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Abstract: We study a q-analogue of Euler numbers and polynomials naturally arising from the
p-adic fermionic integrals on Zp and investigate some properties for these numbers and polynomials.
Then we will consider p-adic fermionic integrals on Zp of the two variable q-Bernstein polynomials,
recently introduced by Kim, and demonstrate that they can be written in terms of the q-analogues of
Euler numbers. Further, from such p-adic integrals we will derive some identities for the q-analogues
of Euler numbers.

Keywords: two variable q-Berstein polynomial; two variable q-Berstein operator; q-Euler number;
q-Euler polynomial

1. Introduction

As is well known, the classical Bernstein polynomial of order n for f ∈ C[0, 1] is defined by
(see [1–3]),

Bn( f |x) =
n

∑
k=0

f
(

k
n

)
Bk,n(x), 0 ≤ x ≤ 1, (1)

where Bn is called the Bernstein operater of order n, and (see [4–30]),

Bk,n(x) =
(

n
k

)
xk(1− x)n−k, n, k ≥ 0, (2)

are called the Bernstein basis polynomials (or Bernstein polynomials of degree n).
The Weierstrass approximation theorem states that every continuous function defined on [0, 1]

can be uniformly approximated as closely as desired by a polynomial function. In 1912, S. N. Bernstein
explicitly constructed a sequence of polynomials that uniformly approximates any given continuous
function f on [0, 1]. Namely, he showed that Bn( f |x) tends uniformly to f (x) as n → ∞ on [0, 1]
(see [3]). For q ∈ C, with 0 < |q| < 1, and n, k ∈ Z≥0, with n ≥ k, the q-Bernstein polynomials of
degree n are defined by Kim as (see [8])

Bk,n(x, q) =
(

n
k

)
[x]kq[1− x]n−k

1
q

, (3)
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where [x]q = 1−qx

1−q . For any f ∈ C[0, 1], the q-Bernstein operator of order n is defined as

Bn,q( f |x) =
n

∑
k=0

f
(

k
n

)
Bk,n(x, q) =

n

∑
k=0

f
(

k
n

)(
n
k

)
[x]kq[1− x]n−k

1
q

, (4)

where 0 ≤ x ≤ 1, and n ∈ Z≥0, (see [8,13]).
Here we note that a different version of q-Bernstein polynomials from Kim’s was introduced

earlier in 1997 by Phillips (see [22]). His q-Bernstein polynomial of order n for f is defined by

Bn( f , q; x) =
n

∑
k=0

f (
[k]q
[n]q

)
[n

k

]
q

xk
n−1−k

∏
s=0

(1− qsx),

where f is a function defined on [0, 1], q is any positive real number, and

[n
k

]
q
=

[n]q!
[k]q![n− k]q!

, [n]q! = [1]q[2]q . . . [n]q, (n ≥ 1), [0]q! = 1.

The properties of Phillips’ q-Bernstein polynomilas for q ∈ (0, 1) were treated for example
in [6,15,16,22–24], while those for q > 1 were developed for instance in [17–20].

A Bernoulli trial is an experiment where only two outcomes, whether a particular event A occurs
or not, are possible. Flipping of coin is an example of Bernoulli trial, where only two outcomes, namely
head and tail, are possible. Conventionally, it is said that the outcome of Bernoulli trial is a “success” if
A occurs and a “failure” otherwise. Let Pn(k) denote the probability of k successes in n independent
Bernoulli trials with the probability of success r. Then it is given by the binomial probability law

Pn(k) =
(

n
k

)
rk(1− r)n−k, for k = 0, 1, 2, · · · , n. (5)

We remark here that the Bernstein basis is the probability mass function of the binomial
distribution from the definition of Bernstein polynomials. Let p be a fixed odd prime number.
Throughout this paper, we will use the notations Zp,Qp, and Cp to denote respectively the ring
of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of
Qp. The p-adic norm in Cp is normalized in such a way that |p|p = 1

p . It is known that in terms of the
recurrence relation the Euler numbers are given as follows (see [10,11]):

E0 = 1, (E + 1)n + En = 2δ0,n, (6)

where δn,k is the Kronecker’s symbol. Then the Euler polynomials can be given as (see [10])

En(x) =
n

∑
l=0

(
n
l

)
El xn−l , (7)

The q-Euler polynomials, considered by L. Carlitz, are given by

E0,q = 1, q(qEq + 1)n + En,q =

{
[2]q, if n = 0,
0, if n > 0,

(8)

with the understanding that En
q is to be replaced by En,q (see [5]). Note that limq→1 En,q = En, (n ≥ 0).

Let f (x) be a continuous function on Zp. Then the p-adic fermionic integral on Zp is defined by
Kim as (see [12])
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I−1( f ) =
∫
Zp

f (x)dµ−1(x) = lim
N→∞

pN−1

∑
x=0

f (x)(−1)x, (9)

where we notice that µ−1(x + pNZp) = (−1)x is a measure.
From (9), we note that (see [12])

I−1( f1) + I−1( f ) = 2 f (0), (10)

where f1(x) = f (x + 1). By (10), we easily get (see [25])∫
Zp
(x + y)ndµ−1(y) = En(x), (n ≥ 0), (11)

When x = 0, we note that
∫
Zp

xndµ−1(x) = En, (n ≥ 0). Let q be an indeterminate in Cp with

|1− q|p < p−
1

p−1 . Taking (11) into consideration, we may investigate a q-analogue of Euler polynomials
which are given by (see [12,26])∫

Zp
[x + y]nq dµ−1(y) = En,q(x), (n ≥ 0), (12)

When x = 0, En,q = En,q(0), (n ≥ 0) are said to be the q-Euler numbers. Using (9), we can easily
see that ∫

Zp
[x]nq dµ−1(x) =

2
(1− q)n

n

∑
l=0

(
n
l

)
(−1)l 1

1 + ql

= 2
∞

∑
m=0

(−1)m[m]nq , (n ≥ 0).
(13)

Thus, by (13), we get

En,q = 2
∞

∑
m=0

(−1)m[m]nq =
2

(1− q)n

n

∑
l=0

(
n
l

)
(−1)l 1

1 + ql . (14)

For n, k ≥ 0, with n ≥ k, and q ∈ Cp, with |1− q|p < p−
1

p−1 , we define the p-adic q-Bernstein
polynomials as follows:

Bk,n(x, q) =
(

n
k

)
[x]kq[1− x]n−k

1
q

. (15)

Then we consider the p-adic q-Bernstein operator defined for continuous functions f on Zp and
given by

Bn,q( f |x) =
n

∑
k=0

f
(

k
n

)
Bk,n(x, q), (x ∈ Zp). (16)

We study a q-analogue of Euler numbers and polynomials naturally arising from the p-adic
fermionic integrals on Zp and investigate some properties for these numbers and polynomials.
Then we will consider p-adic fermionic integrals on Zp of the two variable q-Bernstein polynomials,
recently introduced by Kim in [8], and demonstrate that they can be written in terms of the q-analogues
of Euler numbers. Further, from such p-adic integrals we will derive some identities for the q-analogues
of Euler numbers.
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2. q-Bernstein Polynomials Associated with q-Euler Numbers and Polynomials

We assume that q ∈ Cp, with |1− q|p < p−
1

p−1 , throughout this section. From (12), we notice that

∞

∑
n=0

En,q(x)
tn

n!
=

∞

∑
m=0

(−1)me[m+x]qt. (17)

By (10), we get ∫
Zp
[x + 1]nq dµ−1(x) +

∫
Zp
[x]nq dµ−1(x) = 2δ0,n, (n ≥ 0). (18)

Thus, from (12), we have

En,q(1) + En,q =

{
2, if n = 0,
0, if n > 0.

(19)

On the other hand,

En,q(x) =
∫
Zp
[x + y]nq dµ−1(y)

=
n

∑
l=0

(
n
l

)
[x]n−l

q qlx
∫
Zp
[y]lqdµ−1(y)

=
n

∑
l=0

(
n
l

)
qlxEl,q[x]n−l

q =
(
qxEq + [x]q

)n ,

(20)

with the understanding that En
q is to be replaced by En,q. From (19) and (20), we note that

E0,q = 1, (qEq + 1)n + En,q =

{
2, if n = 0,
0, if n > 0.

(21)

Now, we observe that

En,q(2) = (q2Eq + 1 + q)n = (q(qEq + 1) + 1)n

=
n

∑
l=0

ql(qEq + 1)l
(

n
l

)
= 2− E0,q −

n

∑
l=1

qlEl,q

(
n
l

)
= 2−

n

∑
l=0

qlEl,q

(
n
l

)
= 2− (qEq + 1)n.

(22)

Now, by combining (21) with (22), we have the following theorem.

Theorem 1. For any n ≥ 0, we have

En,q(2) = 2 + En,q, (n > 0), E0,q(2) = 1. (23)

Invoking (9), we can derive the following equation∫
Zp
[1− x + y]nq−1 dµ−1(y) = (−1)nqn

∫
Zp
[x + y]nq dµ−1(y), (24)

where n is a nonnegative integer. By (12) and (24), we get

En,q−1(1− x) = (−1)nqnEn,q(x), (n > 0). (25)
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On the other hand, we have∫
Zp
[1− x]nq−1 dµ−1(x) = (−1)nqn

∫
Zp
[x− 1]nq dµ−1(x)

= (−1)nqnEn,q(−1),
(26)

as [−x]q−1 = −q[x]q. By (25) and (26), we get

∫
Zp
[1− x]nq−1 dµ−1(x) = (−1)nqnEn,q(−1) = En,q−1(2). (27)

Therefore, by (23) and (27), we have

Theorem 2. For any n > 0, we have∫
Zp
[1− x]nq−1 dµ−1(x) = 2 + En,q−1 . (28)

For q ∈ Cp, with |1− q|p < p−
1

p−1 , and x1, x1 ∈ Zp, the two variable q-Bernstein polynomials are
defined by

Bk,n(x1, x2|q) =
{

(n
k)[x1]

k
q[1− x2]

n−k
q−1 , if n ≥ k,

0, if n < k,
(29)

where n, k ≥ 0. From (29), we note that

Bn−k,n(1− x2, 1− x1|q−1) = Bk,n(x1, x2|q), Bk,n(x, x|q) = Bk,n(x, q), (30)

where n, k ≥ 0 and x1, x2 ∈ Zp. For continuous functions f on Zp, the two variable q-Bernstein operator
of order n is defined by

Bn,q( f |x1, x2) =
n

∑
k=0

f
(

k
n

)(
n
k

)
[x1]

k
q[1− x2]

n−k
q−1

=
n

∑
k=0

f
(

k
n

)
Bk,n(x1, x2|q),

(31)

where n, k ∈ Z≥0, and x1, x2 ∈ Zp. In particular, if f = 1, then we have

Bn,q(1|x1, x2) =
n

∑
k=0

(
n
k

)
[x1]

k
q[1− x2]

n−k
q−1

= (1 + [x1]q − [x2]q)
n,

(32)

where we used the fact
[1− x]q−1 = 1− [x]q. (33)

Taking the double p-adic fermionic integral on Zp as in the following, we have
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∫
Zp

∫
Zp

Bk,n(x1, x2|q)dµ−1(x1)dµ−1(x2)

=

(
n
k

) ∫
Zp
[x1]

k
qdµ−1(x1)

∫
Zp
[1− x2]

n−k
q−1 dµ−1(x2)

=

{
(n

k)Ek,q(2 + En−k,q−1), if n > k,
Ek,q, if n = k.

(34)

Therefore, from (34) we obtain the next theorem.

Theorem 3. For any n, k ∈ Z≥0, with n ≥ k, we have∫
Zp

∫
Zp

Bk,n(x1, x2|q)dµ−1(x1)dµ−1(x2)

=

{
(n

k)En,q(2 + En,q−1), if n > k,
Ek,q, if n = k.

(35)

Making the use of the definition of the two variable q-Bernstein polynomials and from (33),
we notice that∫

Zp

∫
Zp

Bk,n(x1, x2|q)dµ−1(x1)dµ−1(x2)

=
k

∑
l=0

(
n

n− k

)(
k
l

)
(−1)k+l

∫
Zp

∫
Zp
[1− x1]

k−l
q−1 [1− x2]

n−k
q−1 dµ−1(x1)dµ−1(x2)

=

(
n
k

) ∫
Zp
[1− x2]

n−k
q−1 dµ−1(x2)

k

∑
l=0

(
k
l

)
(−1)k−l

∫
Zp
[1− x1]

k−l
q−1 dµ−1(x1)

=

(
n
k

) ∫
Zp
[1− x2]

n−k
q−1 dµ−1(x2)

{
1 +

k−1

∑
l=0

(
k
l

)
(2 + Ek−l , q−1)

}
.

(36)

Therefore, from (34) and (36) we deduce the following theorem.

Theorem 4. For any k ≥ 0, we have

Ek,q = 2(2k − 1) +
k

∑
l=0

(
k
l

)
Ek−l,q−1 . (37)

For m, n, k ∈ Z≥0, we observe that∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dµ−1(x1)dµ−1(x2)

=

(
n
k

)(
m
k

) ∫
Zp
[x1]

2k
q dµ−1(x1)

∫
Zp
[1− x2]

n+m−2k
q−1 dµ−1(x2)

=

(
n
k

)(
m
k

)
E2k,q

∫
Zp
[1− x2]

n+m−2k
q−1 dµ−1(x2).

(38)

On the other hand,
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∫
Zp

∫
Zp

Bk,n(x1, x2|q)Bk,m(x1, x2|q)dµ−1(x1)dµ−1(x2)

=
2k

∑
l=0

(
n
k

)(
m
k

)(
2k
l

)
(−1)2k−l

×
∫
Zp

∫
Zp
[1− x1]

2k−l
q−1 [1− x2]

n+m−2k
q−1 dµ−1(x1)dµ−1(x2)

=

(
n
k

)(
m
k

) ∫
Zp
[1− x2]

n+m−2k
q−1 dµ−1(x2)

×
{

1 +
2k−1

∑
l=0

(
2k
l

)
(−1)2k−l

∫
Zp
[1− x1]

2k−l
q−1 dµ−1(x1)

}
.

(39)

Hence, by (28), (38) and (39), we arrive at the following theorem.

Theorem 5. For any k ∈ N, we have

E2k,q = −2 +
2k

∑
l=0

(
2k
l

)
(−1)2k−lE2k−l,q−1 . (40)

Let n1, n2, . . . , ns, k ∈ Z≥0, with s ∈ N. Then we clearly have

∫
Zp

∫
Zp

s

∏
i=1

Bk,ni
(x1, x2|q)dµ−1(x1)dµ−1(x2)

=
s

∏
i=1

(
ni
k

) ∫
Zp

∫
Zp
[x1]

sk
q [1− x2]

n1+···+ns−sk
q−1 (x1)dµ−1(x2)

=
s

∏
i=1

(
ni
k

)
Esk,q

∫
Zp
[1− x2]

n1+···+ns−sk
q−1 dµ−1(x2).

(41)

On the other hand,

∫
Zp

∫
Zp

s

∏
i=1

Bk,ni
(x1, x2|q)dµ−1(x1)dµ−1(x2)

=
sk

∑
l=0

s

∏
i=1

(
ni
k

)(
sk
l

)
(−1)sk−l

×
∫
Zp

∫
Zp
[1− x1]

sk−l
q−1 [1− x2]

n1+···+ns−sk
q−1 dµ−1(x1)dµ−1(x2).

(42)

By (41) and (42), we get

Esk,q =
sk

∑
l=0

(
sk
l

)
(−1)sk−l

∫
Zp

∫
Zp
[1− x1]

sk−l
q−1 dµ−1(x1)

= 1 +
sk−1

∑
l=0

(
sk
l

)
(−1)sk−l

∫
Zp

∫
Zp
[1− x1]

sk−l
q−1 dµ−1(x1).

(43)

Hence (28) and (43) together yield the next theorem.

Theorem 6. For any s ∈ N, we have

Esk,q = −2 +
sk

∑
l=0

(
sk
l

)
(−1)sk−lEsk−l,q−1 . (44)
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3. Conclusions

In the previous paper [8], the q-Bernstein polynomials were introduced as a generalization of the
classical Bernstein polynomials. Here we studied some properties of a q-analogue of Euler numbers and
polynomials arising from the p-adic fermionic integrals on Zp. Then we considered p-adic fermionic
integrals on Zp of the two variable q-Bernstein polynomials, recently introduced by Kim, and show that
they can be expressed in terms of the q-analogues of Euler numbers. Along the same line, we can introduce
a new q-Bernoulli numbers and polynomials, different from the classical Carlitz q-Bernoulli numbers βn,q

and polynomials βn,q(x), by considering the Volkenborn integrals in lieu of the p-adic fermionic integrals
on Zp. Then we may investigate Volkenborn integrals on Zp of the q-Bernstein polynomials and unveil
their connections with those new q-Bernoulli numbers which is our ongoing project.
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