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Abstract: The aim of this paper is to use elementary methods and the recursive properties of a
special sequence to study the computational problem of one kind symmetric sums involving Fubini
polynomials and Euler numbers, and give an interesting computational formula for it. At the same
time, we also give a recursive calculation method for the general case.
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1. Introduction

For any integer n ≥ 0, the Fubini polynomials {Fn(y)} are defined by the coefficients of the
generating function

1
1− y (et − 1)

=
∞

∑
n=0

Fn(y)
n!
· tn, (1)

where F0(y) = 1, F1(y) = y, and so on. Fn(1) = Fn are called Fubini numbers. These polynomials and
numbers are closely connected with the Stirling numbers. Some contents and propertities of Stirling
numbers can be found in reference [1]. T. Kim et al. [2] proved the identity

Fn(y) =
n

∑
k=0

S2(n, k) k! yk, (n ≥ 0),

where S2(n, k) are the Stirling numbers of the second kind. It not only associated Fubini polynomials
with Stirling numbers, but also stressed the importance of researching Fubini polynomials.

Please note that the identity (see [3,4])

2etx

1 + et =
∞

∑
n=0

En(x)
n!
· tn, (2)

where En(x) signifies the Euler polynomials.
It is distinct that if taking y = − 1

2 in (1) and x = 0 in (2), then from (1) and (2) we can get
the identity

En(0) = Fn

(
−1

2

)
, n ∈ N∗0 (3)
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where En(0) = En is the Euler number (see [5] for related contents).
On the other hand, two variable Fubini polynomials are defined by means of the following

(see [2,6])
ext

1− y (et − 1)
=

∞

∑
n=0

Fn(x, y)
n!

· tn,

and Fn(y) = Fn(0, y) for all integers n ≥ 0. About the properties of Fn(x, y), several scholars have also
researched it, especially T. Kim and others have done a large amount of vital works. For instance, they
proved a series of identities linked to Fn(x, y) (see [2,7]), one of which is

Fn(x, y) =
n

∑
l=0

(
n
l

)
xl · Fn−l(y), n ∈ N∗0.

These polynomials occupy indispensable positions in the theory and application of mathematics.
In particular, they are widely used in combinatorial mathematics. Therefore, several scholars have
researched their various properties, and acquired a series of vital results. Some involved contents can
be found in references [5,7–17].

The goal of this paper is to use elementary methods and recursive properties of a special sequenc
to research the computational problem of the sums

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · ·
Fak (y)
(ak)!

, (4)

where the summation is over all k-tuples with non-negative integer coordinates (a1, a2, · · · , ak) such
that a1 + a2 + · · ·+ ak = n.

About this content, it seems there is no valid method to solve the computational problem of (4).
However, this problem is significant, it can reveal the structure of Fubini polynomials itself and its
internal relations, at least it can reflect the combination properties of Fubini polynomials.

In this paper, we will take elementary methods and the properties of Fn(y) to obtain a fascinating
computational formula for (4). Simultaneously, we can also acquire a recursive calculation method for
the general case. That is, we are going to prove the following major result:

Theorem 1. For any positive integers n and k, we have the identity

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · ·
Fak (y)
(ak)!

=
1

(k− 1)!(y + 1)k−1 ·
1
n!

k−1

∑
i=0

C(k− 1, i)Fn+k−1−i(y),

where the sequence {C(k, i)} is defined as follows: For any positive integer k and integers 0 ≤ i ≤ k, we define
C(k, 0) = 1, C(k, k) = k! and

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), for all 0 ≤ i < k,

providing C(k, i) = 0, if i > k.

The characteristic of this theorem is to represent a complex sum of Fubini polynomials as a linear
combination of a single Fubini polynomial. Of course, our method can also be further generalized,
provided a corresponding results for Fn(x, y). It is just that its form is not so pretty, so we are not
listing it here. If taking k = 3, 4 and 5, then from our theorem we may instantly deduce the following
several corollaries:



Symmetry 2018, 10, 303 3 of 6

Corollary 1. For any positive integer n, we have the identity

∑
a+b+c=n

Fa(y)
a!
· Fb(y)

b!
· Fc(y)

c!
=

1
2 · n! · (y + 1)2 (Fn+2(y) + 3Fn+1(y) + 2Fn(y)) .

Corollary 2. For any positive integer n, we have the identity

∑
a+b+c+d=n

Fa(y)
a!
· Fb(y)

b!
· Fc(y)

c!
· Fd(y)

d!

=
1

6 · n! · (y + 1)3 (Fn+3(y) + 6Fn+2(y) + 11Fn+1(y) + 6Fn(y)) .

Corollary 3. For any positive integer n, we have the identity

∑
a+b+c+d+e=n

Fa(y)
a!
· Fb(y)

b!
· Fc(y)

c!
· Fd(y)

d!
· Fe(y)

e!

=
1

24 · n! · (y + 1)4 (Fn+4(y) + 10Fn+3(y) + 35Fn+2(y) + 50Fn+1(y) + 24Fn(y)) .

If taking y = − 1
2 in our theorem, then from (3) we can also infer the following:

Corollary 4. For any positive integers n and k ≥ 2, we have the identity

∑
a1+a2+···+ak=n

Ea1

(a1)!
· Ea2

(a2)!
· · ·

Eak

(ak)!
=

2k−1

(k− 1)!
· 1

n!

k−1

∑
i=0

C(k− 1, i)En+k−1−i.

If n = p is an odd prime, then taking y = 1 in Corollarys 1 and 2, we also have the
following congruences.

Corollary 5. For any odd prime p, we have the congruence

22Fp ≡ Fp+2 + 3Fp+1 (mod p) .

Corollary 6. For any odd prime p, we have the congruence

186Fp ≡ Fp+3 + 6Fp+2 + 11Fp+1 (mod p) .

2. A Simple Lemma

For purpose of proving our theorem, we need a uncomplicated lemma. As a matter of convenience,
we first present a new sequence {C(k, i)} as follows. For any positive integer k and integers 0 ≤ i ≤ k,
we define C(k, 0) = 1, C(k, k) = k! and

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), 1 ≤ i ≤ k, C(k, i) = 0, if i > k.
For clarity, for 1 ≤ k ≤ 9, we list values of C(k, i) in the Table 1.
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Table 1. Values of C(k, i).

C(k, i) i=0 i=1 i=2 i=3 i=4 i=5 i=6 i=7 i=8 i=9

k=1 1 1
k=2 1 3 2
k=3 1 6 11 6
k=4 1 10 35 50 24
k=5 1 15 85 225 274 120
k=6 1 21 175 735 1624 1764 720
k=7 1 28 322 1960 6769 13,132 13,068 5040
k=8 1 36 546 4536 22,449 67,284 118,124 109,584 40,320
k=9 1 45 870 9450 63,273 269,325 723,680 1,172,700 1,026,576 362,880

Obviously, the values of C(k, i) can be easily calculated by using a computer program. Hence,
for any positive integer k, the computational problem of (4) can be solved fully.

In this table of numerical values, we also find that for prime p = 3, 5 and 7, we have the congruence

C(p− 1, i) ≡ 0 (mod p) for all 1 ≤ i ≤ p− 2.

For all prime p > 7 is true? This is an enjoyable open problem.
If this congruence is true, then we can also deduce that for any positive integer n and odd prime

p, one has the congruence
Fn+p−1(y) + Fn(y) ≡ 0 (mod p) .

Now let function f (t) = 1
1−y(et−1) . Then we have the following

Lemma 1. For any positive integer k, we have the identity

k

∑
i=0

C(k, i) f (k−i)(t) = k!(y + 1)k f k+1(t),

where f (0)(t) = f (t), f (r)(t) denotes the r-order derivative of f (t) for variable t.

Proof. Now we prove this lemma by induction. From the definition of the derivative we acquire

f ′(t) =
yet

(1− y (et − 1))2 = − f (t) + (y + 1) f 2(t) (5)

or

f ′(t) + f (t) = (y + 1) f 2(t). (6)

Please note that C(1, 0) = 1 and C(1, 1) = 1, so the lemma is true for k = 1.
Suppose that the lemma is true for all integer k ≥ 1. That is,

k

∑
i=0

C(k, i) f (k−i)(t) = k!(y + 1)k f k+1(t). (7)

Then take the derivative for t in (7) and applying (5) and (7) we obtain

k
∑

i=0
C(k, i) f (k+1−i)(t) = (k + 1)!(y + 1)k f k(t) · f ′(t)

= (k + 1)!(y + 1)k f k(t) ·
(
− f (t) + (y + 1) f 2(t)

)
= (k + 1)!(y + 1)k+1 f k+2(t)− (k + 1)!(y + 1)k f k+1(t)

= (k + 1)!(y + 1)k+1 f k+2(t)− (k + 1)
(

k
∑

i=0
C(k, i) f (k−i)(t)

)
.

(8)
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It is evident that (8) implies

(k + 1)!(y + 1)k+1 f k+2(t)

= C(k, 0) f (k+1)(t) +
k−1
∑

i=0
(C(k, i + 1) + (k + 1)C(k, i)) f (k−i)(t) + (k + 1)! f (t)

= C(k, 0) f (k+1)(t) +
k−1
∑

i=0
C(k + 1, i + 1) f (k−i)(t) + (k + 1)! f (t)

=
k+1
∑

i=0
C(k + 1, i) f (k+1−i)(t),

(9)

where we have used the identities C(k, 0) = 1 and C(k, k) = k!. Now the lemma follows from (9) and
mathematical induction.

3. Proof of the Theorem

In this section, the proof of our theorem will be completed. Firstly, for any positive integer k, from
the definition of f (t) and the properties of the power series we obtain

f (k)(t) =
∞

∑
n=0

Fn+k(y)
n!

· tn (10)

and

f k(t) =

(
∞
∑

a1=0

Fa1 (y)
a1! · ta2

)(
∞
∑

a2=0

Fa2 (y)
a2! · ta1

)
· · ·
(

∞
∑

ak=0

Fak (y)
ak ! · tak

)

=

(
∞
∑

a1=0

∞
∑

a2=0
· · ·

∞
∑

ak=0

Fa1 (y)
(a1)!

· Fa2 (y)
(a2)!

· · · · Fak (y)
(ak)!

· ta1+a2···+ak

)

=
∞
∑

n=0

(
∑

a1+a2+···+ak=n

Fa1 (y)
(a1)!

· Fa2 (y)
(a2)!

· · · Fak (y)
(ak)!

)
· tn.

(11)

From (10), (11) and Lemma we acquire

1
(k−1)!(y+1)k−1 ·

k−1
∑

i=0
C(k− 1, i)

∞
∑

n=0

Fn+k−1−i(y)
n! · tn

=
∞
∑

n=0

(
∑

a1+a2+···+ak=n

Fa1 (y)
(a1)!

· Fa2 (y)
(a2)!

· · · Fak (y)
(ak)!

)
· tn.

(12)

Comparing the coefficients of tn in (12) we have the identity

∑
a1+a2+···+ak=n

Fa1(y)
(a1)!

· Fa2(y)
(a2)!

· · ·
Fak (y)
(ak)!

=
1

(k− 1)!(y + 1)k−1 ·
1
n!

k−1

∑
i=0

C(k− 1, i)Fn+k−1−i(y).

This completes the proof of our Theorem.
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