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Abstract: We generate numerically on a lattice an ensemble of stationary metrics, with spherical
symmetry, which have Einstein action SE � h̄. This is obtained through a Metropolis algorithm
with weight exp(−β2S2

E) and β� h̄−1. The squared action in the exponential allows to circumvene
the problem of the non-positivity of SE. The discretized metrics obtained exhibit a spontaneous
polarization in regions of positive and negative scalar curvature. We compare this ensemble with a
class of continuous metrics previously found, which satisfy the condition SE = 0 exactly, or in certain
cases even the stronger condition R(x) = 0 for any x. All these gravitational field configurations are
of considerable interest in quantum gravity, because they represent possible vacuum fluctuations and
are markedly different from Wheeler’s “spacetime foam”.

Keywords: general relativity; Euclidean quantum gravity; path integral; lattice field theory;
Metropolis algorithm

1. Introduction

Among the obstacles encountered in the formulation of quantum gravity theories one can certainly
mention the difficulties in the Euclidean formulation (analytical continuation to imaginary time), which
is usually employed in discretized lattice versions of quantum field theory [1,2]. This problem is in
turn related to the non-positivity of the Einstein action [3,4].

The two main current approaches to lattice quantum gravity, namely those of Hamber and
collaborators [2,5,6] and Ambjørn and collaborators [7] take a quite radical stance in the general
re-definition of 4D spacetime as a discrete quantum dynamical object. Therefore the answers given in
these approaches to the issues of stability and analyical continuation are not simple to translate into
familiar quantum field theory language and can be possibly understood in “entropic” terms (see for
instance the discussion of the conformal instability in [2]).

The stability issue is also related, in our opinion, to one of the crucial questions in quantum
gravity, particularly from a path integral point of view: among the infinite possible configurations of a
void spacetime (many of which singular), why do we see on average a flat metric, and what are the
most important fluctuations? Our aim in this work is not to give a general answer to this question,
but only to obtain some insights in a simplified case, namely a path integral of the form

∫
d[gµν] exp

(
i
h̄

SE

)
=
∫

d[gµν] exp
[

i
h̄

(
− 1

16πG

) ∫
d4x
√

g(x)R(x)
]

(1)

defined in the usual metric formalism and restricted to field configurations which are time-independent
and spherically symmetric. Metrics for which SE = 0 or SE � h̄ clearly play an important role in this
path integral.

In previous work we have been looking for stationary non-flat metrics, which we call “zero modes
of the Einstein action”, such that

∫
d4x
√

gR = 0. We found in [8–10] perturbative solutions (weak-field
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zero modes) with regions of opposite curvature, either in the form of dipoles or concentric shells.
In [11] we found exact non-perturbative solutions with spherical symmetry of the local condition R = 0
and deformations of these solutions which still satisfy

∫
d4x
√

gR = 0, forming an infinite-dimensional
functional space.

The sets of these classical metrics can be regarded as extensions of the so-called Einstein spaces
in the Petrov classification [12], defined as the solutions of Rµν = kgµν; by weakening this condition
we can consider the condition Rµν = 0, R = 0 and finally

∫ √
gR = 0. While in General Relativity it

is natural to devote special attention to the spaces with Rµν = 0 (vacuum solutions of the Einstein
equations), in a path integral for quantum gravity it is natural to focus on the condition SE = 0.
Note that in usual field theories with a positive-definite action one never encounters such a distinction
between the minima of the action and its zero-modes.

After finding these zero modes, however, we still do not know how much do they contribute
to the path integral, unless we can evaluate it at least approximately. Working with the imaginary
exponential exp(iSE/h̄) one can obtain some formal results [13], but a numerical lattice approach is
not viable. If one tries to discretize the integral and perform it numerically on Wiener paths, one only
obtains wild oscillations and a confirmation of the undefined sign of the action (Section 2.3).

So a new idea developed in this work is to explore the zero-modes on a lattice using a Metropolis
algorithm of the same kind successfully employed in statistical mechanics based on the energy,
with weight exp[−E/(kBT)], or in Euclidean field theories with positive-defined actions. The method
consists in starting from a metric which has zero action and is also a minimum of the action (flat space),
then generate local deformations of this metric and accept them only if their action differs from zero by
a quantity� h̄, like in a semiclassical approximation of the Lorentzian path integral, but without any
restriction to weak fields. For this purpose we use in the Metropolis algorithm the weight exp(−β2S2

E),
with β � 1/h̄ (a limit which formally corresponds to a very low temperature). The choice of the
squared action is the simplest one, although obviously not the only possible. Another simple choice is
to use |SE| (Section 4.1); the results are very similar, thus showing the robustness of the approach.

We start in Section 2 by laying out immediately our method for the calculation of the discretized
action. Then in Section 3 we give a short review of previous work on classical, exact zero modes of the
Einstein action. This serves as background and motivation for the present work. Section 4 contains
our results. In Section 5 we offer a comparison with other approaches to quantum gravity. Finally,
Section 6 contains our conclusions and an outlook on future work.

2. Simplified Recipe for the Discretized Path Integral

We shall consider a specific subset of metric configurations, such that the lattice action
takes a simple form. Even this subset contains, however, interesting candidates as unexpected
vacuum fluctuations.

2.1. Spherically Symmetric Spaces with Constant gtt

Let us consider the set of all time-independent spherically symmetric metrics, and write the
invariant interval as

dτ2 = −gµνdxµdxν = B(r)dt2 − A(r)dr2 − r2(dθ2 + sin2 θdφ2) (2)

where A(r) = grr(r) and B(r) = gtt(r) are two arbitrary smooth functions. The scalar curvature can
then be expressed as [14]

R = −Rtt

B
+

Rrr

A
+ 2

Rθθ

r2 (3)
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where

Rtt = −
B′′

2A
+

B′

4A
(a + b)− B′

rA
(4)

Rrr =
B′′

2B
− 1

4
b(a + b)− a

r
(5)

Rθθ = −1 +
r

2A
(−a + b) +

1
A

(6)

a =
A′

A
; b =

b′

B
(7)

If we limit ourselves to the simpler case B = const. = 1, the entire expression for R reduces to

R = −2
r

(
A′

A2 +
1
r
− 1

Ar

)
(8)

When we multiply this by
√

g and integrate in d3x and over a finite time interval (−τ, τ), we obtain

SE = − 1
16πG

· 2τ
∫ ∞

0
dr 4πr2 · −2

r

√
|A|

(
A′

A2 +
1
r
− 1

Ar

)
(9)

=
τ

G

∫ ∞

0
dr
(

rA′

A2 + 1− 1
A

)
(10)

The path integral, reduced to this space, that we compute in the following, has the form

〈A(r1)〉 =
∫

d[A(r)]A(r1)eiSE/h̄∫
d[A(r)]eiS/h̄ , (11)

where r1 ∈ [0,+∞) and we set the boundary condition A(+∞) = 1. For the moment we just trust that
this makes sense and converges in spite of the oscillating factor exp(iSE/h̄), according to the original
Feynman formulation (or better thanks to it). But we shall see that this is not numerically viable and it
is better to turn to a properly modified Euclidean version.

2.2. Discretized Action

Let us choose units in which G = c = h̄ = 1, and an integration time τ = 1. We reduce the
domain of A(r) to a finite interval (0, L) and divide it into N parts, with δ = L/N. Discretizing the
action we obtain

Sdiscr
E = δ

N

∑
h=0

√
|Âh|

(
2h + 1

2Â2
h

(Ah+1 − Ah) + 1− 1
Âh

)
(12)

where Â = (Ah+1 + Ah)/2. The initial conditions are A0, . . . , AN = 1. The (fixed) boundary condition
is AN+1 = 1.

It is straightforward to see that if we change by ±ε one of the Ah there are only two terms in the
sum which are changed. The corresponding variation in Sdiscr

E can be written explicitly, but it is safer
to compute it numerically by difference at every Metropolis step.
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2.3. Comparison to the Scalar Field Case and Lorentzian Path Integral

It is useful to make a comparison with a field φ(r) with classical vacuum value φ(r) = φ0 and
with the usual quadratic action

Sφ =
∫ ∞

0
dr
[(

φ′(r)
)2

+ m2 (φ(r)− φ0)
2
]

(13)

where we take in the following m = 1, φ0 = 1, so that it has the same vacuum value as A.
Let us first try to compute numerically the Lorentzian path integral, even though we know from

the start that there are little chances to obtain a convergent result. We compute the quantity

〈φk〉 =
∫

d[φ]φkeiS/h̄∫
d[φ]eiS/h̄ (14)

This is not a real-valued average, but a complex “transition element”, according to the Feynman
denomination. As long as S/h̄� 1 and eiS/h̄ ' 1, we may expect that 〈φk〉 is approximately real and
close to 1.

We write the discretized action as

Sdisc
φ = δ

N

∑
h=0

[(
φh+1 − φh

δ

)2
+

(
φh+1 + φh

2
− 1
)2
]

(15)

with the boundary condition φN+1 = 1.
Next we generate N variables of the form φh = 1 + ξ, −a < ξ < a, where ξ is a random number

and the amplitude a is initially very small (small deformations of the classical solution). The integrands
in (14) are evaluated in correspondence of these values of φh and the procedure is repeated for a
large number of times, averaging the results. In the limit of infinite a this gives the so-called “Wiener
path integral”, actually an ordinary N-dimensional integral corresponding to a path integral along
non-differentiable zigzag paths.

For small values of a the fluctuations are small and we obtain for instance in the case N = 50,
h̄ = 1 the reasonable numerical results of Table 1.

Table 1. Feynman-Hibbs transition elements computed numerically in the Lorentzian path integral (14)
in dependence on the amplitude a of the integration interval. The last column gives the maximum value
of the action recorded during the Monte Carlo integration, which runs typically over 10 to 100 million
random values of the set φ1, . . . , φ50.

a Re〈(φ25− 1)2〉 Im〈(φ25− 1)2〉 Smax

10−4 3.33× 10−9 2.78× 10−17 5× 10−6

10−2 3.33× 10−5 2.78× 10−9 5× 10−2

1 (4± 2)× 10−1 (1± 2)× 10−1 5× 102

The precision quickly decreases, however, when the amplitude a increases, and for a > 1 the real
and imaginary parts of 〈φk〉 undergo wild fluctuations even over very long runs. It appears that the
“destructive interference” effect due to the oscillating factor eiS/h̄, which in principle should lead to
the cancellation of the contributions from paths very far from the classical one, cannot in practice be
reproduced numerically.

Nevertheless, since the action of the φ-field is positive-defined, we can simulate a Lorentzian path
integral with the limitation Sφ � h̄ as a thermal system at equilibrium at a suitable temperature T
using the Metropolis algorithm, i.e., starting from certain initial conditions (for instance the classical
vacuum value φh = 1 for any h), making random changes of the φh and accepting them unconditionally
if the corresponding ∆Sφ is positive, or else with probability e−β∆Sφ . If we take β = 1/(kBT) large
enough (implying a sufficiently low temperature), the simulation will sample in an effective way all
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the states with βS � 1; it is possible to monitor the process by recording the maximum value of S
attained, or better with a histogram or time-series of all values of S. In suitable units, we shall therefore
satisfy the condition Sφ � h̄, so we are effectively sampling the configurations with an action very
close to the minimum, and we can compute in this sample averages of quantities like 〈φk〉, 〈(φk − 1)2〉,
obtaining respectively results ' 1 and� 1.

2.4. Back to Gravity: SE Is Not Positive, then Sample with S2
E or |SE|

Now let us go through the same steps for the gravitational field A and its path integral (11).
The classical vacuum value and the initial conditions are the same: Ah = 1, h = 1, . . . , N. The action
SE, however, is not positive-defined. In the Lorentzian path integral with the Wigner paths, with small
amplitude a, we can see by monitoring SE that it changes in sign, but still it remains small in absolute
value and the results for 〈A〉k in this limit are similar to those for 〈φk〉. When a is increased, the positive
and negative fluctuations in SE increase, adding to the noise coming from the factor eiS/h̄. It would not
make sense to pass, like for φ, to a Metropolis simulation based on SE in order to obtain the “thermal
sampling” of the region with SE � h̄. We can do, however, the Metropolis sampling with S2

E, using
the probability e−β2∆S2

E . As with the φ-field, we can check that during the runs the values of SE remain
very close to the minimum and we can compute the averages of 〈Ak〉, 〈(Ak − 1)2〉. The results are
given and discussed in Section 4, and are very different from those for φ! Large deviations from the
classical values Ak = 1 are observed.

Is is important, at this point, to consider the following natural objection: minimizing S2
E is not the

same as minimizing SE, because ∆(S2
E) = 2SE∆SE, so that a classical theory based on the action S2

E
has more solutions than one based on SE. Actually, the additional classical solutions are just the zero
modes discussed previously, for which SE = 0. In order to reply to this objection we note that:

(1) The configurations with SE � h̄ obtained from the Metropolis algorithm with S2
E are very

different from the classical zero modes of SE. Therefore such configurations cannot originate from the
spurious minimum of S2

E at SE = 0 and it appears that, ironically, the only use of the classical zero
mode solutions is for making sure that they are irrelevant (probably due to entropic or phase-space
reasons). (2) As a further check, we have run the algorithm also with a probability based on |SE|.
Results are very similar (see Section 4.1). Although the absolute value looks a bit cumbersome and
was not our first choice, it has the advantage that no spurious stationary points are introduced.

3. Classical, Exact Zero Modes

In this Section we give a short review of our previous work on classical, exact zero modes of the
Einstein action. These are metrics for which SE = 0 (SE is defined in Equation (1)), or in other words
metrics whose scalar curvature has vanishing integral.

In perturbation theory, one can obtain such zero modes defining, at a purely mathematical level,
some suitable unphysical sources and solving the linearized Einstein equation for these sources.
The Einstein equations with source Tµν obtained from the Einstein action are, as usual

Rµν −
1
2

gµνR = −8πG
c4 Tµν (16)

By contraction with gµν one obtains

R =
8πG

c4 gµνTµν =
8πG

c4 Tρ
ρ (17)

Therefore if we define a source such that∫
d4x
√

g(x)Tρ
ρ (x) = 0 (18)
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its field will be a zero mode. If the source is static, we can suppose for simplicity that only the
T00 component is non vanishing. The factor

√
gg00 can be expressed in function of T00 through the

Feynman propagator and the conclusion is that√
g(x)g00(x) = 1 + o(G2) (19)

Therefore the action can simply be rewritten, for that source, as

SE = −1
2

∫
d4xT00(x) + o(G2) (20)

and in order to have SE = 0 at this level of approximation it is sufficient to choose an unphysical source
T00(x) of the form of a mass dipole, or one with spherical symmetry, with two concentric mass shells
of opposite sign [9].

Turning to the strong-field case, in [11] we used a virtual source method to search for zero modes
of the action. In the context of wormhole physics [15] this method is also called “reverse solution of the
Einstein equations”; it consists in finding a source which generates a metric with some desired features.
The goal here would be to find zero modes with curvature polarization, namely having two regions
with positive and negative scalar curvature such that the total integral of

√
gR is zero. However, this

turns out to be impossible, because the source must also satisfy independently the Bianchi identities,
and the two conditions are found to be incompatible beyond the linear approximation.

Still there exist in the strong-field case a set of static and spherically symmetric zero modes
without polarization. In fact the condition that the integrand of the action (10) be identically zero can
be written as an ordinary differential equation in the unknown A(r):

rA′(r)
A2(r)

+ 1− 1
A(r)

= 0 (21)

It is straightforward to check that the solutions of this equation are scale invariant, i.e., if A(r) is a
solution, then also A(kr) is a solution, for any positive k. The non-singular solution such that A(r)→ 1
when r → ∞ is

A(r) =
r

r + µ
, µ ≥ 0 (22)

One can check that this solution has for large r the same form as a Schwarzschild metric with
mass −µ. It is regular everywhere, monotonically increasing from A(0) = 0, and equal to 1

2 when
r = µ.

Finally one can define small periodic deformations of the zero modes (22) which still have null
integral, although they do not have R = 0 everywhere (see details in [11]).

In conclusion, there exist for the Einstein action weak classical zero modes of the polarized kind
and strong field zero modes which are not polarized. We have discussed analytically the possible role
of these modes in the path integral in [13]. In the next section we shall see what happens in strong
field lattice simulations.

4. Results of the Quantum Simulations

The best choice of the parameters in the Metropolis simulation for attaining thermal equilibrium
is found to be ε = 10−6, β = 1013. With this choice the total action SE reaches quickly a small
positive value of the order of 10−5 (Figure 1). A typical run includes 200 time steps, each with 5× 106

local “spin flips” of the variables Ah. The average values of Ah are computed in the second half of
the run, after equilibration. Typical figures for other averages of interest are 〈S〉 = 2.6× 10−5 and
〈e−β2∆(S2)〉 = 0.98 (acceptance ratio for changes with ∆(S2) > 0).
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Metropolis time (1 - 200)

S

0.00E+00

1.00E-05

2.00E-05

3.00E-05

Total action

Figure 1. Values of the action measured during a typical Metropolis run with inverse temperature
β = 1013. An equilibrium value of the order of 10−5 is attained (all quantities in units such that
h̄ = c = G = 1; interval length L = 1, number of sub-intervals N = 100).

Figure 2 shows that the component S1 of the action (the one given by the sum in the interval
0 < r < L/2, i.e., with index h from 1 to N/2) is positive, and vice-versa for the component S2.
From Figure 3 we see that in the same interval the metric A(r) is approximately constant, say A ' 1− χ

(0 < χ� 1), and conversely in the interval between L/2 and L we have A ' 1 + χ.

Metropolis time (1 - 200)

S

-5.00E-03

-2.50E-03

0.00E+00

2.50E-03

5.00E-03

S S1 S2

Total action and components

Figure 2. Components S1 and S2 of the action for the same run of Figure 1. S1 is given by the sum from
1 to N

2 , i.e., on the left half of the interval. S2 is given by the sum from N
2 + 1 to N, i.e., on the right half.

Both S1 and S2 are much larger, in absolute value, than the total action. Since the sign of R is opposite
to that of the local S, we conclude that the inner part of the metric has negative curvature and the outer
shell has positive curvature. The total integral of the curvature is small and negative.

r=delta*h;  h=1,...,100

A

9.00E-01

9.50E-01

1.00E+00

1.05E+00

1.10E+00

Metric component A vs. discretized radius

Figure 3. Metric component A = grr as a function of the discretized radius r = δh (δ = L/N is the
lattice cutoff). The condition at the right boundary is A = 1.
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In the expression (10) for the action we observe that if A is constant in an interval, then the
integrand reduces to (1− 1

A ). By replacing A ' 1± χ, we find that the integrand is approximately
equal to −χ in the left interval and to +χ in the right interval, i.e., it is opposite to the values of S1 and
S2 obtained numerically.

This means that the main contributions to the action do not come from the “plateaus” with
constant metric (Figure 4), but from the “steps” at r = 0, r = L/2 and r = L, where R cannot be
estimated as easily as in the plateaus. It is mainly the right combination of steps which makes the action
vanish. Note that these steps build up spontaneously and in a reproducible way in the thermalization
algorithm from billions of random flips of the discretized variables Ah.

Metropolis time (1 - 200)

S

-2.00E-03

-1.00E-03

0.00E+00

1.00E-03

2.00E-03

S1-plateau S2-plateau

Action contributions of metric plateaus

Figure 4. Action contributions from two metric “plateaus” where the metric is approximately constant.
The contribution S1−plateau comes from the inner region with 30 ≤ h ≤ 40. The contribution S2−plateau
comes from the outer region with 60 ≤ h ≤ 70. Note that the sign of S1−plateau is opposite to the sign of
S1, and the same holds for S2−plateau and S2.

The occurrence of one step exactly at the middle of the interval (0, L) is most likely an artifact of
the discretization (and remember that physically L must tend to infinity). Still a physical phenomenon
of polarization between regions with R < 0 and regions with R > 0 clearly emerges from these results.
Being r the radial coordinate of a spherical configuration, the two polarization regions are actually one
sphere and one spherical shell around it. Since R has opposite sign to the integrand of the action, we
conclude that in this class of vacuum fluctuations the inner region has R < 0 and the outer region has
R > 0.

For comparison with the exact, classical zero modes of Section 3 (with SE = 0) we recall that
polarized zero modes are obtained in the linearized approximation, but they do not survive in strong
field. Polarized zero modes in strong field appear thus to be present, and entropically dominant, only
under the weaker condition SE � h̄.

4.1. Results with Transition Probability exp(−β∆|SE|)

As mentioned in Section 2, simulations have also been performed with a transition probability
based on |SE|, as an alternative to S2

E. With parameters ε = 10−6, β = 109 one obtains results
very similar to those those with probability exp(−β2∆S2

E) and parameters ε = 10−6, β = 1013

(Figures 1 and 2; the relation between the values of β in the two cases is not obvious, since ε is
also involved). Again we observe in the simulation a positive action which increases until it reaches a
value of the order of 10−5 and then stays approximately constant, while the polarized components S1

and S2 undergo small oscillations around values of the order of 10−3.
With a tenfold increase in “temperature” (β = 108) some different field configurations are

obtained, which are quite interesting for our purposes (Figure 5). After a moderate growth to the
magnitude 10−4 as before, the action returns very close to zero (|S| ∼ 10−9, with oscillations of both
positive and negative sign); in the meanwhile, the polarized components S1 and S2 (Figure 6) are
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larger by approximately 8 magnitude orders, apparently resulting from a very efficient compensation
mechanism. Unlike in the previous case, however, the components S1 and S2 do not appear to reach
an equilibrium value but continue to grow.

Metropolis time (1 - 800)

S

-5.00E-05

0.00E+00

5.00E-05

1.00E-04

1.50E-04

2.00E-04

Total  action (weight |S|, higher temperature)

Figure 5. Total action with probability e−β|S| and inverse temperature β = 108. It reaches a positive
maximum value of the order of 10−4 and then decreases to 10−9.

Metropolis time (1 - 800)

S

-2.00E-01

-1.00E-01

0.00E+00

1.00E-01

2.00E-01

S1 S2

Action components (weight |S|, higher temperature)

Figure 6. Components S1 and S2 of the action for the same run of Figure 5. They are about 8 magnitude
orders larger than the total action.

Finally, it is interesting to note that if we make simulations simply with probability exp(−βSE),
disregarding the problem of the indefinite sign of SE, then with very low temperature (β = 109 or
more) one still obtains a positive growth of S to ∼10−5 followed by stabilization, but going to smaller
β one observes a collapse of the action to large negative values (Figure 7). The corresponding metric
shows large deviations from flat space.

Metropolis time (1 - 200)

S

-2.50E+02

-2.00E+02

-1.50E+02

-1.00E+02

-5.00E+01

0.00E+00

5.00E+01

Total action (weight S)

Figure 7. Total action with probability e−βS and inverse temperature β = 108. The system is clearly
unstable with respect to negative fluctuations of the action.
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5. Comparison with Other Approaches

A fundamental reference point for the understanding of non-perturbative quantum gravity (QG)
in the path integral approach is in our opinion the work of H. Hamber, contained in several seminal
papers starting from 1984 and summarized in the book [2] and in a few review articles. Among the
latter we can mention one from 2009 [5] and the very recent article appeared in this same Special
Issue [6], containing recent results on the quantum condensate which appears to be present in the
vacuum state of QG.

Hamber regards non-perturbative quantum chromodynamics (QCD) as a possible model for
QG, though with some important differences. In particular, in QG the cutoff or lattice spacing l0 of
the discretized theory remains implicitly present in the physical value of G, and there exists another
dynamically generated scale ξ, the correlation length of the curvature. A meaningful lattice limit is
obtained when ξ � l0. Although the magnitude of ξ is not directly related to the value of G, it signals
how close the bare G is to the fixed point value Gc.

These statements refer to the renormalization group analysis and to the scaling analysis in
dependence on the cutoff that is necessary in order to find the correct continuum limit of lattice field
theories [1], and which in this paper has not yet been performed, except for noting the scale invariance
of the classical zero modes.

Actually, in our approach we do not admit the very general scale invariance considered by Hamber,
according to which the metric can undergo transformations of the form g′µν = ωgµν. We assume
that the metric is always asymptotically equal to the flat metric ηµν, and so in our simulations the
component A(r) = grr(r) has always boundary condition A = 1 at large r. This is also because
we do not have a cosmological term in the action. Hamber, on the contrary, starts from an action
containing a bare cosmological constant λ0 and looks for a mechanism of dynamical generation of
flat spacetime. He finds that the system reaches a stable ground state only if λ0 > 0; our (limited)
results are compatible with this fact, since the vacuum fluctuations we find have average negative
scalar curvature, such to compensate a positive λ0 and bring the system closer to flat space.

Further enlarging the picture, it should be mentioned that according to Hamber the large-scale
average 〈R〉 in pure QG is not zero but equal to 1/ξ2. Therefore ξ is related to a gravitational
“condensate”, physically represented by the observed cosmological constant. This establishes a very
interesting link between QG and cosmology [6].

Other possible approaches to the problem of the true ground state in quantum gravity are those
of Preparata and collaborators [16] and of Garattini [17]. Both are based on a Hamiltonian formulation.
Classical wormhole metrics with spherical symmetry are taken as candidates for the ground state
(with lower energy than flat space) and the spectrum of the quantum excitations with respect to this
background is computed. In Reference [16] a “gas of wormholes” is then considered, as macroscopic
limit, and it is shown that it yields on the average a flat metric. In Reference [17] it is further argued
that a coherent superposition of wormholes, and not the single wormholes, is privileged with respect
to flat space. In both approaches, strong quantum fluctuations are found to occur only at the Planck
scale. In contrast, the action zero modes of [11] occur at any scale.

6. Conclusions and Outlook

The difficulties encountered in the formulation and numerical simulation of lattice quantum
gravity are manifold. This is certainly to be expected, since in quantum gravity the spacetime lattice
itself takes part to the dynamics. In this general context our present contribution is quite limited, also
because we consider only time-independent metrics with spherical symmetry. Nevertheless, we have
been able to single out some phenomena which occur in the nonperturbative lattice dynamics and can
perhaps be present under less specific circumstances. Such phenomena are quite intuitive from the
physical point of view. The idea of zero modes of the action with polarization into regions of positive
and negative scalar curvature, already explored at the perturbative level, is confirmed under strong
field conditions.



Symmetry 2019, 11, 1288 11 of 12

More in detail, we can summarize our previous and present results as follows:

1. Exact zero modes (SE = 0) with curvature polarization exist in the weak field approximation.
2. Exact zero modes without curvature polarization exist also in strong field, but
3. Quantum zero modes (SE � h̄) of any strength are predominantly of the polarized kind.

The “trick” of weighing the configurations in the path integral with e−β2S2
E (or e−β|SE |) instead of

e−βSE , in order to avoid the problem of the indefinite sign of SE, does not seem to be a weak point of
the argument. What is still missing is a scaling analysis of the results, which will be presented in a
forthcoming work.

A further extension of the results could be obtained by varying in the path integral not only the
metric component grr, but also g00. From the analytical point of view this looks intractable, but in
the numerical code it should not make a big difference, except for doubling the number of degrees of
freedom and complicating the expression of the discretized action.

Moreover, one could relax the present “one-dimensional mini-superspace approach” by allowing
metric fluctuations that break spherical symmetry. One possibility is to use a standard Ansatz with
axial symmetry and therefore an additional angular coordinate [18].

Finally, an open question is what average physical quantities can be defined and measured
in this kind of simulations, besides the local curvature and metric, which show the occurrence
of the polarization phenomenon but not its possible consequences. Possible applications concern
phenomenological consequences of distance fuzziness and spacetime foam on light propagation over
astronomical distances. In very long distance interferometry, for instance, it is natural to look for
Planck scale contributions to the strain noise [19]. Observation of extra-galactic sources may also be
affected [20]. At smaller distances, vacuum polarization plays a crucial role in the gravitational Casimir
effect ([21] and refs.).
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