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Abstract: The main purpose of this paper is, by using elementary methods and symmetry properties
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1. Introduction

For integers n ≥ 0, the Fibonacci polynomials Fn(x) are defined by F0(x) = 0, F1(x) = 1 and the
second-order linear recurrence sequence:

Fn+1(x) = xFn(x) + Fn−1(x), for all n ≥ 1.

If we take x = 1, then {Fn(1)} becomes the famous Fibonacci sequence. Many experts and scholars
have studied various elementary properties of Fn(x), and obtained a series of valuable research results.
For example, Ma Yuankui and Zhang Wenpeng [1] have studied the calculating problem of a certain
sum of products of Fibonacci polynomials, and proved the equality in the formula below.

Let h be a positive integer. Then, for any integer n ≥ 0, one has the identity:

∑
a1+a2+···+ah+1=n

Fa1(x)Fa2(x) · · · Fah+1(x) =
1
h!
·

h

∑
j=1

(−1)h−j · S(h, j)
x2h−j

×
(

n

∑
i=0

(n− i + j)!
(n− i)!

·
(

2h + i− j− 1
i

)
·
(−1)i · 2i · Fn−i+j(x)

xi

)
,

where, as usual, the summation is taken over all (h + 1)-dimension non-negative integer coordinates
(a1, a2, · · · , ah+1) such that a1 + a2 + · · · + ah+1 = n, and S(h, i) is defined by S(h, 0) = 0,
S(h, h) = 1, and:

S(h + 1, i + 1) = 2 · (2h− 1− i) · S(h, i + 1) + S(h, i)

for all positive integers 1 ≤ i ≤ h− 1.
Taekyun Kim et al. [2] first introduced the convolved Fibonacci numbers pn(x), which are defined

by the generating function: (
1

1− t− t2

)x
=

∞

∑
n=0

pn(x) · tn

n!
, x ∈ R.
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Then, they used the elementary and combinatorial methods to prove a series of important
conclusions, one of them is the following identity:

pn(x) =
n

∑
l=0

(
n
l

)
· pl(r) · pn−l(x− r) =

n

∑
l=0

(
n
l

)
· pn−l(r) · pl(x− r).

Chen Zhuoyu and Qi Lan [3] used a different method to prove the identity:

pn(x) =
1
2

n

∑
i=0

(−1)i
(

n
i

)
〈x〉i · 〈x〉n−i · Ln−2i,

where Ln denote the nth Lucas numbers, 〈x〉0 = 1, and:

〈x〉n = x(x + 1)(x + 2) · · · (x + n− 1)

for all integers n ≥ 1.
As an interesting corollary of [3], Chen Zhuoyu and Qi Lan proved that, for any positive integer k,

one has the identity:

∑
a1+a2+a3+···+ak=n

Fa1 · Fa2 · Fa3 · · · Fak

=
1

2((k− 1)!)2

n

∑
i=0

(−1)i · (k + i− 1)! · (k + n− i− 1)!
i! · (n− i)!

· Ln−2i.

Papers related to linear recurrence sequences of numbers and polynomials include [4–17], there
are too many to list all of them.

In this paper, we consider the Tribonacci numbers Tn (see ([18], A000073)), which are defined by
the third-order linear recurrence relation:

Tn = Tn−1 + Tn−2 + Tn−3, n ≥ 3 with T0 = 0, T1 = T2 = 1.

For example, the first eleven terms of Tn are T0 = 0, T1 = 1, T2 = 1, T3 = 2, T4 = 4, T5 = 7,
T6 = 13, T7 = 24, T8 = 44, T9 = 81, T10 = 149, T11 = 274, · · · .

The generating function F(x) of the sequences {Tn} is given by:

F(x) =
1

1− x− x2 − x3 =
∞

∑
n=0

Tn+1 · xn. (1)

Let α, β and γ be the three roots of the equation x3 − x2 − x− 1 = 0, then from references [19,20]
we have:

α =
3
√

19 + 3
√

33 + 3
√

19− 3
√

33 + 1
3

,

β =
2−

(
1 +
√
−3
) 3
√

19− 3
√

33−
(
1−
√
−3
) 3
√

19 + 3
√

33
6

and:

γ =
2−

(
1−
√
−3
) 3
√

19− 3
√

33−
(
1 +
√
−3
) 3
√

19 + 3
√

33
6

.

For any integer n, Tn can be expressed as a Binet-type formula (see [21]):

Tn = c1αn + c2βn + c3γn. (2)
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Then note that T0 = 0, T1 = T2 = 1, from Equation (2) we have:
c1 + c2 + c3 = 0,
c1α + c2β + c3γ = 1,
c1α2 + c2β2 + c3γ2 = 1.

(3)

It is clear that Equation (3) implies:

c1 =
α

(α− β) (α− γ)
=

1
−α2 + 4α− 1

,

c2 =
β

(β− α) (β− γ)
=

1
−β2 + 4β− 1

,

c3 =
γ

(γ− α) (γ− β)
=

1
−γ2 + 4γ− 1

. (4)

T. Komatsu et al. [19,20,22], E. Kilic [21] studied the arithmetical properties of Tribonacci numbers
and obtained many meaningful convolution identities for Tn.

Inspired by the ideas in [2,3], it is natural to ask, for any real number h, what are the properties of
the coefficients Tn(h) of the power series of the function:

F(h, x) =
(

1
1− x− x2 − x3

)h
=

∞

∑
n=0

Tn(h) · xn ?

Moreover, is there any close relationship between Tn(h) and Tn?
In view of these problems, in this paper we carry out a preliminary discussion and prove the

following main result:

Theorem 1. Let h denote any fixed real number. Then for any integer n ≥ 0, the following identity holds:

Tn(h) =
1
6 ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3Tw+1−u − 2Tw−u − Tw−u−1)

× (3Tw+1−v − 2Tw−v − Tw−v−1)

−1
6 ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3T3w+1−n − 2T3w−n − T3w−1−n) ,

where ∑
u+v+w=n

denotes the summation over all three-dimensional nonnegative integer coordinates (u, v, w)

such that u + v + w = n, and 〈h〉0 = 1:

〈h〉n = h(h + 1)(h + 2) · · · (h + n− 1)

for all positive integers n.

Note that Tn(1) = Tn+1 and 〈1〉n
n! = 1; from this theorem we may immediately deduce the

following three corollaries:

Corollary 1. For any positive integer n, the following identity is true:

Tn+1 =
1
6 ∑

u+v+w=n
(3Tw+1−u − 2Tw−u − Tw−u−1) · (3Tw+1−v − 2Tw−v − Tw−v−1)

−1
6 ∑

u+v+w=n
(3T3w+1−n − 2T3w−n − T3w−1−n) .
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Corollary 2. For any positive integers h and n, the following identity holds:

Tn(h) = ∑
a1+a2+···+ah=n

Ta1+1 · Ta2+1 · · · Tah+1

=
1
6 ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3Tw+1−u − 2Tw−u − Tw−u−1)

× (3Tw+1−v − 2Tw−v − Tw−v−1)

−1
6 ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3T3w+1−n − 2T3w−n − T3w−1−n) .

Corollary 3. For any positive integer n, the following identity holds:

Tn

(
1
2

)
=

1
6 · 4n ∑

u+v+w=n

(2u)!
(u!)2

(2v)!
(v!)2

(2w)!
(w!)2 (3Tw+1−u − 2Tw−u − Tw−u−1)

× (3Tw+1−v − 2Tw−v − Tw−v−1)

− 1
6 · 4n ∑

u+v+w=n

(2u)!
(u!)2

(2v)!
(v!)2

(2w)!
(w!)2 (3T3w+1−n − 2T3w−n − T3w−1−n) .

2. A Simple Lemma

In this section, we present a simple identity, which is required in the proof of the theorem.
Of course, simple number theories and knowledge of mathematical analysis is used in the proof of the
following lemma. This topics can be found in [23], so there is no need it repeat here. The next lemma
contains the relevant identities:

Lemma 1. Let h be a fixed positive number. Then for any integer n ≥ 0, we have the identity:

∑
u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

1
αuβvγw =

1
6 ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

× (3Tw+1−u − 2Tw−u − Tw−u−1) · (3Tw+1−v − 2Tw−v − Tw−v−1)

−1
6 ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3T3w+1−n − 2T3w−n − T3w−1−n) .

Proof. Since α, β and γ are the three roots of the equation x3 − x2 − x− 1 = 0, so by the relationship
between the roots and the coefficients of the equation we have α · β · γ = 1. Thus, for any non-negative
integers u, v and w: (

αw−u + βw−u + γw−u) (αw−v + βw−v + γw−v)
= α2w−u−v + β2w−u−v + γ2w−u−v + αw−uβw−v + αw−uγw−v

+βw−uαw−v + βw−uγw−v + γw−uαw−v + γw−uβw−v

= α2w−u−v + β2w−u−v + γ2w−u−v +
1

αuβvγw +
1

αuβwγv

+
1

αvβuγw +
1

αvβwγu +
1

αwβuγv +
1

αwβvγu . (5)

On the other hand, from Equation (4) we also have:

c1

(
−α2 + 4α− 1

)
= −c1α2 + 4c1α− c1 = 1,

c2

(
−β2 + 4β− 1

)
= −c2β2 + 4c2β− c2 = 1
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and:
c3

(
−γ2 + 4γ− 1

)
= −c3γ2 + 4c3γ− c3 = 1.

So for any integer r, we have:

αr = c1

(
−α2 + 4α− 1

)
αr = −c1α2+r + 4c1α1+r − c1αr,

βr = c2

(
−β2 + 4β− 1

)
βr = −c2β2+r + 4c2β1+r − c2βr

and:
γr = c3

(
−γ2 + 4γ− 1

)
βr = −c3γ2+r + 4c3γ1+r − c3γr.

From these identities and in combination with Equation (2) we may immediately deduce:

αr + βr + γr = −
(

c1α2+r + c2β2+r + c3γ2+r
)

+4
(

c1α1+r + c2β1+r + c3γ1+r
)
− (c1αr + c2βr + c3γr)

= −T2+r + 4T1+r − Tr = 3T1+r − 2Tr − Tr−1. (6)

Combining Equations (5) and (6) and noting that the non-negative integer coordinates (u, v, w)

with w + v + w = n are symmetrical, we have:

∑
u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(
αw−u + βw−u + γw−u) (αw−v + βw−v + γw−v)

= ∑
u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3Tw+1−u − 2Tw−u − Tw−u−1)

× (3Tw+1−v − 2Tw−v − Tw−v−1) (7)

and:

∑
u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(
αw−u + βw−u + γw−u) (αw−v + βw−v + γw−v)

= ∑
u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3T3w+1−n − 2T3w−n − T3w−n−1)

+ ∑
u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(
1

αuβvγw +
1

αuβwγv +
1

αvβuγw

)
+ ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(
1

αvβwγu +
1

αwβuγv +
1

αwβvγu

)
= ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3T3w+1−n − 2T3w−n − T3w−n−1)

+6 ∑
u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

1
αuβvγw . (8)

Now the lemma follows from Equations (7) and (8).
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3. Proof of the Theorem

Now we can easily prove our theorem. In fact, for any real number h, from the lemma and noting
that the power series expansion of (1− x)−h, which reads as follows:

1
(1− x)h =

∞

∑
n=0

〈h〉n
n!
· xn, |x| < 1

we have:

F(h, x) =
1

(1− x− x2 − x3)
h =

1(
1− x

α

)h
(

1− x
β

)h (
1− x

γ

)h

=

(
∞

∑
n=0

〈h〉n
n!
· xn

αn

)(
∞

∑
n=0

〈h〉n
n!
· xn

βn

)(
∞

∑
n=0

〈h〉n
n!
· xn

γn

)

=
∞

∑
n=0

(
∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

1
αuβvγw

)
· xn. (9)

On the other hand, we also have:

F(h, x) =
∞

∑
n=0

Tn(h) · xn. (10)

Applying Equations (9) and (10), the lemma and the uniqueness of power series expansion,
we deduce:

Tn(h) = ∑
u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

1
αuβvγw

=
1
6 ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3Tw+1−u − 2Tw−u − Tw−u−1)

× (3Tw+1−v − 2Tw−v − Tw−v−1)

−1
6 ∑

u+v+w=n

〈h〉u
u!
〈h〉v

v!
〈h〉w
w!

(3T3w+1−n − 2T3w−n − T3w−1−n) .

This completes the proof of our theorem.

4. Conclusions

The main results of this paper are a theorem and three corollaries. The theorem establishes a
close relationship between Tn(h) and Tn. In other words, Tn(h) can be expressed as a combination of
Tn. Three corollaries are actually simplified versions of the particular values of h in the theorem. It is
clear that the research method in our paper can also be used as a reference for a further study of the
properties of higher-order linear recursive sequence line Tribonacci polynomials.

Author Contributions: All authors equally contributed to this work. All authors read and approved the final
manuscript.

Funding: This work is supported by the N. S. F. (11771351) and (11826205) of China.

Acknowledgments: The authors would like to thank the referees for their very helpful and detailed comments,
which have significantly improved the presentation of this paper.

Conflicts of Interest: The authors declare that there are no conflicts of interest regarding the publication of
this paper.



Symmetry 2019, 11, 1195 7 of 7

References

1. Ma, Y.K.; Zhang, W.P. Some identities involving Fibonacci polynomials and Fibonacci numbers. Mathematics
2018, 6, 334. [CrossRef]

2. Kim, T.; Dolgy, D.; Kim, D.; Seo, J. Convolved Fibonacci numbers and their applications. ARS Comb. 2017,
135, 119–131.

3. Chen, Z.Y.; Qi, L. Some convolution formulae related to the second-order linear recurrence sequence.
Symmetry 2019, 11, 788. [CrossRef]

4. Agoh, T.; Dilcher, K. Convolution identities and laucunary recurrences for Bernoulli numbers.
J. Number Theory 2007, 124, 105–122. [CrossRef]

5. Agoh, T.; Dilcher, K. Higher-order convolutions for Bernoulli numbers. J. Number Theory 2009, 129, 1837–1847.
[CrossRef]

6. Agoh, T.; Dilcher, K. Higher-order convolutions for Bernoulli and Euler polynomials. J. Math. Anal. Appl.
2014, 419, 1235–1247. [CrossRef]

7. Chen, L.; Zhang, W.P. Chebyshev polynomials and their some interesting applications. Adv. Differ. Equ. 2017,
2017, 303.

8. Kim, T.; Dolgy, D.V.; Kim, D.S. Representing sums of finite products of Chebyshev polynomials of the second
kind and Fibonacci polynomials in terms of Chebyshev polynomials. Adv. Stud. Contemp. Math. 2018,
28, 321–336.

9. Kaygisiz, K.; Sahin, A. Determinantal and permanental representations of Fibonacci type numbers and
polynomials. Rocky Mt. J. Math. 2016, 46, 227–242. [CrossRef]

10. Li, X.X. Some identities involving Chebyshev polynomials. Math. Probl. Eng. 2015, 2015, 950695. [CrossRef]
11. Ma, Y.K.; Li, X.X. Several identities involving the reciprocal sums of Chebyshev polynomials. Math. Probl.

Eng. 2017, 2017, 4194579. [CrossRef]
12. Trucco, E. On Fibonacci polynomials and wandering domains. Bull. Lond. Math. Soc. 2015, 47, 663–674.

[CrossRef]
13. Wu, Z.G.; Zhang, W.P. Several identities involving the Fibonacci polynomials and Lucas polynimials.

J. Inequal. Appl. 2013, 2013, 205. [CrossRef]
14. Wang, T.T.; Zhang, H. Some identities involving the derivative of the first kind Chebyshev polynomials.

Math. Probl. Eng. 2015, 2015, 146313. [CrossRef]
15. Yi, Y.; Zhang, W.P. Some identities involving the Fibonacci polynomials. Fibonacci Q. 2002, 40, 314–318.
16. Zhang, W.P.; Wang, H. Generalized Humbert polynomials via generalized Fibonacci polynomials. Appl. Math.

Comput. 2017, 307, 204–216.
17. Zhang, Y.X.; Chen, Z.Y. A new identity involving the Chebyshev polynomials. Mathematics 2018, 6, 244.

[CrossRef]
18. Sloane, N.J.A. The On-Line Encyclopedia of Integer Sequences. Available online: http://oeis.org (accessed

on 31 August 2019).
19. Komatsu, T. On the sum of reciprocal Tribonacci numbers. ARS Comb. 2011, 98, 447–459.
20. Komatsu, T. Convolution identities for Tribonacci numbers. ARS Comb. 2018, 136, 447–459.
21. Kilic, E. Tribonacci sequences with certain indices and their sums. ARS Comb. 2008, 86, 13–22.
22. Komatsu, T.; Li, R.S. Convolution identities for Tribonacci numbers with symmetric formulae. Math. Rep.

2019, 71, 27–47.
23. Apostol, T.M. Introduction to Analytic Number Theory; Springer: New York, NY, USA, 1976.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.3390/math6120334
http://dx.doi.org/10.3390/sym11060788
http://dx.doi.org/10.1016/j.jnt.2006.08.009
http://dx.doi.org/10.1016/j.jnt.2009.02.015
http://dx.doi.org/10.1016/j.jmaa.2014.05.050
http://dx.doi.org/10.1216/RMJ-2016-46-1-227
http://dx.doi.org/10.1155/2015/950695
http://dx.doi.org/10.1155/2017/4194579
http://dx.doi.org/10.1112/blms/bdv046
http://dx.doi.org/10.1186/1029-242X-2013-205
http://dx.doi.org/10.1155/2015/146313
http://dx.doi.org/10.3390/math6110244
http://oeis.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Simple Lemma
	Proof of the Theorem
	Conclusions
	References

