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Abstract: The issues of identity authentication and privacy protection of individuals in body area
network (BAN) systems have raised much concern in past few years. To address the challenges
of privacy protection in wireless BAN, an image encryption algorithm has been proposed recently
by Wang et al. The encryption algorithm utilized two 1D chaotic maps to generate sub-chaotic
matrices which are combined to perform encryption. The algorithm has good statistical encryption
performance. However, a cautious inquiry finds that it has some underlying security defects.
This paper evaluates the security of the Wang et al. encryption algorithm to show that it is totally
breakable under proposed cryptanalysis and hence infeasible for privacy protection in BAN. It has
been shown that the plain-image data can be recovered without any prior knowledge of secret key
and plain-text. Furthermore, this paper also suggests an improved encryption scheme using secure
hash algorithm SHA-512 for one-time keys and a 4D hyperchaotic system to subdue the security
insufficiencies of the algorithm under study. The simulation results and analysis demonstrate that
the improved image encryption scheme has excellent encryption quality, plain-image sensitivity, and
resistance to possible cryptanalytic attacks.

Keywords: image encryption; body area networks; cryptanalysis; SHA-512; hyperchaotic system

1. Introduction

Wireless systems play pivotal role in the transmission of data and are utilized for numerous
applications involving healthcare, communication, commerce, broadcasting, etc. The use of wireless
networks and sensor technology facilitates the achievement of facile and swift data transmission.
As an emerging area of wireless systems, body area network (BAN) systems make extensive usage of
both sensor technology and wireless networks to sustain advances in several healthcare applications
such as the endoscopic capsule, heart rate monitor, blood pressure monitor and clinical diagnosis [1,
2]. The BAN systems have immense potential for healthcare applications. For instance, wearable
medical gadgets conduct real-time and steady vital monitoring so as to give instant alerts and updates
pertinent to a patient’s status. Thereafter, data is correlated with the patient’s records in order to
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be used in long-term care and intended clinical diagnosis. The healthcare applications involve the
assemblage of large amounts of the patient’s data in order to conduct their efficacious remote treatment.
The accumulation of large amounts of data has raised severe security concerns regarding the privacy
and reliability of individuals. Failure to sustain security may lead to an undermining of authenticity
and, thus, may gravely affect the treatment process [3,4]. Hence, the sustenance of secured system is
vital and perceiving innovative solutions to attain the utmost level of security is exigent for secure
tele-diagnosis and treatment. Research is being performed by many scholars and academicians so as to
design security methods in order to address the issues of authentication and protection of individuals
in BAN [5–10].

Recently, there has been increased concern about the incorporation of chaotic systems for
the design of medical image data in healthcare systems. Chaotic systems possess ergodicity,
pseudo-randomness and also are profoundly dependent on a system’s initial conditions and
parameters [11]. Due to these features, chaotic systems are regarded as cogently fitted for the
development of secure and robust image encryption methods. Therefore, the chaotic systems have
been utilized to design the authentication, protection and encryption of medical data and identity of
patients in healthcare systems [12–14].

The deployed security method should have the credibility to offer a high level of authentication and
protection. Similarly, it should be competent to withstand possible threats. Cryptanalysis is an analytic
investigation of security methods to unveil underlying defects based on which an attack procedure is
designed [15,16]. Consequently, many security methods aimed at providing authentication, protection,
and encryption in healthcare have been scrutinized under various attacks and found breakable.
In cryptology, it is therefore advocated to design methods against possible cryptanalysis to have
stronger security. Thus, the role played by cryptanalysts in spotlighting and eradicating defects in
cryptosystems is indispensable for the progress of cryptology, as the cryptanalysis may results in
improved security methods that overcome the existing flaws, defects, and bugs, etc., that ensure more
robust and secure cryptosystems.

In [17], Alvarez et al. investigated the security strength of a medical image encryption system
suggested in [18] and determined that the system does not practically work flawlessly and is breakable
under the attack procedure detailed in [17]. Moreover, a more secure and practical way of protecting
patient information is also suggested. Zhu gave an authentication scheme for telecare medical
information systems (TMIS) [19], which was cryptanalyzed by Muhaya to show that the scheme
suffers from an offline password guessing attack and smart card loss attack in [20]. To resolve the
security issue of the Zhu scheme, an improved scheme with the feature of session key establishment
and user anonymity was proposed. In [21], a two-factor mutual authentication scheme using elliptical
curve cryptography was proposed for secure TMIS. However, Islam and Khan showed that this
authentication scheme has security problems like the fact that it fails to provide strong authentication,
to update the password perfectly in password change stage, and to resist a potential replay attack [22].
Islam and Khan also suggested security improvement in the authentication scheme. In [13], Fu et al.
designed an image protection scheme using chaotic maps for secure delivery of radiological image
data in picture archiving and communication system (PACS). However, the encryption scheme was
found to be insecure and unfit for the security realization of medical image data by Zhang et al.
in [23]. They successfully broke the Fu et al. scheme and, subsequently, security improvement was
developed to fulfill the motives of secure transfer of data in a PACS environment. Later, the security
of the same encryption scheme in [13] was re-investigated in multiple rounds by Chen and Wang
in [24]. They suggested a differential cryptanalysis that can recover the permutation key and broke the
multi-round encryption scheme of Fu et al. to indicate its insecurity.

In body area network systems, a large quantity of a patient’s data is stored and wirelessly
transmitted in the form of images. To protect the patient’s information in a BAN system, Wang et al.
proposed an image encryption algorithm recently in [14]. The algorithm utilized two different 1D
chaotic maps to generate sub-chaotic matrices which are combined as a single matrix for the encryption
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of the image data matrix and an encrypted image matrix results. The algorithm holds the merits
of ample key space, high key sensitivity, uniform pixels distribution, and high entropy content in
encrypted images. However, we found that the algorithm has some underlying security defects that
make it weak and practically infeasible for securing medical images. The algorithm has the demerits of
weak keys, fixed chaotic sub-matrices, and plain-image insensitivity. This paper reports the following
main contribution to the literature.

• The security of the recent image encryption algorithm in [14] is scrutinized and some defects
are unveiled.

• A total break of the algorithm is done under proposed simple cryptanalysis that recovers the
plain-image and nullifies the claim of excellent attack resistance ability of the algorithm made
in [14].

• An improved scheme is proposed based on SHA-512 and a 4D hyperchaotic system to settle the
issues of plain-image insensitivity and weak keys with strong encryption quality.

The remaining content of the paper is arranged as follows: Section 2 gives a review of the Wang
et al. image encryption algorithm. The security issues and defects are discussed in Section 3. The
proposed cryptanalysis to break the algorithm and its computer simulation is provided in Section 4.
Section 5 provides the improved encryption scheme with a brief of SHA-512 and hyperchaotic system;
and performance analysis of proposed improved scheme is carried out in Section 6. Lastly, the
conclusions of the work done in this paper are drawn in Section 7.

2. Wang et al. Image Encryption Algorithm

In the Wang et al. image encryption algorithm, the 1D chaotic logistic map and skew tent map
given in Equations (1) and (2) are adopted for the generation of sub-chaotic matrices.

xn = µ× xn−1 × (1− xn−1) (1)

yn =

{ yn−1
a 0 < yn−1 ≤ a

1−yn−1
1−a a < yn−1 ≤ 1

(2)

where µ ∈ [3.5699456, 4], a ∈ [0.4, 0.5] are their control parameters, and xn, yn ∈ [0, 1] (n > 0) represents
the respective state of maps as per the specifications in [14]. The initial condition y0 (=xk) is the x state
of map (1) after k iterations. The Wang algorithm to encrypt a plain-image I of size M × N has the
following operational steps:

E = Wang_Encryption(I(i, j))

W.1. Read the plain-image I(i, j) and form its data matrix T of dimension M × N.

W.2.
Set initial values of map (1) and generates 1D chaotic sequence X = {x1, x2, . . . , xn1} of length n1 = M × N1,
where N1 = N − ceil(N/2)

W.3. Create a 2D sub-chaotic matrix SI from sequence X of Logistic map of size M × N1.

W.4.
Set initial values of map (2) and generates another 1D chaotic sequence Y = {y1, y2, . . . , yn2} of length n2 =
M × N2, where N2 = N − N1

W.5. Construct another 2D sub-chaotic matrix SK from sequence Y of size M × N2.
W.6. Combine the two sub-chaotic matrices SI and SK to get 2D chaotic matrix ECM×N = {SIM×N1; SKM×N2}.

W.7.
Perform the XOR operation on data matrix T (of plain-image I) and chaotic matrix EC to get final encrypted
image E as:

for i = 1 to M do
for j = 1 to N do

E(i, j) = bitxor(T(i, j), EC(i, j))
endfor

endfor
W.8. Exit
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The decryption algorithm has similar steps but in reverse fashion. For further details the readers
are refer to [14].

3. Security Defects

After careful investigation of the details of adopted chaotic maps and encryption algorithm under
study, the following security defects are discovered and discussed.

3.1. Weak Keys

In chaos-based encryption methods, the selection of chaotic maps has an impact on the security.
The parameters of adopted chaotic maps and secret key should have carefully established links and
maps do not lead to the fixed points, otherwise the maps may fall in non-chaotic regions that weaken
the encryption methods.

In [14], the logistic map was used which has the non-chaotic phenomenon when µ < 3.5699456.
Therefore, Wang et al. restrict the control parameter µ ∈ [3.5699456, 4] to explore the chaotic behaviour
of the map (1). However, it is worth noting that this is a necessary but not sufficient condition for
a logistic map to exhibit chaotic behaviour, as the map still has some non-chaotic regions that lead
to insufficient encryption performance. This claim is justified by the bifurcation plot of map (1) for
µ ∈ [3.6, 4] shown in Figure 1 which highlights the prevailing non-chaotic windows for the set of
values of parameter µ considered in [14]. All such sets of µ values cause non-random behavior of
sub-matrices and are considered as weak keys. Moreover, the logistic map has two fixed points x = 0
and x = 1 and as a result xn = 0 for all subsequent n. Therefore, these two values should be avoided
while selecting the initial condition x0 for map (1), but these values have been taken as part of key
space in the Wang et al. encryption algorithm, as xn ∈ [0, 1] is specified. For the computed two fixed
points, the map generates a completely fixed sequence containing only zeros. Lastly, the logistic map
has symmetric dynamics whether xn ∈ (0, 0.5] or xn ∈ [0.5, 1) as the map has two terms xn and (1 − xn)
whose product is xn(1 − xn); now when we transform xn by (1 − xn) then the resulting terms are
(1 − xn) and xn which again gives the same expression (1 − xn)xn. This means the sequence generated
with x = 0.35 is exactly similar to the one generated with x = 0.65 for unchanged µ. In general, the same
sequence will be generated for xn and (1 − xn), making 50% of the keys component due to the initial
condition of x effective i.e., equal to 50% of 1015. The set of weak keys for map (1) due to x0 and
µ includes k1 = 0.5 × 1015 − ∆1 (∆1 is the set of all those values of µ for which map (1) falls in the
non-chaotic regions).Symmetry 2018, 10, x FOR PEER REVIEW  5 of 18 
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The second map (2) also leads to non-chaotic behaviour under some possible practical cases.
As with case A: when yn = a, map (2) results to yn+1 = yn/ a = 1, thus a periodic fixed sequence of
{yn = a, 1, 0, 0, . . . , 0} will be generated. For case B: when yn ∈ (0, 0.5) and a = 2yn, then a non-random
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sequence {yn, 0.5, 1, 0, 0, . . . , 0} is obtained from map (2). For case C: when yn ∈ (0, 1) and a = 0.5,
a sequence with poor period is observed. In [14], the restriction on parameter a in interval [0.4, 0.5]
reduces the key space component due to a being only 10% of 1015. There are almost 1015 values out
of possible pairs of (y0, a) = 1015 × 1015 for case A, 0.5 × 1015 for case B, and ∆2 for case C which
must be avoided. Moreover, the xk-th value of map (1) derives the initial condition y0 of map (2). So,
its component factor of 1015 should not be considered in key space. Hence, the set of weak keys for
map (2) are k2 = 0.9 × 1015 + 1015 + 0.5 × 1015 + ∆2.

In the Wang et al. encryption scheme the above analyzed two chaotic maps are adopted.
Their assigned initial values derive the encryption effect. The effective key space of the encryption
algorithm for components x0, µ, a is reduced to (4 − 3.5699456) × 1045 − k1 − k2 due to the above
issues as a lot of weak keys = k1 + k2 = 2.9× 1015 ≈ 252 out of 1045 may result in poor encryption quality.
Hence, the algorithm in [14] has a large number of weak keys which may weaken the algorithm and
the claimed key space of (1015)4 = 1060 ≈ 2200 is impractical.

3.2. Sub-Chaotic Matrices SI and SK Are Fixed

The encryption operation in [14] depends on the set of assigned initial values of the logistic map
and tent map only. If these values are kept unchanged, then the same X and Y sequences will get
generated out of map (1) and (2), thereby the same 2D sub-chaotic matrices SI and SK will result.
Hence, the final 2D chaotic matrix EC remains unaltered if the secret key kept is unchanged. This defect
is quite serious and makes the algorithm susceptible to cryptanalysis performed in Section 4.

3.3. Lack of Sensitivity to Change in Plain-Image

To fetch strong Shannon’s confusion and diffusion properties in any encryption system, the
system should be able to carry perfect sensitivity to secret keys and plaintext as well. The algorithm
under examination has good key sensitivity. However, it fails to provide ample sensitivity to changes
in plain-image content. As desired in the encryption system, minor change in the plain image should
bring drastic changes in the corresponding encrypted content. But, for Wang’s encryption system if
we change any pixel of the pending plain image, then the resulting encrypted image is found to have
only one changed pixel at that same position as the rest of the encrypted pixels are as previously. For
example, let us take a standard Barbara image I1 shown in Figure 2a as plain image which is encrypted
by algorithm in [14] and shown in Figure 2b as E1. Then, we change only one pixel of I1 at the central
position and another plain image I2 is obtained (depicted in Figure 2c); this new image I2 is also
encrypted with same algorithm and shown in Figure 2d as E2. To our dismay, the difference between
the two encrypted images is almost a black image except the central position pixel which was altered.
This means that the change in plain image does not result in good confusion and diffusion, or else the
difference image will be a random-like one. This defect proves that Wang’s encryption algorithm has a
lack of plain-image sensitivity.
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4. Proposed Cryptanalysis

In [25], Schneier suggested that the attacker has to know the security flaws in a cryptosystem
which can be explored by him to break the system partially or completely. Cryptanalysis can be
unveiling licensed defects to prove that the method does not work as believed. A cryptographic
security method deemed infeasible for secret communication and data protection if it has underlying
defects that may lead to complete or partial identification of individual, or recovery of plain-text
information. A cryptanalyst aims to frame methods to obtain information of either secret keys or plain
text. The attack process may demand large storage or impractical images, but the computational cost
of assaults ought to be not as high as a conventional exhaustive attack [15].

A Dutch cryptographer Auguste Kerckhoffs in the early 1880s annotated a principle that goes
as “only secrecy of the key provides security” [26]. It is famously remarked as Kerckhoffs principle
which ensures that the secrecy of only the key regulates the degree of security of any cryptosystem.
Thus, most cryptanalysts accede to the fact that attacker has almost all details of cryptosystems. As a
repercussion, in any case, the recovery of either the secret key or plain-text information is remarked
upon as an absolute crack of a cryptosystem [25]. We highlighted and discussed a few security flaws
and defects in Wang’s image cryptosystem as part of our effort to break it. Here, we also propose a
simple attack procedure by tapping the defects to demonstrate the complete break of image encryption
in [14].

The image encryption algorithm under analysis is claimed to be feasible for privacy protection
in BAN systems and excellent for resisting attacks. However, we invalidate these claims with proper
evidence and justification. The shortcomings discussed in Sections 3.2 and 3.3 aid the attacker to mount
the chosen plain-image attack. In [14], the encryption algorithm is operated to encrypt gray-scale
images and color red-green-blue (RGB) images as well. Here, we provide the procedure to break
the algorithm for gray-scale images and it can be applied for color images by handling each color
components individually. To attack the algorithm, we need to have a black image—a gray-scale image
in which all pixel values are zero let it be A(i, j) = 0 for all i = 1~M, j = 1~N. The illegal recovery of the
plain image from its encrypted image C (C is the output image by algorithm in [14], let its plain image
be denoted as P and unknown to us) without the secret key as follows. The black image A is now
encrypted using Wang_Encryption() algorithm and the corresponding encrypted image is obtained as
say, E. Since, for step W.7 in Section 2 the T(i, j) = A(i, j), then E(i, j) = bitxor(T(i, j), EC(i, j)) = bitxor(0,
EC(i, j)) = EC(i, j) for all i, j. So, the encrypted image E is actually the chaotic matrix EC obtained by
combining the sub-chaotic matrices SI and SK in step W.6. As a matter of fact, the matrix E is the
equivalent secret key used by Wang’s encryption algorithm when an image, whose encrypted-image
is C, is encrypted. As merely an exclusive-bitwise XOR operation was performed during the pixels
encryption stage for encrypting any image (which can be A or P or any other) by the chaotic matrix
EC (which is now available to us). Hence, the plain image corresponding to encrypted image C can
be recovered by performing the bitxor() operation on matrices E (or EC) and C. An example of the
proposed attack on an arbitrary image of size 4 x 4 is illustrated below and is also simulated on a
benchmark Boat image in Figure 3. As an attacker, we have encrypted image C and the temporary
access to Wang’s encryption and we need to retrieve the corresponding plain image of C without
having secret keys.

C =


6 11 146 115

60 160 1 41
33 143 250 68
74 150 117 94

 A =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
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E = Wang_Encryption(A) = EC =


208 49 220 151
96 84 44 253
104 121 196 25
0 5 166 209



P = bitxor(C, EC) =


214 58 78 228
92 244 45 212
73 246 62 93
74 147 211 143


The recovered plain image corresponding to encrypted image C is P obtained above. This can be

confirmed by the encrypted recovered image P with Wang’s encryption and we get the same cipher
image whose initial plain image was unknown to us as:

E = Wang_Encryption(P) =


6 11 146 115

60 160 1 41
33 143 250 68
74 150 117 94

 = C

Symmetry 2018, 10, x FOR PEER REVIEW  7 of 18 

 





















===

20916650
25196121104
253448496
15122049208

)(_ ECAEncryptionWangE
 





















==

14321114774
936224673

2124524492
2287858214

),( ECCbitxorP
 

The recovered plain image corresponding to encrypted image C is P obtained above. This can 
be confirmed by the encrypted recovered image P with Wang’s encryption and we get the same 
cipher image whose initial plain image was unknown to us as: 

CPEncryptionWangE =





















==

9411715074
6825014333
41116060

115146116

)(_
 

 

 
(a) (b) 

   
(c) (d) (e) 

Figure 3. Simulation of attack method: (a) plain image P; (b) encrypted image C of P; (c) black image 
A; (d) encrypted image E (or EC) of black image A; (e) bitxor(C, EC) the recovered plain image of 
encrypted image C without owning the secret key. 

5. Proposed Improved Image Encryption Scheme 

In this section, we present the proposed improved image encryption scheme using a 4D 
hyperchaotic system and SHA-512 which are described as follows. 

5.1. 4D Hyperchaotic System 

Most of the 1D chaotic maps suffer from problems of limited chaotic range and behaviour, 
non-uniform distribution of trajectory in phase space, low lyapunov exponent, and the existence of 
some non-chaotic windows [27]. High-dimensional, and in particular hyperchaotic, systems have 
larger key space (due to the great number of parameters and initial conditions), better sensitivity, 
more complex dynamics and high pseudo-randomness [28–31] compared to low-dimensional 
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image C without owning the secret key.

5. Proposed Improved Image Encryption Scheme

In this section, we present the proposed improved image encryption scheme using a 4D
hyperchaotic system and SHA-512 which are described as follows.

5.1. 4D Hyperchaotic System

Most of the 1D chaotic maps suffer from problems of limited chaotic range and behaviour,
non-uniform distribution of trajectory in phase space, low lyapunov exponent, and the existence of
some non-chaotic windows [27]. High-dimensional, and in particular hyperchaotic, systems have
larger key space (due to the great number of parameters and initial conditions), better sensitivity,
more complex dynamics and high pseudo-randomness [28–31] compared to low-dimensional chaotic
maps. To rule out the inadequacies of 1D chaotic maps used in [14], we employed a recent hyperchaotic
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system that shows excellent complex chaotic dynamics and is suited for the design of a strong image
encryption scheme. The 4D hyperchaotic system in [32] governs the following differential equations:

.
x = a(y− x− w) + byz
.
y = c(4x + y)− xz
.
z = dx− ez + xy
.

w = rx + f (3yz + y2)

(3)

where a, b, c, d, e, f, and r are system’s control parameters. Interestingly, for the setting a = 80, b = 45,
c = 22, d = 5, e = 21, f = 8 and r = 100, the four lyapunov exponents are λ1 = 25.6206, λ2 = 11.2401,
λ3 = 1.717 × 10−5 and λ4 =−115.0336. Note the presence of more than one positive lyapunov exponents
which indicates the existence of hyperchaotic phenomenon in system (3). We applied the Runge–Kutta
of order 4 to solve the system. This hyperchaotic system is adopted because of its following features:

• It consists of 7 system parameters, which enlarge heavily the key space of the respective security
primitive and make the exhaustive attack impractical.

• It has a maximum lyapunov exponent of 25.6206 which is quite high and it is largest among
all available 4D hyperchaotic systems. A larger positive lyapunov exponent shows that system
trajectories vary more sharply in phase space and makes system’s dynamics more complicated by
establishing stronger sensitivity to initial conditions [32]. However, the lyapunov exponent of
most of the 1D chaotic maps are less than 1, including the logistic map and skew tent map in (1)
and (2).

• The range of Kaplan–Yorke dimensions for 60 ≤ r ≤ 166 is 3.2801 ≤ DKY ≤ 3.3241, which is also
much larger than most of the existing 4D hyperchaotic systems.

• It exhibits largest topological entropy, in hyperchaotic systems, which is not less than log(3).

The impressive lineaments of system (3) make it more distinctive than most existing hyperchaotic
systems and hence more applicable for chaos-based cryptographic primitive designs. The complex
dynamical behaviour of system (3) is described through its phase portraits shown in Figure 4.
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5.2. SHA-512

The hash algorithms SHA-2 are declared by the National Institute of Standards and Technology
(NIST) as hash standards. These hash functions are primarily used as mapping that performs the
compression of an input message of arbitrary length to a fixed digest. They are employed as security
services for integrity protection and authentication. SHA-2 carries significant security enhancements
over the previous SHA-1 family, emerging as a more robust version. It is worth mentioning that no
significant attack and collisions on SHA-2 have been announced to date. The set of hash algorithms in
the SHA-2 family includes SHA-224, SHA-256, SHA-384, and SHA-512 and generates digests of sizes
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224, 256, 384, 512, respectively [33]. SHA-512 is one of the efficient member hash algorithm of SHA-2.
It is quite unparalleled in the family as compared to other members, as it generates the largest hash
digest of 512-bits, it offers the maximum attack complexity of 2256, and it uses different shifts amounts
and additive constant during its operation [34]. SHA-512 operates on eight 64-bit words. The message
to be hashed is first padded with its length such that the result is a multiple of 1024-bits, and which
is then parsed to 1024-bit message sub-blocks. The sub-blocks are treated iteratively one at a time
beginning with a fixed initial hash value to return the final hash digest of 512-bits after processing all
message sub-blocks.

5.3. Algorithm

In order to design an improved image encryption scheme, we used the SHA-512 hash function
which is capable of generating an entirely different hash digest if infinitesimal alteration is conducted
in the pending plain image due to its high sensitivity to the input image. Since, it is a highly one-way
function, it is impractical to obtain the input message whose hash digest, through any means, is
available to the attacker. A different hash digest will cause a different updating to the initial conditions
and bifurcation parameter r of the hyperchaotic system (3). The updation of initial conditions of
system (3) through the hash digest is executed to make the work of the attacker infeasible. Moreover,
the pixel masking is carried out through a cipher-block chaining operation via internal variables
si−1, β, gi−1 and the image information dependent function circ-shift(x, n) creates further complexity
and dependency of the algorithm on image information to be encrypted for secure image transfer.
This function circularly shifts the input argument x in the left direction by n number of positions
and generates output. All these modifications in the algorithm make it highly robust, secure and
statistically sound which will be discussed in Section 6.

The steps of operations involved in improved image encryption scheme are the following:

Step 1. Take proper input values for initial conditions x(0), y(0), z(0), w(0), parameters a, b, c, d, e, f, r.
Step 2. Read the plain image I (gray-scale or RGB image).
Step 3. Transform the input image I into 1D sequence of pixels of length say L (=MN for gray image

and 3 MN for color image).
Step 4. Compute hash digest of 512-bits using SHA-512 on 1D image sequence I in Step 3, say H

H = H1, H2, H3, . . . , H63, H64

where, each Hi = {hi1, hi2, hi3, ..., hi8} is i-th byte in hash H.
Step 5. Update the initial conditions of system (3) and parameter r ∈ [60, 166] according to the following

Formulas (4)–(8)

x̂(0) =

[
x(0) +

1
256× 16

(
16

∑
i=1

bin2dec(Hi)

)]
mod(1) (4)

ŷ(0) =

[
y(0) +

1
256× 16

(
32

∑
i=17

bin2dec(Hi)

)]
mod(1) (5)

ẑ(0) =

[
z(0) +

1
256× 16

(
48

∑
i=33

bin2dec(Hi)

)]
mod(1) (6)

ŵ(0) =

[
w(0) +

1
256× 16

(
64

∑
i=49

bin2dec(Hi)

)]
mod(1) (7)

r̂ = (r)mod(1) + [brc+ (H7 × H13 + H21 × H31 + H37 × H45 + H51 × H62)]mod(107) + 60 (8)

where, the function bin2dec(Hi) converts input binary data Hi to its equivalent decimal value.
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Step 6. Iterate the hyperchaotic system (3) with updated initial conditions and parameter for L times to
generate four chaotic sequences X(i), Y(i), Z(i) and W(i), where i = 1 to L.

Step 7. Do the following to perform masking operation on 1D image sequence I = {I1, I2, I3, . . . , IL} for
i = 1 to L as

F1 =
[

f loor(X(i))× 1015
]
mod(256)

F2 =
[

f loor(Y(i))× 1015
]
mod(256)

F3 =
[

f loor(Z(i))× 1015
]
mod(256)

r = (r× F2 × F3)mod(1) +
[

f loor(W(i))× 1015 + r
]
mod(107) + 60//re-update r for next iteration

Qi = [Ii ⊕ F1 + si−1]mod(256)⊕ F3 ⊕ gi−1

δ = F1 ⊕ F3

β = [δ + si−1]mod(256)

Ei = circ− shi f t(Qi, [β]mod(8))

gi = Ei ⊕ F2

si = si−1 + gi

Step 8. Perform the inverse of Step 3 on 1D sequence E to get the encrypted image.
Step 9. Exit

The structure of the decryption procedure is to be followed as above but in reverse order.

6. Performance Analysis of Improved Scheme

In this section, we analyze and investigate the encryption and robustness performance of our
proposed improved image encryption scheme. To undertake a fair analysis for comparison with
scheme in [14] and others, we adopted the same Lena image of size 512 × 512 × k (k = 1 for gray-scale
and k = 3 for color image) for simulation. In what follows, the results are investigated with respect to
analyses such as histogram analysis, correlation of adjacent pixels analysis, number of pixel change
rate (NPCR) and unified average changing intensity (UACI) analysis for plain-image sensitivity, image
entropy analysis, and key space analysis. The initial setting for computer simulation using MATLAB is
as: a = 80, b = 45, c = 22, d = 5, e = 21, f = 8, r = 100, x(0) = 0.5, y(0) = 0.5, z(0) = 0.5, w(0) = 0.5, s0 = 0, g0 = 0.
The results of the encryption for the gray-scale and color Lena images are shown in Figures 5 and 6,
respectively. It can be seen that encrypted images have high indistinguishability, visual distortion and
are significantly different from their respective plain images.
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6.1. Histogram Analysis

Histogram analysis refers to the study of distribution of pixel intensities of the image, where
a pixel can have any of the 256 intensity levels. The histogram reveals the nature of distribution
of image pixels i.e., whether the distribution is either uniform or non-uniform. For a strong image
encryption algorithm, the histogram of a plain image and encrypted image must have considerable
differences. It is desired that the histogram of the encrypted image should be as uniform in nature
as possible in order to prohibit the attacker from gaining any information of the plain image or key
from a non-uniform histogram of the encrypted image [35]. For gray images, the histograms of plain
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and encrypted images are available in Figure 5a,b. For color images, the histograms are provided in
Figure 6c–h. We can notice that these histograms for encrypted images are almost flat and uniform like
the distribution of some noise data, completely different from the histograms of plain images; hence,
the improved scheme is able to eradicate the chance of leaking any information to an attacker through
histogram-based statistical attacks.

6.2. Pixels Correlation Analysis

The correlation coefficient measures the amount of persisting correlation among adjacent pixels
of an image. It informs about the amount of visual distortion present in the image. The coefficient can
range from −1 to +1. The pixels are said to be closely correlated to each other if the coefficient is found
to have a value near ±1. Conversely, the neighboring pixels are highly uncorrelated if the coefficient is
close 0. Typically, a substantial correlation persists among adjacent pixels in meaningful multimedia
images. For encrypted image content, a secure encryption scheme must be credible enough to root
out the existing correlation among pixels and if the coefficient is closer to zero then the better the
encryption effect [36]. The coefficient for adjacent pixels correlation is calculated as:

ρ =
Cov(u, v)√

D(u)×
√

D(v)
(9)

D(u) =
1

M× N

MN

∑
i=1

(ui − A(u))2

A(u) =
1

M× N

MN

∑
i=1

(ui)

Cov(u, v) =
1

M× N

MN

∑
i=1

(ui − A(u))(vi − A(v))

where, u and v are intensity values of two adjacent pixels in the image. To compute coefficient of
correlation for the plain image and encrypted image, we selected 10,000 vertically adjacent pairs of
pixels randomly. Using the discussed procedure for correlation analysis, the coefficient found for the
plain Lena gray image is 0.9761, and for components of the plain Lena color image as 0.9716 (red),
0.9731 (green), 0.9414 (blue) which are fairly close to 1 indicating high correlation among the pixels.
The correlation coefficients obtained for encrypted images are listed in Tables 1 and 2 to compare the
results of this analysis with some existing image encryption algorithms. Evidently, the encrypted
images using our improved scheme are able to decorrelate the adjacent pixels better as it offers the
smallest coefficient than image encryption schemes investigated in [14,37–41].

Table 1. Correlation coefficients of adjacent pixels in encrypted Lena gray images.

Proposed Ref. [14] Ref. [37] Ref. [38]

0.000329 −0.00114 0.0045 0.005497

Table 2. Correlation coefficients of adjacent pixels in three color components of encrypted Lena
color images.

Component Proposed Ref. [14] Ref. [39] Ref. [40] Ref. [41]

Red 0.000626 0.0027 0.0017 0.0026 −0.0031
Green 0.0000219 −0.0019 0.0027 0.0051 0.0160
Blue −0.000475 0.0003 0.0043 0.0009 −0.0190
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6.3. Image Entropy Analysis

Image entropy is an idealistic measure of the amount of randomness contained in an image. It also
accounts for the uncertainty rather than certainty used to describe the texture of the image and its
information content. If an image adopts all possible intensity levels with almost equal likelihood,
the entropy of the image will be high and near ideal. In contrast, if the image has intensity levels
with substantial deviations in their frequencies of occurrences, then the entropy of image will be quite
low. A gray-scale image has possible intensity values ranging from 0 to 255 which can be encoded by
8-bits. The ideal entropy value for a gray-scale image is 8 and it corresponds to a perfect noise-image.
Thus, for strong image encryption, the entropy of encrypted image should be as close to 8 as possible,
and again the closer the better. This is because a high randomness would make it arduous for attacker
to predict the pixel values, thereby fortifying the security [35,36]. Mathematically, the entropy is
computed as:

entropy(S) =
256

∑
i=1

prob(si) log2

(
1

prob(si)

)
(10)

where prob(si) represents the probability of occurrence of intensity level si ∈ [0, 255] for 8-bit encoded
images. The computed entropy scores of the plain Lena gray image is 7.44737, and for components
of the plain Lena color image as 7.2531 (red), 7.59403 (green), 6.96842 (blue). The entropies of
encrypted images by different encryption schemes are listed in Tables 3 and 4 for gray and color
images, respectively. It is apparent from the two tables that all entropy values are significantly close
to the ideal value 8. However, the improved scheme still shows an upright performance compared
to other encryption schemes in the tables as our entropy scores are slightly higher in most cases and,
hence, can resist entropy-based attacks more diligently.

Table 3. Correlation coefficients of adjacent pixels in three color components of encrypted Lena images.

Proposed Ref. [14] Ref. [37] Ref. [38]

7.999419 7.9964 7.999319 7.9994

Table 4. Entropies of three color components of encrypted Lena images.

Component Proposed Ref. [14] Ref. [39] Ref. [40] Ref. [41]

Red 7.999328 7.9974 7.9898 7.99734 7.9993
Green 7.999322 7.9969 7.9901 7.99716 7.9993
Blue 7.999277 7.9884 7.9902 7.99688 7.9993

6.4. Number of Pixel Change Rate (NPCR) and Unified Average Changing Intensity (UACI) Analysis for
Plain-Image Sensitivity

A naïve encryption scheme controlled by a key can provide the sensitivity to even minor
alterations in any key components. However, a strong image cryptosystem should be able to have high
sensitivity to a minor change in the pending plain image too in order to qualify Shannon’s requirement
for high security. The number of pixel change rate (NPCR) and unified average changing intensity
(UACI) are two metrics primitively meant to measure the encrypted image’s resistance to differential
attacks. These test the number of changing pixels in an encrypted image when the difference between
two plain images is subtle. In other words, they measure the sensitivity to change in the plain image
offered by the anticipated image encryption scheme. Assuming two plain images I1 and I2 (which
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have only one pixel difference to each other) and whose corresponding encrypted images are, let say,
E1 and E2, respectively, the NPCR and UACI metrics are defined as:

NPCR(I1, I2) =

M
∑

i=1

N
∑

j=1
D(i, j)

M× N
× 100 (11)

UACI(I1, I2) =
1

M× N

M

∑
i=1

N

∑
j=1

∣∣∣∣E1(i, j)− E2(i, j)
255

∣∣∣∣× 100 (12)

D(i, j) =

{
0 E1(i, j) = E2(i, j)

1 otherwise

The optimal sensitivity of an encryption scheme is professed by an NPCR score close to 99.6%
and a UACI close to 33.6% [36,37]. The results obtained to gauge the sensitivity to change in input
plain images and their effect in encrypted content are shown in Tables 5 and 6. Most of the scores are
quite near to the respective optimal values as all NPCR ≥ 99.624 and UACI ≥ 33.425 for the proposed
anticipated scheme. The performance of our scheme is excellent compared to [14], and comparable
with some recently investigated encryption algorithms in [37–41].

Table 5. Results of the number of pixel change rate (NPCR) and unified average changing intensity
(UACI) for Lena gray-image sensitivity.

Proposed Ref. [14] Ref. [37] Ref. [38]

NPCR 99.627 nearly 0 99.62 99.6002
UACI 33.452 nearly 0 33.48 33.463

Table 6. Results of NPCR and UACI for Lena color-image sensitivity.

Component Proposed Ref. [14] Ref. [39] Ref. [40] Ref. [41]

Red
NPCR 99.627 ≈0 99.613 99.647 99.60
UACI 33.473 ≈0 33.439 33.425 33.25

Green
NPCR 99.631 ≈0 99.611 99.623 99.60
UACI 33.496 ≈0 33.465 33.275 33.28

Blue
NPCR 99.624 ≈0 99.615 99.594 99.60
UACI 33.478 ≈0 33.469 33.439 33.31
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As discussed earlier in Section 3.3, the Wang et al. algorithm [14] has a lack of plain-image
sensitivity which is justified by their respective experimental scores provided in two Tables. We also
performed the simulation analysis for plain-image sensitivity of the improved scheme similar to the one
undertaken in Section 3.3. Therefore, we executed the improved scheme for two plain images shown
in Figure 2a,c, differing by just one pixel, and as a result the encrypted images shown in Figure 7a,b
are obtained. The difference between these two encrypted images is evaluated and shown as an image
in Figure 7c. As we can observe, the difference image is like a random image in which pixels are
uniformly distributed as in the case of any other encrypted image, see Figure 7d, which confirms the
existence of excellent sensitivity of the improved scheme to a change in pending plain images.

As far as key sensitivity analysis is concerned, we confirmed that the improved scheme satisfies
the optimal value of NPCR and UACI for a minute change of 10−10 in all floating-point components and
+1 in integer components of the key, and the values are consistent with the values of Wang’s algorithm.

The high sensitivity to plain images is due to the application of SHA-512 updating the initial
conditions and the incorporation of some algorithm internal variables and operations that make it so
vivid. SHA-512 offers the capability of exploring the idea of one-time keys that are entirely plain-image
dependent that make the scheme resist the chosen plain image, known plain image, or chosen cipher
image attacks. Thus, our improved image encryption scheme has strong power to thwart differential
attacks through either a change in the key or a change in the plain image.

6.5. Key Space Analysis

The effective key space of the Wang et al. encryption algorithm is less than 1045 as analyzed in
Section 3.1. Whereas the components of the secret key for our proposed improved scheme includes
the four initial conditions, x(0), y(0), z(0), w(0), seven parameters a, b, c, d, e, f, r, all are floating-point
numbers, and integers s0, g0 ≥ 0. In order to avoid the problem of dynamic degradation, we carried
out all floating point computation as per the IEEE-754 floating point standard of double-floating
point arithmetic. Hence, for the working precision of 10−15, our key space is found to be more than
10165 ≈ 2548. Key space for our improved encryption scheme is decently large compared to key space
of 1045 in [14], 2199 in [37,38], 2256 in [41,42], 2390 in [43], and 2203 in [44], and can withstand any
exhaustive search attack more comfortably.

6.6. Computation Efficiency

It has been made evident that the computational resources involving time and storage required for
an image encryption scheme is mainly dependent on floating point arithmetics [45]. The computational
efficiency can be quantified by computing the average number of chaotic variables needed to achieve a
robust and efficient security performance. In the proposed improved image encryption scheme, the
hyperchaotic system is executed for L number of times which is equal to size 512 × 512 of the pending
plain image and only one round of the encryption process is sufficient for strong performance. So,
on average 4 chaotic variables are engaged to encrypt one pixel of image. This average count of 4 in our
case is quite optimal compared to the average chaotic variable count of 9 in [46], 6 in [47], and 7 in [48]
needed to encrypt only one pixel of image. Hence, our improved scheme also offers considerably good
computation efficiency as compared to some state-of-the art image encryption schemes.

7. Conclusions

This paper evaluates the security of a recent image encryption algorithm which was primarily
designed to support privacy protection in body area network systems. Our analysis scrutinizes the
security unwrap to identify some underlying serious defects. Based on highlighted defects, we propose
a complete break of the image encryption algorithm and affirm that the algorithm is not practically
feasible to resolve the security issues in a critical BAN system. As a remedy, an improved image
encryption scheme is suggested to overcome the defects of the algorithm under study. The improved
scheme employs the features of the 4D hyperchaotic system and SHA-512. The hash function SHA-512
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generates a hash digest for the pending plain image. This digest is used to revise the initial conditions of
the hyperchaotic system and acts as one-time keys to make the algorithm statistically strong, robust and
competent. Simulation analyses based on histograms, pixels correlations, image entropy, NPCR/UACI,
and key space are conducted to quantify the encryption quality and robustness of the improved scheme.
The performance results are also compared with some recent encryption algorithms. The simulation
and comparative results show that improved scheme has strong security, high robustness and a better
performance than some recent encryption algorithms. Hence, based on the outcomes of this paper,
we recommend our improved image encryption algorithm over the Wang et al. algorithm for privacy
protection of a patient’s sensitive image data in BAN systems.
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