij
)−1,

[ν′′′Lij] = M̃′′
ν′′Lij
× (I − M̃′′

ν′′Lij
)−1,. . . , [κ′′′Uij ] = M̃′′

κ′′Uij
× (I − M̃′′

κ′′Uij
)−1. Since we calculate the inverse

matrices of matrices I − M̃′′
µ′′Lij

, . . . , I − M̃′′
κ′′Uij

in calculating the total-relation matrix, the elements in

the total-relation matrix are generalized interval neutrosophic fuzzy values.
Step 4. Determine the prominence and influence of each attribute. Calculate the sum r̂i of rows

and sum ĉi of columns by the following equations.

r̂i =
n

∑
j=1

m′′′ij (i = 1, 2, . . . , n), (13)

ĉj =
n

∑
i=1

m′′′ij (j = 1, 2, . . . , n). (14)

Step 5. Calculate the weights of attributes by the following equation:

wi =

√
(S(r̂i + ĉi))2 + (S(r̂i − ĉi))2

∑n
i=1

√
(S(r̂i + ĉi))2 + (S(r̂i − ĉi))2

, i = 1, 2, . . . , n. (15)

Step 6. Decision makers evaluate alternatives with respect to attributes with interval neutrosophic
fuzzy values, and then multi-valued interval neutrosophic fuzzy decision matrix can be obtained as
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D̃ = (ãij)m×n, where ãij =< T̃ãij , Ĩãij , F̃ãij >. Extend the decision matrix according to the risk attitude of
decision makers until all the multi-valued interval neutrosophic fuzzy values have the same number
of truth-memberships, indeterminacy-memberships and real falsity-memberships. Then, the extended
decision matrix can be obtained as D̃′ = (ã′ij)m×n, ã′ij =< T̃′ã′ij

, Ĩ′ã′ij
, F̃′ã′ij

>.

Step 7. Calculate the weighted decision matrix D̃′′ = (ã′′ij)m×n by using the attribute weights
obtained from Equation (11), where ã′′ij = wj ã′ij.

Step 8. Determine the multi-valued interval neutrosophic fuzzy positive ideal solution
(MVINFPIS), denoted as Ĩ+ and the multi-valued interval neutrosophic fuzzy negative ideal solution
(MVINFNIS), denoted as Ĩ−, as follows:

Ĩ+ = (ã+1 , ã+2 , . . . , ã+n ) = (max
i
{ã′′i1}, max

i
{ã′′i2}, . . . , max

i
{ã′′in}), (16)

Ĩ− = (ã−1 , ã−2 , . . . , ã−n ) = (min
i
{ã′′i1}, min

i
{ã′′i2}, . . . , min

i
{ã′′in}). (17)

Step 9. Calculate the distances of each alternative’s weighted evaluation values to the MVINFPIS
and MVINFNIS:

d+i =
n

∑
j=1

d(ã′′ij, ã+j ), i = 1, 2, . . . m, (18)

d−i =
n

∑
j=1

d(ã′′ij, ã−j ), i = 1, 2, . . . , m. (19)

Step 10. Determine the closeness coefficients CCi of alternatives and rank alternatives according
to the closeness coefficients.

CCi =
d−i

d−i + d+i
, i = 1, 2, . . . , m. (20)

The new algorithm has the following advantages. First, evaluation values are in the form of
multi-valued interval neutrosophic fuzzy values, in which the hesitation of decision makers and fuzzy
nature of human thinking can be reflected accurately. Second, the DEMATEL method has been used to
determine attribute weights, which can overcome the existing shortcomings of attribute-determining
methods, especially for large-scale, complex decision problems such as supply chain management,
strategic management, etc. Third, the TOPSIS method has been used to rank alternatives to avoid the
complexity of computation and affect the decision makers’ subjectiveness.

4. Numerical Example

In this section, we apply the new algorithm to the problem of truck selection (adapted from [44])
in the logistics industry to illustrate its feasibility and effectiveness. The logistics industry has
witnessed a high speed growth with the development of e-commerce, mobile e-commence, etc.
Land transportation plays an important role in logistics, which is generally operated in complex
environments. Truck selection is important to logistics companies. Suppose that a logistics company
wants to purchase a number of trucks. Experts from different departments are invited to form a
committee to evaluate and select trucks. The following four attributes are considered: C1-security and
technology, C2-economy, C3-comfort and aesthetics, C4-maintenance. After pre-evaluation, there are
still five types of trucks for further selection Ai (i = 1, 2, . . . , 5). The new method has been used to
rank alternatives, concretely.

Step 1. Decision makers compare attributes pairwise by using multi-valued interval neutrosophic
fuzzy values, and decision matrix M̃ = (m̃ij)4×4 is formed as in Table 1.

Step 2. Transform decision matrix M̃ into single-valued interval neutrosophic fuzzy
decision matrix M̃′ as in Table 2 by calculating the average values of the truth-membership,
the indeterminacy-membership and the falsity-membership. Normalize decision matrix M̃′ to obtain
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decision matrix M̃′′, which can be represented as matrices M̃′′
µ′′Lij

, M̃′′
µ′′Uij

, M̃′′
ν′′Lij

, M̃′′
ν′′Uij

, M̃′′
κ′′Lij

, M̃′′
κ′′Uij

.

For example, since µ = max{max
1≤i≤4

∑4
j=1 µ′Uij , max

1≤j≤4
∑4

i=1 µ′Uij } = 2 and µ′′Lij =
µ′Lij
µ , then decision matrix

M̃′′
µ′′Lij

can be obtained.

M̃′′
µ′′Lij

=


0 0.2262 0.1259 0.3
0.3 0 0.2 0.35
0.2764 0.25 0 0.1760
0.1760 0.15 0.3 0

 ,

M̃′′
µ′′Uij

=


0 0.2764 0.1760 0.3500
0.3500 0 0.2500 0.4000
0.3118 0.3000 0 0.2262
0.2262 0.2000 0.3500 0

 , . . . ,

M̃′′
κ′′Uij

=


0 0.2261 0.3252 0.2941
0.2941 0 0.3529 0.3529
0.2353 0.2353 0 0.2941
0.3529 0.2661 0.2353 0

 ,

Table 1. Decision matrix M̃.

C1 C2

C1 0 〈{[0.5, 0.6], [0.4, 0.5]}, {[0.2, 0.3]}, {[0.3, 0.4], [0.4, 0.5]}〉
C2 〈{[0.6, 0.7]}, {[0.4, 0.5]}, {[0.4, 0.5]}〉 0
C3 〈{[0.5, 0.6], [0.6, 0.7]}, {[0.5, 0.6]}, {[0.3, 0.4]}〉 〈{[0.5, 0.6]}, {[0.2, 0.3]}, {[0.3, 0.4]}〉
C4 〈{[0.3, 0.4], [0.4, 0.5]}, {[0.6, 0.7]}, {[0.5, 0.6]}〉 〈{[0.3, 0.4]}, {[0.3, 0.4]}, {[0.3, 0.4], [0.4, 0.5]}〉

C3 C4

C1 〈{[0.2, 0.3], [0.3, 0.4]}, {[0.1, 0.2]}, {[0.4, 0.5], [0.5, 0.6]}〉 〈{[0.6, 0.7]}, {[0.3, 0.4]}, {[0.4, 0.5]}〉
C2 〈{[0.4, 0.5]}, {[0.5, 0.6]}, {[0.3, 0.4], [0.4, 0.5]}〉 〈{[0.7, 0.8]}, {[0.5, 0.6]}, {[0.6, 0.7]}〉
C3 0 〈{[0.3, 0.4], [0.4, 0.5]}, {[0.5, 0.6]}, {[0.4, 0.5]}〉
C4 〈{[0.6, 0.7]}, {[0.4, 0.5], [0.5, 0.6]}, {[0.3, 0.4]}〉 0

Table 2. Decision matrix M̃′.

C1 C2

C1 0 〈{[0.4523, 0.5528]}, {[0.2000, 0.3000]}, {[0.3519, 0.4523]}〉
C2 〈{[0.6000, 0.7000]}, {[0.4000, 0.5000]}, {[0.4000, 0.5000]}〉 0
C3 〈{[0.5528, 0.6536]}, {[0.5000, 0.6000]}, {[0.3000, 0.4000]}〉 〈{[0.5000, 0.6000]}, {[0.2000, 0.3000]}, {[0.3000, 0.4000]}〉
C4 〈{[0.3519, 0.4523]}, {[0.6000, 0.7000]}, {[0.5000, 0.6000]}〉 〈{[0.3000, 0.4000]}, {[0.3000, 0.4000]}, {[0.3519, 0.4523]}〉

C3 C4

C1 〈{[0.2517, 0.3519]}, {[0.1000, 0.2000]}, {[0.4523, 0.5528]}〉 〈{[0.6000, 0.7000]}, {[0.3000, 0.4000]}, {[0.4000, 0.5000]}〉
C2 〈{[0.4000, 0.5000]}, {[0.5000, 0.6000]}, {[0.3519, 0.4523]}〉 〈{[0.7000, 0.8000]}, {[0.5000, 0.6000]}, {[0.6000, 0.7000]}〉
C3 0 〈{[0.3519, 0.4523]}, {[0.5000, 0.6000]}, {[0.4000, 0.5000]}〉
C4 〈{[0.6000, 0.7000]}, {[0.4523, 0.5528]}, {[0.3000, 0.4000]}〉 0

Step 3. Calculate the total-relation matrix M̃′′′ = (m̃′′′ij ) by using decision matrices

M̃′′
µ′′Lij

, . . . , M̃′′
κ′′Uij

, where m̃′′′ij =< [µ′′′Lij, µ′′′Uij ], [ν
′′′L

ij, ν′′′Uij ], [κ′′′
L
ij, κ′′′Uij ] > and [µ′′′Lij] = M̃′′

µ′′Lij
× (I −

M̃′′
µ′′Lij

)−1,. . . , [κ′′′Uij ] = M̃′′
κ′′Uij
× (I − M̃′′

κ′′Uij
)−1. The results are shown in Table 3.

Step 4. Calculate the average value of each row to obtain r̂i and the average of each column to
obtain ĉi by using Equations (13) and (14). The results are as follows:

r̂1 =< {[0.5578, 1.3476]}, {[0.2354, 0.6184]}, {[0.5763, 1.7225]} >, r̂2 =< {[0.6841, 1.5973]},
{[0.4862, 1.0403 ]}, {[0.6525, 1.8953]} >, r̂3 =< {[0.5935, 1.4968]}, {[0.4113, 0.9152 ]}, {[0.4961,
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1.5389]} >, r̂4 =< {[0.5345, 1.3104]}, {[0.4507, 0.9823]}, {[0.5616, 1.6879]} >, ĉ1 =< {[0.6164,
1.4502]}, {[0.5148, 1.0887]}, {[0.5794, 1.7281]} >, ĉ2 =< {[0.5326, 1.3083]}, {[0.6164, 1.4502]},
{[0.4995, 1.5472]} >, ĉ3 =< {[0.5476, 1.4191]}, {[0.6164, 1.4502]}, {[0.5936, 1.7616]} >, ĉ4 =<

{[0.6733, 1.5747]}, {[0.4408, 0.9649]}, {[0.6141, 1.8076]} >.

Table 3. Decision matrix M̃′′′.

C1

C1 < {[0.4330, 1.2162]}, {[0.2093, 0.6268]}, {[0.4389, 1.5669]} >
C2 < {[0.7688, 1.7019]}, {[0.6125, 1.2709]}, {[0.6885, 1.9523]} >
C3 < {[0.6894, 1.5117]}, {[0.5852, 1.1798]}, {[0.5306, 1.5928]} >
C4 < {[0.5743, 1.3708]}, {[0.6522, 1.2774]}, {[0.6594, 1.8002]} >

C2

C1 < {[0.5578, 1.3127]}, {[0.2100, 0.5311]}, {[0.5502, 0.6134]} >
C2 < {[0.4641, 1.3004]}, {[0.2238, 0.6509]}, {[0.4290, 1.5442]} >
C3 < {[0.6083, 1.3799]}, {[0.2907, 0.7167]}, {[0.4768, 1.4449]} >
C4 < {[0.5003, 1.2400]}, {[0.3471, 0.7935]}, {[0.5418, 1.5864]} >

C3

C1 < {[0.5063, 1.2744]}, {[0.2052, 0.5828]}, {[0.6604, 1.8433]} >
C2 < {[0.6467, 1.5260]}, {[0.5215, 1.0551]}, {[0.7369, 2.0188]} >
C3 < {[0.4087, 1.5260]}, {[0.2450, 0.6976]}, {[0.3858, 1.4259]} >
C4 < {[0.6087, 1.3496]}, {[0.4682, 0.9824]}, {[0.5914, 1.7585]} >

C4

C1 < {[0.7142, 1.5870], {[0.3169, 0.7327]}, {[0.6558, 1.8664]} >
C2 < {[0.8569, 1.8610], {[0.5870, 1.1843]}, {[0.7557, 2.0658]} >
C3 < {[0.6676, 1.5697], {[0.5242, 1.0668]}, {[0.5912, 1.6918]} >
C4 < {[0.4545, 1.2810], {[0.3352, 0.8757]}, {[0.4536, 1.6064]} >

Step 5. Calculate the weights of attributes by using Equation (15) to obtain
w1 = 0.2160, w2 = 0.2808, w3 = 0.2682, w4 = 0.2350.
Step 6. Decision makers evaluate alternatives with respect to attributes by using the multi-valued

interval neutrosophic fuzzy values. Then, decision matrix D̃ = (ãij)5×4 is formed as in Table 4.

Table 4. Decision matrix D̃.

Alternative C1 C2

A1 < {[0.4, 0.5], [0.5, 0.6]}, {[0.3, 0.4]}, {[0.3, 0.4], < {[0.2, 0.3], [0.3, 0.4]}, {[0.1, 0.2]}, {[0.4, 0.5],
[0.4, 0.5]} > [0.5, 0.6]} >

A2 < {[0.6, 0.7]}, {[0.1, 0.2]}, {[0.2, 0.3]} > < {[0.6, 0.7]}, {[0.1, 0.2]}, {[0.1, 0.2]} >
A3 < {[0.5, 0.6]}, {[0.2, 0.3]}, {[0.3, 0.4]} > < {[0.5, 0.6]}, {[0.2, 0.3]}, {[0.2, 0.3]} >
A4 < {[0.6, 0.7], [0.7, 0.8]}, {[0.1, 0.2]}, {[0.2, 0.3]} > < {[0.3, 0.4]}, {[0.3, 0.4]}, {[0.1, 0.2], [0.3, 0.4]} >
A5 < {[0.8, 0.9]}, {[0.3, 0.4]}, {[0.1, 0.2]} > < {[0.4, 0.5]}, {[0.4, 0.5]}, {[0.5, 0.6]} >

C3 C4

A1 < {[0.4, 0.5], [0.5, 0.6]}, {[0.1, 0.2]}, {[0.3, 0.4]} > < {[0.7, 0.8], [0.8, 0.9]}, {[0.1, 0.2]}, {[0.2, 0.3]} >
A2 < {[0.3, 0.4]}, {[0.1, 0.2]}, {[0.1, 0.2], [0.2, 0.3]} > < {[0.3, 0.4]}, {[0.3, 0.4], [0.4, 0.5]}, {[0.4, 0.5],

[0.5, 0.6]} >
A3 < {[0.3, 0.4], [0.5, 0.7]}, {[0.2, 0.3]}, {[0.2, 0.3]} > < {[0.8, 0.9]}, {[0.5, 0.6]}, {[0.3, 0.4]} >
A4 < {[0.7, 0.8]}, {[0.1, 0.2]}, {[0.1, 0.2]} > < {[0.3, 0.5]}, {[0.2, 0.3], [0.3, 0.5]}, {[0.5, 0.6]} >
A5 < {[0.2, 0.3]}, {[0.4, 0.5]}, {[0.3, 0.4]} > < {[0.4, 0.5]}, {[0.1, 0.2], [0.2, 0.3]}, {[0.2, 0.3]} >

Step 7. Extend the decision matrix according to the risk attitude of decision makers. Assume that
decision makers are risk-averse, then add the smallest interval truth-membership, the largest interval
indeterminacy-membership and the largest real interval falsity-membership. The extended decision
matrix D̃′ = (ã′ij)5×4 is omitted due to space limitations.
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Step 8. Calculate the extended weighted decision matrix D̃′′ = (ã′′ij)5×4, ã′′ij = wj ã′ij. The results
are shown in Table 5.

Table 5. Extended weighted decision matrix D̃′′.

Alternative C1

A1 < {[0.1045, 0.1391], [0.1391, 0.1796]}, {[0.6081, 0.7064], [0.8609, 0.8955]}, {[0.7064, 0.7710], [0.7710, 0.8204]} >
A2 < {[0.0471, 0.0741], [0.1796, 0.2290]}, {[0.6081, 0.7064], [0.8609, 0.8955]}, {[0.7064, 0.7710], [0.8609, 0.8955]} >
A3 < {[0.0471, 0.0741], [0.1391, 0.1796]}, {[0.7064, 0.7710], [0.8609, 0.8955]}, {[0.7710, 0.8204], [0.8609, 0.8955]} >
A4 < {[0.1796, 0.2290], [0.2290, 0.2936]}, {[0.7064, 0.7710], [0.8609, 0.8955]}, {[0.7064, 0.7710], [0.8609, 0.8955]} >
A5 < {[0.0471, 0.0741], [0.2936, 0.3919]}, {[0.7710, 0.8204], [0.8609, 0.8955]}, {[0.6081, 0.7064], [0.8609, 0.8955]} >

C2

A1 < {[0.0607, 0.0953], [0.0953, 0.1336]}, {[0.7131, 0.7731], [0.8231, 0.8664]}, {[0.7731, 0.8231], [0.8231, 0.8664]} >
A2 < {[0.0607, 0.0953], [0.2269, 0.2869]}, {[0.5236, 0.6364], [0.8231, 0.8664]}, {[0.5238, 0.6364], [0.8231, 0.8664]} >
A3 < {[0.0607, 0.0953], [0.1769, 0.2269]}, {[0.6364, 0.7131], [0.8231, 0.8664]}, {[0.6364, 0.7131], [0.8231, 0.8664]} >
A4 < {[0.0607, 0.0953], [0.0953, 0.1336]}, {[0.7131, 0.7731], [0.8231, 0.8664]}, {[0.5238, 0.6364], [0.7131, 0.7731]} >
A5 < {[0.0607, 0.0953], [0.1336, 0.1769]}, {[0.7731, 0.8231], [0.8231, 0.8664]}, {[0.8231, 0.8664], [0.8231, 0.8664]} >

C3

A1 < {[0.1280, 0.1696], [0.1696, 0.2179]}, {[0.5393, 0.6494], [0.8304, 0.8720]}, {[0.7240, 0.7821], [0.8304, 0.8720]} >
A2 < {[0.0581, 0.0912], [0.0912, 0.1280]}, {[0.5393, 0.6494], [0.8304, 0.8720]}, {[0.5393, 0.6494], [0.8304, 0.8720]} >
A3 < {[0.0912, 0.1280], [0.1696, 0.2760]}, {[0.6494, 0.7240], [0.8304, 0.8720]}, {[0.6494, 0.7240], [0.8304, 0.8720]} >
A4 < {[0.0581, 0.0912], [0.2760, 0.3506]}, {[0.5393, 0.6494], [0.8304, 0.8720]}, {[0.5393, 0.6494], [0.8304, 0.8720]} >
A5 < {[0.0581, 0.0912], [0.0581, 0.0912]}, {[0.7821, 0.8304], [0.8304, 0.8720]}, {[0.7240, 0.7821], [0.8304, 0.8720]} >

C4

A1 < {[0.1937, 0.2464], [0.2464, 0.3149]}, {[0.5821, 0.6851], [0.8497, 0.8869]}, {[0.6851, 0.7536], [0.8497, 0.8869]} >
A2 < {[0.0511, 0.0804], [0.0804, 0.1131]}, {[0.7536, 0.8063], [0.8063, 0.8497]}, {[0.8063, 0.8497], [0.8497, 0.8869]} >
A3 < {[0.0511, 0.0804], [0.3149, 0.4179]}, {[0.8497, 0.8869], [0.8497, 0.8869]}, {[0.7536, 0.8063], [0.8497, 0.8869]} >
A4 < {[0.0511, 0.0804], [0.0804, 0.1503]}, {[0.6851, 0.7536], [0.7536, 0.8063]}, {[0.8497, 0.8869], [0.8497, 0.8869]} >
A5 < {[0.0511, 0.0804], [0.1131, 0.1503]}, {[0.5821, 0.6851], [0.6851, 0.7536]}, {[0.6851, 0.7536], [0.8497, 0.8869]} >

Step 9. MVINFPIS and MVINFNIS can be determined by using Equations (16) and (17):
MVINFPIS:

(
< {[0.1796, 0.2290], [0.2290, 0.2936]}, {[0.7064, 0.7710], [0.8609, 0.8955]}, {[0.7064,

0.7710], [0.8609, 0.8955]} > < {[0.0607, 0.0953], [0.2269, 0.2869]}, {[0.5236, 0.6364], [0.8231, 0.8664]},
{[0.5238, 0.6364], [0.8231, 0.8664]} >, < {[0.0581, 0.0912], [0.2760, 0.3506]}, {[0.5393, 0.6494], [0.8304,
0.8720]}, {[0.5393, 0.6494], [0.8304, 0.8720]} >, < {[0.1937, 0.2464], [0.2464, 0.3149]}, {[0.5821, 0.6851],

[0.8497, 0.8869]}, {[0.6851, 0.7536], [0.8497, 0.8869]} >
)

.

MVINFNIS:
(
< {[0.0471, 0.0741], [0.1391, 0.1796]}, {[0.7064, 0.7710], [0.8609, 0.8955]}, {[0.7710,

0.8204], [0.8609, 0.8955]} >, < {[0.0607, 0.0953], [0.1336, 0.1769]}, {[0.7731, 0.8231], [0.8231, 0.8664]},
{[0.8231, 0.8664], [0.8231, 0.8664]} >, < {[0.0581, 0.0912], [0.0581, 0.0912]}, {[0.7821, 0.8304], [0.8304,
0.8720]}, {[0.7240, 0.7821], [0.8304, 0.8720]} >, < {[0.0511, 0.0804], [0.0804, 0.1131]}, {[0.7536, 0.8063],

[0.8063, 0.8497]}, {[0.8063, 0.8497], [0.8497, 0.8869]} >
)

.
The distances of each alternative’s evaluation values to the MVINFPIS and MVINFNIS can be

calculated by using Equations (18) and (19) as
d+1 = 0.4046, d+2 = 0.4302, d+3 = 0.4625, d+4 = 0.3116, d+5 = 0.6796, d−1 = 0.4560,

d−2 = 0.4550, d−3 = 0.4143, d−4 = 0.5374, d−5 = 0.2640.
Step 10. The closeness coefficients can be calculated by using Equation (20) as
CC1 = 0.5298, CC2 = 0.5140, CC3 = 0.4725, CC4 = 0.6330, CC5 = 0.2798.
The alternatives can be ranked accordingly as A4 � A1 � A2 � A3 � A5, and the optimal

alternative is A4.
In order to illustrate the advantages of the new method, we compare it with some other

methods. If evaluation values are given in crisp numbers, the multi-valued interval neutrosophic
fuzzy decision matrix reduces to multi-valued neutrosophic fuzzy decision matrix M as in Table 6
(denoted as Method 1). Then, we transform the multi-valued neutrosophic fuzzy decision
matrix into the single-value neutrosophic fuzzy decision matrix by calculating the average values
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and normalizing. Calculate the total-relation matrix M′ = (m′ij)4×4 as in Table 7, where

m′ij =< {µ′ij}, {ν′ij}, {κ′ij} >, [µ′ij] = Mµij × (I − Mµij)
−1, [ν′ij] = Mνij × (I − Mνij)

−1, [κ′ij] =

Mκij × (I − Mκij)
−1. The elements in the total-relation matrix M′ are generalized neutrosophic

fuzzy values. The average value of each rank can be calculated as r′i , and the average value
of each column can be calculated as c′i. Concretely, r′1 =< {1.2342}, {0.8826}, {1.4407} >,
r′2 =< {1.0721}, {0.4676}, {1.0452} >, r′3 =< {1.0943}, {0.6177}, {1.1303} >, r′4 =< {0.7549},
{0.6298}, {0.6211} >, c′1 =< {0.6422}, {0.6897}, {0.6842} >, c′2 =< {0.5827}, {0.4344}, {0.5510} >,
c′3 =< {0.5916}, {0.5409}, {0.5829} >, c′4 =< {0.6791}, {0.6211}, {0.6528} >. Let wi =√

(S(r′i+c′i))
2+(S(r′i−c′i))

2

∑n
i=1

√
(S(r′i+c′i))

2+(S(r′i−c′i))
2 . Attribute weights can be calculated as w1 = 0.2815, w2 = 0.2124,

w3 = 0.2260, w4 = 0.2802. Decision makers evaluate alternatives with multi-valued neutrosophic
fuzzy values, and the decision matrix is formed as in Table 8. Assume decision makers are
risk-averse. Then, we extend the decision matrix by adding the smallest truth-membership, the
largest indeterminacy-membership and the largest real falsity-membership. Then, the extended
decision matrix is obtained. Calculate the weighted decision matrix by using attribute weights and
results are shown in Table 9. Determine the multi-valued neutrosophic fuzzy positive ideal solution
(MNFPIS) m+ and the multi-valued neutrosophic fuzzy negative ideal solution (MNFNIS) m− as
m+ = (m+

1 , m+
2 , m+

3 , m+
4 ) = (maxi mi1, maxi mi2, maxi mi3, maxi mi4) = (< {0.2274, 0.2875}, {0.5230,

0.8227}, {0.6357, 0.8227} >,< {0.0463, 0.1769}, {0.6132, 0.8631}, {0.6132, 0.8631} >, < {0.0492,
0.0774}, {0.5943, 0.8550}, {0.5943, 0.6951} >,< {0.2863, 0.3630}, {0.5246, 0.8235}, {0.6370, 0.8235} >),
m− = (m−1 , m−2 , m−3 , m−4 ) = (mini mi1, mini mi2, mini mi3, mini mi4) = (< {0.1339, 0.1773}, {0.7125,
0.8227}, {0.7125, 0.7726} >,< {0.0463, 0.1028}, {0.8231, 0.8631}, {0.8631, 0.8631} >,< {0.0492,
0.0492}, {0.8130, 0.8550}, {0.7618, 0.8550} >, < {0.0606, 0.0951}, {0.6370, 0.8235}, {0.8235, 0.8235} >).
The distances of each weighted evaluation value to the MNFPIS a+ and MNFNIS a− can be calculated
as d′+1 = 0.3503, d′+2 = 0.3450, d′+3 = 0.3999, d′+4 = 0.2975, d′+5 = 0.5589, d′−1 = 0.4030,
d′−2 = 0.3608, d′−3 = 0.2873, d′−4 = 0.3607, d′−5 = 0.2747. The closeness coefficients can be calculated
as CC′1 = 0.5350, CC′2 = 0.5112, CC′3 = 0.4181, CC′4 = 0.5480, CC′5 = 0.3296. The alternatives can be
ranked as A4 � A1 � A2 � A3 � A5, and the optimal alternative is A4. From the result, we can obtain
similar ranking results. If evaluation values are in the form of multi-valued neutrosophic fuzzy values,
the attribute weights are different from those of the interval forms. The attributes C1 and C4 have
relatively big weights, while in the multi-valued interval neutrosophic fuzzy situation, the attributes
C2 and C3 have relatively big weights. Since interval values are more appropriate to model fuzzy and
uncertain information, more accurate decision results can be obtained by using interval multi-valued
neutrosophic fuzzy values.

We use the MVINFWA operator to aggregate multi-valued interval neutrosophic fuzzy values into
collective ones, and the attribute weights are also taken as (0.2160, 0.2808, 0.2682, 0.2350), which are
the same as those of the proposed method (denoted as Method 2). The first six steps are the same
as the proposed method. Then, we use the MVINFWA operator aggregate evaluation values (the
results have been omitted due to space limitations). The scores of the collective evaluation values can
be calculated as S(A1) = 0.6605, S(A2) = 0.6991, S(A3) = 0.6834, S(A4) = 0.7016, S(A5) = 0.6324.
Compare S(Ai) (i = 1, 2, . . . , 5). We can obtain A4 � A2 � A3 � A1 � A5. The ranking results are
similar to the proposed method. A2 and A3 have different rankings in the two methods.

Table 6. Decision matrix M.

C1 C2 C3 C4

C1 0 〈{0.5, 0.4}, {0.2}, {0.3, 0.4}〉 〈{0.2, 0.3}, {0.1}, {0.4, 0.5}〉 〈{0.6}, {0.3}, {0.4}〉
C2 〈{0.6}, {0.4}, {0.4}〉 0 〈{0.4}, {0.5}, {0.3, 0.4}〉 〈{0.7}, {0.5}, {0.6}〉
C3 〈{0.5, 0.6}, {0.5}, {0.3}〉 〈{0.5}, {0.2}, {0.3}〉 0 〈{0.3, 0.4}, {0.5}, {0.4}〉
C4 〈{0.3, 0.4}, {0.6}, {0.5}〉 〈{0.3}, {0.3}, {0.3, 0.4}〉 〈{0.6}, {0.4, 0.5}, {0.3}〉 0
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Table 7. Total-relation matrix M′.

C1 C2

C1 < {0.9927}, {0.4213}, {1.2141} > < {1.0715}, {0.3422}, {1.0696} >
C2 < {1.4835}, {1.0615}, {1.5491} > < {1.0610}, {0.4505}, {0.9694} >
C3 < {1.3203}, {0.9732}, {1.4587} > < {1.1606}, {0.5000}, {1.0434} >
C4 < {1.1403}, {1.0742}, {1.5408} > < {0.9952}, {0.5777}, {1.0985} >

C3 C4

C1 < {1.0261}, {0.3657}, {1.1854} > < {1.3569}, {0.5202}, {1.3345} >
C2 < {1.2826}, {0.8494}, {1.2351} > < {1.6377}, {0.96788}, {1.5303} >
C3 < {0.9437}, {0.4902}, {0.9466} > < {1.3462}, {0.8580}, {1.3264} >
C4 < {1.1247}, {0.7655}, {1.1539} > < {1.0450}, {0.6625}, {1.1581} >

Table 8. Decision matrix D.

Alternative C1 C2

A1 < {0.4, 0.5}, {0.3}, {0.3, 0.4} > < {0.2, 0.3}, {0.1}, {0.4, 0.5} >
A2 < {0.6}, {0.1}, {0.2} > < {0.6}, {0.1}, {0.1} >
A3 < {0.5}, {0.2}, {0.3} > < {0.5}, {0.2}, {0.2} >
A4 < {0.6, 0.7}, {0.1}, {0.2} > < {0.3}, {0.3}, {0.1, 0.3} >
A5 < {0.8}, {0.3}, {0.1} > < {0.4}, {0.4}, {0.5} >

C3 C4

A1 < {0.4, 0.5}, {0.1}, {0.3} > < {0.7, 0.8}, {0.1}, {0.2} >
A2 < {0.3}, {0.1}, {0.1, 0.2} > < {0.3}, {0.3, 0.4}, {0.4, 0.5} >
A3 < {0.3, 0.5}, {0.2}, {0.2} > < {0.8}, {0.5}, {0.3} >
A4 < {0.7}, {0.1}, {0.1} > < {0.3}, {0.2, 0.3}, {0.5} >
A5 < {0.2}, {0.4}, {0.3} > < {0.4}, {0.1, 0.2}, {0.2} >

Table 9. The weighted decision matrix D′.

Alternative C1 C2

A1 < {0.1339, 0.1773}, {0.7125, 0.8227}, {0.7125, 0.7726} > < {0.0463, 0.0730}, {0.6132, 0.8631}, {0.8231, 0.8631} >
A2 < {0.0609, 0.2274}, {0.5230, 0.8227}, {0.6357, 0.8227} > < {0.0463, 0.1769}, {0.6132, 0.8631}, {0.6132, 0.8631} >
A3 < {0.0609, 0.1773}, {0.6357, 0.8227}, {0.7125, 0.8227} > < {0.0463, 0.1369}, {0.7105, 0.8631}, {0.7105, 0.7744} >
A4 < {0.2274, 0.2875}, {0.5230, 0.8227}, {0.6357, 0.8227} > < {0.0463, 0.0730}, {0.7744, 0.8631}, {0.6132, 0.8632} >
A5 < {0.0609, 0.3643}, {0.7125, 0.8227}, {0.5230, 0.8227} > < {0.0463, 0.1028}, {0.8231, 0.8631}, {0.8631, 0.8631} >

C3 C4

A1 < {0.1090, 0.1450}, {0.5943, 0.8550}, {0.7618, 0.8550} > < {0.2863, 0.3630}, {0.5246, 0.8235}, {0.6370, 0.8235} >
A2 < {0.0492, 0.0774}, {0.5943, 0.8550}, {0.5943, 0.6951} > < {0.0606, 0.0951}, {0.7131, 0.7736}, {0.7736, 0.8235} >
A3 < {0.0774, 0.1450}, {0.6951, 0.8550}, {0.6951, 0.8550} > < {0.0606, 0.3630}, {0.8235, 0.8235}, {0.7137, 0.8235} >
A4 < {0.0492, 0.2382}, {0.5943, 0.8550}, {0.5943, 0.8550} > < {0.0606, 0.0951}, {0.6370, 0.8235}, {0.8235, 0.8235} >
A5 < {0.0492, 0.0492}, {0.8130, 0.8550}, {0.7618, 0.8550} > < {0.0606, 0.1334}, {0.5246, 0.8235}, {0.6370, 0.8235} >

We summarize the above analysis in Table 10. In the proposed method, the fuzzy and uncertain
information is modeled by using multi-valued interval neutrosophic fuzzy values. The attribute
weights are determined by using DEMATEL, which can model the interactions and dependencies
among attributes. The TOPSIS method is used to rank alternatives, and the amount of computation
has been reduced greatly.

Table 10. The comparisons of the characteristic of different methods.

Method
Information by Multi-Valued Whether the Weights Are Whether Alternatives Are

Interval Neutrosophic Fuzzy Value Determined by DEMATEL Ranked by TOPSIS

Method 1 No Yes No
Method 2 Yes No No

Our proposed method Yes Yes Yes
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We further compare the proposed method with some other existing methods [29,45]. We first
transform the multi-valued interval neutrosophic fuzzy values into interval neutrosophic fuzzy values
by using the interval-valued neutrosophic fuzzy averaging operator. Then, we use the interval-valued
neutrosophic fuzzy weighted averaging operator [45] or TOPSIS [29] to obtain the ranking results,
which are shown in Table 11. The attribute weights are taken as (0.2160, 0.2808, 0.2682, 0.2350), which
are the same as our proposed method, in order to facilitate comparison. From the results, we can see
that, though the optimal alternative is the same, the rankings of alternatives are different. Moreover,
the attribute weights are not determined properly in the existing methods. Hence, compared to other
methods, the proposed method can determine attribute weights reasonably and solve complicated
decision problems by using multi-valued interval neutrosophic fuzzy values.

Table 11. Comparisons of different methods.

Method Alternatives Ranking Optimal Alternative

Zhao et al. [45] A4 � A2 � A3 � A1 � A5 A4
Chi and Liu [29] A4 � A2 � A3 � A1 � A5 A4
Our proposed method A4 � A1 � A2 � A3 � A5 A4

5. Conclusions

In this study, a new multiple attribute decision making method is developed based on
the DEMATEL and TOPSIS methods for multi-valued interval neutrosophic fuzzy information.
The interactions of attributes have been modeled by DEMATEL, and the computational complexity
has decreased by using the TOPSIS method to rank alternatives. The main advantages of the new
method are as follows: the evaluation values are given as multi-valued interval neutrosophic fuzzy
values, which can be used to model fuzziness and hesitation since each element has several interval
truth-memberships, interval indeterminacy-memberships and interval real falsity-memberships.
Decision makers can give more than one evaluation value if they are familiar with the attributes
and can refuse to give evaluation values if they are not familiar with the attributes, which can reduce
the effect of unreasonable evaluation values due to decision makers. In most classical multiple attribute
decision making methods, attributes are assumed to be independent of each other. However, various
interactions and interdependencies exist among attributes. The new method can model dependencies
among attributes by using the DEMATEL method. Though the computational cost increases by
using the multi-valued interval neutrosophic fuzzy values, the new model is still a polynomial-time
algorithm and can be solved easily. Moreover, the amount of computation been has reduced greatly by
using the TOPSIS method.

The proposed method can be extended in the following direction: The proposed method has been
used to solve a relative small-scale problem in this paper due to the space limitations. In fact, the
proposed method can be used to solve more complicated, large-scale decision problems such as global
supplier selection, emergency management, etc. Other ranking methods, such as ELECTRE, VIKOR
and PROMETHEE, can also be used to rank alternatives instead of TOPSIS. Other tools to model
fuzzy information can also be used, including fuzzy values, intuitionistic fuzzy values, linguistic
arguments, etc.
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