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Abstract: In electromagnetic systems, duality is manifested in various forms: circuit, Keller–Dykhne,
electromagnetic, and Babinet dualities. These dualities have been developed individually in
different research fields and frequency regimes, leading to a lack of unified perspective. In this
paper, we establish a unified view of these dualities in electromagnetic systems. The underlying
geometrical structures behind the dualities are elucidated by using concepts from algebraic
topology and differential geometry. Moreover, we show that seemingly disparate phenomena,
such as frequency-independent effective response, zero backscattering, and critical response, can be
considered to be emergent phenomena of self-duality.

Keywords: duality; self-duality; Poincaré duality; circuit duality; Keller–Dykhne duality;
electromagnetic duality; Babinet’s principle; constant-resistance circuit; zero backscattering; critical
response; self-complementary antenna; metamaterials; metasurfaces

1. Introduction

Duality is an indispensable concept in mathematics, physics, and engineering. It relates two
seemingly different systems in a nontrivial manner and facilitates deeper insight into the underlying
structures behind the relevant physical theories. A duality transformation converts an object to its
dual counterpart. Performing duality transformations twice brings a system back to its original
state. Advantageously, duality transformation can sometimes convert a difficult problem into a more
tractable one. Moreover, if a system is dual to itself, namely self-dual, some special characteristics
could be expected. To name a few, self-duality characterizes a critical probability and temperature for
percolation on graphs [1,2] and two-dimensional Ising models [3], respectively.

For electromagnetic systems, duality appears in various forms, such as dual circuits [4,5],
Keller–Dykhne duality [6–8], electromagnetic duality [9–11], input–impedance duality for
antennas [12,13], and Babinet’s principle [14–26]. These dualities have been individually developed
in various research fields such as electrical engineering, radio-frequency engineering, and photonics
because the relevant frequency spectra broadly range from direct-current to the optical regime. Despite
the long history of dualities in electromagnetic systems, they have not been sufficiently discussed
from a unified perspective. In particular, universal geometrical structures behind the dualities are still
mathematically unclear in electromagnetic systems.
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Recently, engineered artificial composites called metamaterials have been attracting much
attention due to their exotic electromagnetic properties [27]. In particular, two-dimensional
metamaterials are called metasurfaces and are intensively studied as ultrathin functional
devices [28–30]. The operating frequency of metamaterials has been extended from the microwave to
the optical band, and versatile design principles over extensively wide frequency spectra are in high
demand. For example, circuit designs and nano-optics were integrated to establish a universal strategy
to design metamaterials [31]. Over the past few decades, duality has been assuming an important
role in the research and development of metamaterials. To name a few such cases, duality has been
leveraged to design complementary metasurfaces [32–35], self-complementary metasurfaces [36–42],
critical metasurfaces [43–52], maximally chiral metamaterials [53], and self-dual metamaterials with
zero backscattering [54] or helicity conservation [55–57]. In such situations, the extensive target
frequencies of metamaterials require a comprehensive understanding of duality in a unified manner.

In this paper, we establish a unified perspective which synthesizes dualities appearing in
electromagnetic systems. The underlying geometrical structures hidden behind dualities are uncovered
through Poincaré duality between circuit theory to optics. To this end, we introduce inner and
outer orientations of geometrical objects. We stress the importance of these two different kinds of
orientations because it is sometimes overlooked in primary electromagnetism. The correspondence
relationship among various dualities in electromagnetic systems is thoroughly discussed. Moreover,
we comprehensively show that self-duality manifests as frequency-independent effective response,
zero backscattering, and criticality in electromagnetic systems. As a whole, we attempted to keep the
paper pictorial as much as possible in order to easily grasp the important concepts for duality.

In Section 2, we start with discussions of electrical circuits. Although electrical circuits are
simplified and idealized systems, they include the essence of duality. To clearly see duality in circuit
theory, we provide an algebraic-topological framework for electrical circuits. Based on the established
framework, we strictly formulate circuit duality through Poincaré duality. Furthermore, we explain that
the effective response of a self-dual circuit is automatically derived from its self-duality. In Section 3,
we discuss zero backscattering for waves in self-dual circuits in terms of impedance matching. Section 4
generalizes circuit duality to Keller–Dykhne duality for a continuous two-dimensional resistive sheet.
We show that critical behavior can appear for a self-dual sheet. To extract the essence of the duality
in continuous systems, differential forms are utilized. We see that Keller–Dyhkne duality exactly
corresponds to circuit duality through discretization. In Section 5, we introduce electromagnetic duality
to Maxwell’s electromagnetic theory. Electromagnetic duality in a four-dimensional spacetime has a
similar structure to Keller–Dykhne duality in a two-dimensional plane. Section 6 introduces duality
for wave radiation and scattering by a two-dimensional sheet. Combining electromagnetic duality
and mirror symmetry of the sheet, we establish Babinet duality. Babinet duality induces the critical
response of a metallic checkerboard-like sheet. Finally, Section 7 summarizes the unified perspective
for dualities appearing in electromagnetic systems and gives a conclusion.

2. Circuit Theory

In this section, we establish a comprehensive formulation of circuit theory based on algebraic
topology. Within the proposed framework that makes use of Poincaré duality, we unveil the geometrical
structure of circuit duality. Next, we discuss the resultant duality in effective response and show that a
specific response is automatically guaranteed under self-duality. Compared to the previous algebraic
topological formulation of the circuit theory [58–60], we clarify the importance of inner and outer
orientations of geometrical objects for circuit duality. Our approach gives a succinct mathematical
description of circuit duality, and an amalgamation of circuit theory and algebraic topology yields
various benefits in this interdisciplinary area.
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2.1. Duality between Current and Voltage

� Circuits as Graphs

A circuit is considered as a network of interconnected components. The interconnection relation
can be represented by a graph G = (N , E) with a set N = {ni|i = 1, 2, · · · , |N |} expressing the totality
of nodes and a set E = {ei|i = 1, 2, · · · , |E |} representing the totality of directed edges (an ordered
2-element subset ofN ), where |S| is the number of elements of a set S . Elements inN and E are called
0- and 1-cells, respectively. Circuit elements such as voltage sources or resistors are placed along the
graph edges. In this section, we mainly focus on circuits with resistors, voltage, and current sources.
Figure 1 shows an example of a circuit and the corresponding graph.

Figure 1. Example of (a) a circuit and (b) its corresponding graph, which represents the
circuit interconnection.

� Chains

Consider a current distribution with Ii flowing along each edge ei ∈ E . Here, ei is directed and
Ii flows in the direction of ei. A negative Ii represents a current flow in the reverse direction of ei.
This current distribution can be represented by a formal sum I = ∑

|E |
i=1 Ii ei, where E generates a vector

space over real numbers R. In a strict sense, we should consider RA := {sA|s ∈ R} with the unit of
ampere A instead of R for a current distribution, but we omitted the unit to avoid notation complexity.
A vector spanned by elements in E is called a 1-chain. The vector space composed of all 1-chains is
denoted by C1. Similarly, we can define a 0-chain as ∑

|N |
i=1 qini with qi ∈ R, and introduce a vector space

C0 over R as the totality of 0-chains.

� Boundary Operator

Now, we extract the connection information regarding G. Consider an edge e directing from
a node n1 to n2. As shown in Figure 2, the boundary of e is given by ∂e = n2 − n1. Extending the
definition linearly, we can introduce a linear boundary operator ∂ : C1 → C0. The matrix representation
of ∂ is denoted by ∆i

j, called the incidence matrix. For the previous example in Figure 1b, we obtain the
following matrix representation of ∂:

∂[e1 e2 e3 e4] := [∂e1 ∂e2 ∂e3 ∂e4] = [n1 n2 n3]∆ (1)

with

∆ = [∆i
j] =

−1 0 0 1
1 −1 −1 0
0 1 1 −1

 . (2)
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Figure 2. Action of the boundary operator. Here, we have ∂e = n2 − n1.

� Kirchhoff’s Current Law

To understand the physical meaning of ∂, we consider ∂I for a current distribution I ∈ C1.
The coefficient of ∂I for n ∈ N represents the net inflow of the current: the current inflow to n minus
the current outflow from n. Therefore, the boundary operator can be used to express Kirchhoff’s
current law (KCL), which states that net current inflows at each node are zero. KCL restricts current
distribution to a linear subspace Z1 = ker ∂ = {c ∈ C1|∂c = 0}. For Equation (2), we have rank ∆ = 2,
and dim Z1 = dim C1 − rank ∆ = 2 from the rank–nullity theorem [61]. The basis of Z1 is given by
{m1 = e1 + e2 + e4, m2 = e2 − e3}. Here, m1 and m2 are closed loops called meshes. Generally, we can
construct a basis of Z1 with meshes [60].

� Cochains

Next, we represent a voltage distribution in geometric terms. For a finite-dimensional vector space
U, we can define its dual space U∗ = {α : U → R}, where α is a linear map and U∗ is a vector space
with dim U∗ = dim U. An element α ∈ U∗ can be interpreted as an apparatus which measures a vector
u ∈ U and yields α(u). For a basis {u1, u2, · · · , um} in U, we can define a dual basis {u1, u2, · · · , um}
in U∗ satisfying ui(uj) = δi

j, where the Kronecker delta δi
j is 1 if i = j; otherwise, 0. For a vector

v = ∑m
i=1 viui ∈ U with vi ∈ R, ui extracts the component with respect to ui as ui(v) = vi.

Along an edge, we can calculate power consumption as a real scalar equal to the voltage multiplied
by the current. The total power consumption in the circuit is the sum of power consumption over
all edges (power generation is represented by negative power consumption). Therefore, a voltage
distribution is considered as V ∈ C1 = (C1)

∗ yielding total power V(I) for I ∈ C1. An element
in C1 is called a 1-cochain. In C1, we have a dual basis {ei|i = 1, 2, · · · , |E |}. Then, we can express
V(I) = ∑

|E |
i=1 Vi Ii for V = ∑

|E |
i=1 Viei and I = ∑

|E |
i=1 Ii ei. We also write V(I) as

∫
I V to stress the analogy

to the theory of continuous fields. A 0-cochain ϕ ∈ C0 = (C0)
∗ also acts for a 0-chain b ∈ C0 as∫

b ϕ = ϕ(b).

� Kirchhoff’s Voltage Law

Now, we reframe Kirchhoff’s voltage law (KVL) in our geometric approach. KVL states that
the sum of voltages along any loop must be zero. Then, a voltage distribution V ∈ C1 must satisfy∫

I V = 0 for all I ∈ Z1 (also known as Tellegen’s theorem) because I is generated from mesh currents.
To concisely express KVL, we define a null space (U′)⊥ for a linear subspace U′ in U as (U′)⊥ = {α ∈
U∗|α(u) = 0 for all u ∈ U′}. The dimension of the null space is given by dim(U′)⊥ = dim U− dim U′.
The relation between U′ and (U′)⊥ is schematically depicted in Figure 3. By using the concept of a
null space, KVL is clearly rewritten to restrict voltage distribution to (Z1)

⊥.
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U *

(U')⊥

Figure 3. Relation between U′ and (U′)⊥.

� Dual Operators

Next, we want to define a dual boundary operator for ∂. Let U and W be finite-dimensional
vector spaces, and consider a linear map f : U → W. Then, a dual map f ∗ : W∗ → U∗ is defined
as [ f ∗(α)](u) := α[ f (u)] for α ∈ W∗ and all u ∈ U. Let {u1, u2, · · · , ul} and {w1, w2, · · · , wm}
be the bases of U and W, respectively. We have f ∗(wi) = ∑l

j=1[ f ∗(wi)](uj)uj = ∑l
j=1 wi[ f (uj)]uj =

∑l
j=1 uj Mi

j with the matrix representation of f as Mi
j = wi[ f (uj)]. This shows that the matrix

representation of the dual map is the transpose of the matrix representation of the original map. Using
the concept of the dual map, we can define a coboundary operator d = ∂∗ to satisfy

∫
∂c ϕ =

∫
c dϕ for

all c ∈ C1 and ϕ ∈ C0 = (C0)
∗. For a dual basis {ni} ⊂ C0 obtained from 0-cells N = {ni}, we have

dni = ∑
|E |
j=1 ej∆i

j with the incidence matrix ∆i
j. For the example of Figure 1b, we have

d[n1 n2 n3] := [dn1 dn2 dn3] = [e1 e2 e3 e4]


−1 1 0
0 −1 1
0 −1 1
1 0 −1

 . (3)

� Potential and Kirchhoff’s Voltage Law

Finally, we discuss a relation between KVL and a potential. KVL was formulated to state that the
voltage drop along any loop is zero, but how is this statement related to the existence of a potential?
To see this, we start from a general statement. Consider a linear map f : U →W. The image and kernel
of linear maps f and f ∗ are related through (ker f )⊥ = im f ∗ and (im f )⊥ = ker f ∗ [61]. The proof of
the first statement is as follows. First, (ker f )⊥ ⊃ im f ∗ holds because we have f ∗(β)(u) = β( f (u)) = 0
for all u ∈ ker f with β ∈ W∗. Second, dim(ker f )⊥ = dim U − dim ker f = rank f = rank f ∗ holds
due to the rank–nullity theorem. Then, we obtain (ker f )⊥ = im f ∗. A similar proof is applied for the
second statement. Now, we come back to circuit theory and define B1 = im d ⊂ C1. From (ker ∂)⊥ =

im d, we obtain (Z1)
⊥ = B1. This means that there is a potential ϕ ∈ C0 which satisfies V = −dϕ for a

voltage distribution V.

� Summary of Circuit Equations

The discussions so far show the duality between KCL and KVL. These results are summarized in
Figure 4. Importantly, the degree of freedom for currents and voltages constrained by KCL and KVL is
given by dim Z1 + dim B1 = dim C1. On the other hand, a circuit element along each edge gives the
relation between the current and voltage on the edges, and we have dim C1 equations with respect to all
the circuit elements. Therefore, the current and voltage distributions are unambiguously determined.



Symmetry 2019, 11, 1336 6 of 53

Figure 4. Duality between Kirchhoff’s current and voltage laws.

2.2. Planar Graph as Cellular Paving

Consider the series and parallel resistors shown in Figure 5. Series resistors R1 and R2 have the
composite resistance R = R1 + R2. On the other hand, parallel resistors R′1 and R′2 have the total
resistance R′, satisfying 1/R′ = 1/R′1 + 1/R′2. We can clearly see the duality between resistance
and conductance (given by an inverse relationship) for series and parallel resistances. This duality
universally holds in more general situations, as we show in Section 2.5. In this subsection, we set up a
fundamental geometric structure to establish circuit duality.

Figure 5. (a) series and (b) parallel resistors with composite resistances R and R′, respectively.
The duality between resistance and conductance appears as R = R1 + R2 and 1/R′ = 1/R′1 + /R′2.

� 2-Chains in Planar Graphs

The graph shown in Figure 1b is planar, i.e., its edges intersect only at their nodes. For a planar
graph, we can define faces. In Figure 6, we show directed faces F = { f1, f2, f3}, where the internal
direction of each face is represented by the directed circle. Elements of F are called 2-cells. Note that
we include the unbounded face f3 outside the circuit. The area of face f3 can be finite if we consider
the planar graph to be on a sphere. The vector space generated by F is denoted by C2. It is natural to
define a boundary operator ∂ : C2 → C1, such that ej(∂ fi) = 1 [ej(∂ fi) = −1] if ej ∈ E is included in f
in the same [opposite] direction; otherwise, ej(∂ fi) = 0. For Figure 6, we have

∂[ f1 f2 f3] := [∂ f1 ∂ f2 ∂ f3] = [e1 e2 e3 e4]


1 0 1
1 −1 0
0 1 1
1 0 1

 . (4)

Note that ∂ ◦ ∂ = 0 holds, i.e., the boundary of a cell boundary is empty.
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f1 f2 f3

e1
e2 e3e4

Figure 6. Faces in a planar circuit.

� Cellular Paving

In the previous examples, cells fully paved the two-dimensional plane without any gap. Such a
paving is often called a mesh in finite element analysis. Naturally, a p-cell is defined as a p-dimensional
directed face, which is extended from a 0-cell (point), 1-cell (edge), and 2-cell (face). Cellular paving
with the cells can be rigorously formulated in higher-dimensional spaces. The boundary of each
element is represented by a combination of lower-dimensional cells. Strictly speaking, a cellular paving
of some region R in a manifold is a finite set of open directed p-cells such that (i) two distinct cells
do not intersect, (ii) the union of all cells is R, and (iii) if the closures of two cells c and c′ meet, their
intersection is the closure of a unique cell c′′ [62]. However, we only need to grasp the concept of
cellular paving with an intuitive sense.

For a cellular paving K in an m-dimensional region, we can define Ci(K) (i = 0, 1, · · · , m)

generated from i-cells with a boundary operator ∂ : Cp(K)→ Cp−1(K) satisfying ∂ ◦ ∂ = 0. Following
a similar treatment for graphs, Zp(K) = ker

(
∂ : Cp(K)→ Cp−1(K)

)
and Bp(K) = im

(
∂ : Cp+1(K)→

Cp(K)
)

are defined. Next, we consider a dual space Cp(K) = (Cp(K))∗. As dual counterparts of Zp(K)
and Bp(K), we can define Zp(K) = ker

(
d : Cp(K) → Cp+1(K)

)
and Bp(K) = im

(
d : Cp−1(K) →

Cp(K)
)
. To extract topological characteristics, homology and cohomology groups are defined as

Hp(K) = Zp(K)/Bp(K) and Hp(K) = Zp(K)/Bp(K), respectively. It is known that dim Hp(K) and
dim Hp(K) do not depend on specific cellular paving, but only on the original m-dimensional region.

2.3. Inner and Outer Orientations

� Intuitive Explanation of Inner and Outer Orientations

Thus far, cells were assumed to be (internally) oriented. In this subsection, we clarify the definition
of orientation and provide a deeper explanation that is crucial for understanding the circuit duality.
First, one can intuitively grasp two types of orientation defined for a surface in a three-dimensional
space. In Figure 7a, the surface is internally oriented, where “internally” means that the orientation
is defined through the internal coordinates of the surface, regardless of whether or not the surface is
embedded in the three-dimensional space. On the other hand, we could consider an outer orientation of
the surface as the normal-vector field as shown in Figure 7b. Outer orientation refers to the transverse
direction of the surface and involves ambient space. To discuss how much fluid traverses the surface,
we do not use an inner-oriented surface, but an outer-oriented one. These two types of orientation are
strictly defined below and are important to express various physical quantities.

(a) (b)

Figure 7. Two types of orientation: (a) inner and (b) outer orientation of a surface in a
three-dimensional space.
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� Inner Orientation of Vector Space and Cell

As a starting point, we define an inner orientation of a vector space U. Consider two ordered bases
(e1, e2, · · · , em) and (e′1, e′2, · · · , e′m) in U. A basis transformation is represented by e′i = ∑m

j=1 ejPj
i.

When det P > 0, the direction associated with (e1, e2, · · · , em) is considered to be the same as that with
(e′1, e′2, · · · , e′m); otherwise, their directions are different. Then, bases are classified as two different
equivalence classes. We can choose one specific class to be positive orientation. If a vector space
U has such a positive orientation, U is called inner-oriented. Generally, a tangent space TP M is
a p-dimensional vector space composed of tangent vectors at a point P on a p-dimensional surface
(manifold) (Figure 8a). If tangent spaces on a p-cell are continuously oriented, it is called inner-oriented.
See a schematic picture shown in Figure 8b.

Figure 8. (a) tangent space TP M at a point P on a surface M; (b) inner-oriented 2-cell with continuously
oriented tangent spaces.

� Outer Orientation of Vector Space and Cell

Next, we introduce an outer orientation. Consider a linear subspace W in a vector space U.
When we choose an orientation of the quotient vector space U/W, we say that W is outer-oriented.
The outer orientation is naturally extended to a p-cell S in an m-dimensional manifold M.
Here, M is a total space including S and called ambient space. Because of TPS ⊂ TP M, we can
consider TP M/TPS as a vector space whose (nonzero) elements are considered to be transverse to
TPS. If a p-cell has continuous orientation of TP M/TPS for all P ∈ S, the cell is called outer-oriented.
An example of an outer-oriented 2-cell is shown in Figure 9.

Figure 9. Outer-oriented 2-cell S in a three-dimensional space is continuously outer-oriented in all
tangent spaces.

For a planar paving, we summarize all types of cells in Figure 10. An outer-oriented 0-cell is best
suited to represent a rotation around a point in the two-dimensional plane. Fluid flow transverse to an
edge is also represented by an outer-oriented 1-cell.
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Figure 10. Inner- and outer-oriented cells in a two-dimensional plane.

� Inner-Orientation Representation for Outer Orientation

Outer orientation can be represented by two inner orientations depending on the orientation of
ambient space. Let us see this representation in an example in a two-dimensional plane. Consider
an outer-oriented edge in a planar graph. With a given orientation of the plane (two-dimensional
Euclid space E2), we can convert the outer orientation into an inner one as shown in Figure 11.
The inner orientation is induced by rotating the outer orientation by 90◦, where the rotational direction
is determined by the ambient-space orientation. Importantly, the inner direction is reversed when we
choose the opposite ambient-space orientation. Thus, an outer-oriented cell š can be represented by
two different inner-oriented cells as š = {šo|o =	,�} with š	 = −š�. The above intuitive discussion
can be generalized in other dimensional spaces as shown in Appendix A.

Figure 11. Inner-oriented components of an outer-oriented edge in a two-dimensional plane. The plane
orientations are given by the subscripts (	,�).

� Outer-Orientation Representation for Inner Orientation

The previous discussions on orientations are based on representations of an outer-oriented cell
by inner-oriented cells. We would like to remark on a dual perspective: an inner-oriented cell can
be represented by outer-oriented cells. This perspective is indicated in Figure 12. To obtain an outer
orientation, the inner orientation of the edge is rotated by 90◦ in the reverse direction of a given
orientation of the plane.
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Figure 12. Outer-oriented components of an inner-oriented edge in a two-dimensional plane.

� Operation for Outer-Oriented Chains and Cochains

Next, consider a cellular paving Ǩ with outer-oriented cells. We can define a vector space Cp(Ǩ)
generated from p-cells in Ǩ. Using the representation of an outer-oriented cell by inner-oriented cells,
we can define ∂ : Cp(Ǩ) → Cp−1(Ǩ) so that ∂ individually acts for each inner-oriented component.
For example, an inner-oriented component of the boundary of an outer-oriented 1-cell in a plane is
depicted in Figure 13. The boundary operations for outer-oriented cells in a two-dimensional plane
are summarized in Figure 14.

∂ =

∂ 

=

+

−

=
ě

ň1

ň2

Figure 13. Boundary operation for an outer-oriented 1-cell in a two-dimensional plane is defined
through the inner-oriented component.

∂       =

∂       =+

(a)

(b)

ě

f̌

ň1

ň2

ě3

ě1

ě2

Figure 14. Boundary operation for an outer-oriented (a) edge and (b) face in a two-dimensional plane.

As a dual counterpart of Cp(Ǩ), the dual space Cp(Ǩ) = (Cp(Ǩ))∗ is defined by applying
the general theory for linear spaces. An outer-oriented cochain in Cp(Ǩ) is also represented by two
inner-oriented cochains and the coboundary operator d for outer-oriented cochains is naturally defined.
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2.4. Essence of Poincaré Duality

� Dual Paving

For a cellular paving K with inner-oriented cells, we can compose a dual cellular paving K? with
outer-oriented cells. Here, we focus on ambient space of a two-dimensional plane to introduce the
concept. As shown in Figure 15a, each face fi in K is converted to an outer-oriented point ňi in K?.
Each edge ej in K is also replaced with an outer-oriented edge ěj in K? transverse to the original edge.
The obtained edge is connected to a point in K?, if the original edge is included in the original face.
Furthermore, each point nj in K is converted to a face f̌ j in K? as shown in Figure 15b. The face is
adjacent to an edge inK?, if the original point is connected to the original edge. Under this composition,
the orientation of each cell is naturally inherited from the original cell to the dual cell.

ei

(a)

(b)

dual

dual

+
nj

e
j

f
i

ňi

ěj

f̌j

ěi

+

Figure 15. Correspondence between a cellular paving K and its dual paving K?. (a) a face fi in K ↔ a
point ňi in K?; (b) a point nj in K ↔ a face f̌ j in K?. In both figures, an edge ej in K corresponds to an
edge ěj in K?.

Let us explicitly see this composition in the previous example, where the original cellular paving
is shown again in Figure 16a. By applying the above procedure for K shown in Figure 16a, we obtain
the dual paving K? as shown in Figure 16b.

f1 f2 f3

e1

e2 e3

e4

n1

n2

n3

(a) (b)

+

+

+

f̌1 ě4

ň1 ě3ě2

f̌2

ě1

ň2

ň3
f̌3

Figure 16. (a) cellular paving and (b) its dual paving.
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� Poincaré Duality

For this dual paving, we have the following matrix representations of ∂:

∂[ f̌1 f̌2 f̌3] = [ě1 ě2 ě3 ě4]


1 −1 0
0 1 −1
0 1 −1
−1 0 1

 , (5)

∂[ě1 ě2 ě3 ě4] = [ň1 ň2 ň3]

1 1 0 1
0 −1 1 0
1 0 1 1

 . (6)

Comparing Equations (5) and (6) with Equations (1) and (4), we have[
∂ : C1(K)→ C0(K)

]
= −

[
∂ : C2(K?)→ C1(K?)

]T
, (7)[

∂ : C2(K)→ C1(K)
]
=
[
∂ : C1(K?)→ C0(K?)

]T
, (8)

where the square brackets indicate matrix representation. The above relations nj(∂ei) = −ěi(∂ f̌ j) and
ej(∂ fi) = ňi(∂ěj) hold from Figure 15. These relations universally hold even in a higher-dimensional
space. Recalling [d : Cp(K) → Cp+1(K)] = [∂ : Cp+1(K) → Cp(K)]T, we obtain the following
commutative diagram:

C2(K) C1(K) C0(K)

C0(K?) C1(K?) C2(K?)

∂

?2

∂

?1 ?0

d −d

(9)

Here, we have isomorphisms ?p : Cp(K) → Cm−p(K?) with m = 2, where ?0 : ni 7→ f̌ i,
?1 : ei 7→ ěi, and ?2 : fi 7→ ňi. The dual counterpart of Equation (9) is given by

C2(K) C1(K) C0(K)

C0(K?) C1(K?) C2(K?)

d d

∂

?2

−∂

?1 ?0 (10)

with ?i = (?i)
∗ using the dual map (?i)

∗ of ?i. These correspondences naturally hold in
higher-dimensional spaces and lead to Poincaré duality: Hp(M) ∼= Hm−p(M) for a compact orientable
m-dimensional manifold M [63].

2.5. Dual Circuits

� Poincaré Duality and Circuit Duality

Now, let us introduce dual circuits. Consider a circuit on a planar graph. The planar graph is seen
as a cellular paving K for a two-dimensional plane (or a sphere surface). Because there is no nontrivial
loop on a plane or sphere, we have the following equation:

im
(
∂ : C2(K)→ C1(K)

)
= ker

(
∂ : C1(K)→ C0(K)

)
. (11)

Let I ∈ Z1(K) and V ∈ B1(K) be current and voltage distributions satisfying KCL and KVL,
respectively. We set a reference resistance Rref(= 1/Gref) to exchange a current and voltage. Consider
current I? := Gref(?

1)−1(V) and voltage V? := Rref ?1 (I) distributions for a circuit on K?, where
?1 : ei 7→ ěi and (?1)−1 : ei 7→ ěi are defined with ?1 := (?1)

∗. Note that I? and V? are outer-oriented,
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but we can obtain an inner-oriented component for a given orientation of the plane. By combining
Equation (9) with Equation (11), KCL and KVL are shown to hold for I? and V? as explained below.
Here, we check KVL for V?. From Equation (11), a current distribution I ∈ Z1(K) can be written as
I = ∂F with “face” (or mesh) currents F ∈ C2(K). Then, we have V? = Rrefd

(
?2 (F)

)
, which indicates

V? ∈ B1(K?). A similar discussion to KCL holds for I?.
A current and voltage relation along a circuit element located at each edge ei ∈ E is written

by hi(I, V) = 0 for I ∈ Z1(K), and V ∈ B1(K). As a dual relation, we define h?i (I?, V?) :=
hi
(
Gref(?1)

−1(V?), Rref ?
1 (I?)

)
. If we assign a circuit element with h?i (I?, V?) = 0 for each edge

ěi in K?, I? and V? give a solution of the circuit on K?. For example, consider a resistance with Ohm’s
law V = IR with scalar V, I, and R. Substituting V → I?Rref, I → GrefV?, we have I? = G?V? with
G? = R/(Rref)

2. Importantly, we obtain

RR? = (Rref)
2 (12)

for R? = 1/G?. The derived circuit onK? is called a dual circuit. The dual relation is summarized in Table 1.

Table 1. Dual relations in electrical circuits.

Circuit Dual Circuit

Current distribution I Voltage distribution V? = Rref ?1 (I)
Voltage distribution V Current distribution I? = Gref(?

1)−1(V)
Face current F Potential ϕ? = −Rref ?2 (F)

Potential ϕ Face current F? = Gref(?
0)−1(ϕ)

Voltage source Vs Current source Is
? = GrefVs

Current source Is Voltage source Vs
? = Rref Is

Resistance R Conductance G? = (Gref)
2R

Conductance G Resistance R? = (Rref)
2G

For the previous example shown in Figure 17a, we construct a dual circuit as shown in Figure 17b.
Here, we have I?S = VS/Rref, Ri

? = (Rref)
2/Ri, and take a specific orientation (	) of the plane to obtain

an inner orientation of the current source. We can clearly see the duality between series and parallel
connections in Figure 17. Therefore, the concept of dual circuits is considered as a generalization of
series–parallel duality.

(a) (b)

VS

R1

R2 R3
I⋆S

R⋆
1

R⋆
2 R⋆

3

Figure 17. (a) example circuit and (b) its dual circuit.

� Duality for Composite Resistances

Consider a one-port network N composed of resistors. A voltage source is attached to N as shown
in Figure 18a. The network N is characterized by an equivalent resistance R = Vs/Is, where Vs and Is

are the voltage and current along the source, respectively. Consider the dual counterpart as shown in
Figure 18b. The dual network N? is characterized by R? = V?

s /I?s with the current Is
? and voltage Vs

?

along the source. From the corresponding duality, we have

RR? = (Rref)
2, (13)

where Rref is the reference resistance.
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N
N⋆

Vs Is

I⋆s

(a) (b)

V⋆
s

Figure 18. (a) one-port network with a voltage source and (b) its dual counterpart.

2.6. Self-Dual Circuit

If the self-dual relation N = N? holds for a one-port network N, the composite resistance satisfies
R = R?. In this case, we obtain R = R? = Rref without solving circuit equations. As an example,
we consider a bridge circuit shown in Figure 19a and its dual counterpart over Rref is given in Figure 19b.
The self-dual condition is written as R1R2 = (Rref)

2. Under the self-dual condition, the circuit behaves
as an effective resistor with Rref.

Thus far, we only consider circuits with resistors, but the extension to alternating-current (AC)
circuits is obvious. Under this extension, the real-number field (R) is replaced with the complex one
(C). In AC circuits, resistances are replaced with complex impedances. Consider the example of an
AC circuit shown in Figure 19c. This circuit is obtained from Figure 19a by replacing R1 → Z1 = jωL,
R2 → Z2 = 1/( jωC), where ω is an angular frequency. The self-dual condition is given by Rref =√

L/C. Under the self-duality, the circuit surprisingly behaves as a frequency-independent resistor
with Rref, although capacitors and inductors exhibit frequency-dependent response. This result can
be interpreted to mean that the frequency dependency of capacitors and inductors negate each other
when the whole system is self-dual. Therefore, self-dual circuits provide a powerful way to produce
constant-resistance circuits [64].

R1 R2

Rref

R1R2

R⋆
1

Rref

(a) (b)

CL

LC

(c)

Rref

R⋆
2

R⋆
2 R⋆

1

Figure 19. (a) bridge circuit and (b) its dual circuit; (c) alternating-current bridge circuit.

3. Zero Backscattering from Self-Duality

Signals can propagate in a uniform transmission line without backscattering. In this section,
we associate self-duality with the zero-backscattering condition. Furthermore, we show that a large
phase shift without backscattering in Huygens’ metasurfaces can be understood by using a self-dual
circuit model.

3.1. Self-Dual Transmission Lines

In this section, we consider signal propagation in a transmission line, which can be expressed
by an LC ladder network [65]. In contrast to previous research on duality in transmission lines [66],
we provide a circuit theoretical interpretation of the characteristic impedance of a transmission line in
terms of self-dual response described in Section 2.
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� Telegraph Equations

A coaxial cable, which is composed of an inner conductor as a signal line and an outer conductor
as a ground shield, forms capacitors between two conductors and inductors with a magnetic field
around the inner conductor as shown in Figure 20a. With inductance L̄ and capacitance C̄ per unit
length, the system is discretized as the LC ladder composed of Li+ 1

2
= L̄∆z and Ci = C̄∆z in a unit

length ∆z as shown in Figure 20b. In the i-th segment, Kirchhoff’s voltage and current laws are,
respectively, expressed as

Li− 1
2

dIi− 1
2

dt
= Vi−1 −Vi, (14)

Ci
dVi
dt

= Ii− 1
2
− Ii+ 1

2
. (15)

In the continuum limit of ∆z→ 0, the above equations become

L̄
∂I
∂t

= −∂V
∂z

, (16)

C̄
∂V
∂t

= − ∂I
∂z

, (17)

which are well known as the telegraph equations. Generally, L̄(z) and C̄(z) can depend on z.

Δz

Li− Li+

CiCi−1 Ci+1

ViVi−1

I I

(b)(a) shield conductor

inner conductor

3−2 Li− 1−2
1−2

i− 1−2 i+ 1−2

Figure 20. (a) coaxial cable and (b) its circuit model.

� Zero Backscattering in Self-Dual Transmission Lines

Here, we see that the self-dual transmission line does not cause backscattering. If a transmission
line has a constant impedance Z =

√
L̄(z)/C̄(z) independent of z, then the transmission line becomes

self-dual: the telegraph equations with a uniform Z are invariant under duality transformation
(V, I) ↔ (Rref I, V/Rref) with Rref = Z. In terms of the new variables η± = V ± ZI, the self-dual
telegraph equations are written as

∂η±
∂z
± 1

v0

∂η±
∂t

= 0, (18)

where v0(z) = 1/
√

L̄C̄. With arbitrary functions f±, the general expression of the solution can be provided
by η±(t, z) = f±(t∓

∫ z dz′/v0(z′)), which corresponds to a propagating wave with velocity ±v0(z)
without backscatterng. If Z(z) depends on z, self-duality is broken and backscattering may be observed.

� Circuit-Theoretical Derivation of Zero Backscattering

Next, we give a circuit-theoretical derivation of zero backscattering for a self-dual system.
A transmission line composed of LC ladder circuits is shown in Figure 21a, where inductances
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Li+ 1
2

and capacitances Ci may depend on the position i. The dual circuit with respect to a global
resistance Rref is illustrated as shown in Figure 21b. The transformed circuit elements are given as

L?
i = Ci(Rref)

2, C?
i+ 1

2
= Li+ 1

2
/(Rref)

2. (19)

In the limit of small L?
i and C?

i+ 1
2
, each capacitance can be shifted to next position because the

potential difference across each inductance is negligibly small. By repeating the shift of the capacitances
Ci → Ci+1 in the original circuit as shown in Figure 21c, we obtain the same circuit as Figure 21b
(L?

i = Li+ 1
2

and C?
i+ 1

2
= Ci) under the following condition for any i:

Rref =

√
Li+ 1

2

Ci
. (20)

In other words, the LC ladder network with constant Li+ 1
2
/Ci is self-dual for impedance inversion

with respect to Rref defined by Equation (20). In this way, the global parameter Rref is linked with the
local impedance Zi =

√
Li+ 1

2
/Ci, which is defined by Li+ 1

2
and Ci in each site.

Next, we consider excitation of the self-dual LC ladder by a voltage source V connected at the
left-hand side as shown in Figure 21d. The dual circuit is illustrated in Figure 21e, where the current
source is given by Is = Vs/Rref. By repeating the shift of the capacitances Ci → Ci+1 as depicted in
Figure 21f, Figure 21e can be identified with Figure 21f. As discussed in Section 2.6, the self-dual circuit is
characterized by the effective resistance Rref as shown in Figure 21g. Imagine that we connect a uniform
transmission line (T1) with a characteristic impedance of Rref to the half-infinite circuit (T2). When the
signal propagates from T1 to T2, any backscattering does not appear due to the impedance matching.

Ci−1
 

 

 

(a)

(b)

 

 

(d)

(e)

(g)

=

Ci Ci+1

Li+Li−Li−

L⋆i=Ci (Rref)
2

C⋆
i+  =Li+   /(Rref)

2

Ci Ci+1

Ci+1
Rref

C⋆
i+

L⋆i

2
3

2
1

2
1

2
1

2
1

Li+2
1 Li+2

3

Li+2
1 Li+2

3

2
1

Ci−1
  Ci Ci+1

Li+Li−Li− 2
3

2
1

2
1 Li+2

1 Li+2
3

Ci Ci+1

capacitor shift capacitor shift

(c) (f)

Figure 21. (a) LC ladder circuit and (b) its dual circuit; (c) capacitors in the circuit (a) are shifted; (d) LC
ladder circuit excited by a voltage source and (e) its dual circuit; (f) capacitors in the circuit (d) are
shifted; (g) input impedance of the LC ladder circuit.
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� Heaviside Condition

Self-duality can be realized in transmission lines with inductance Li+ 1
2
= L̄∆z, capacitance

Ci = C̄∆z, conductance Gi = Ḡ∆z, and resistance Ri+ 1
2
= R̄∆z as shown in Figure 22. The self-dual

condition is given by √
L̄
C̄

=

√
R̄
Ḡ

. (21)

This self-dual condition is nothing but a no-distortion signal transmission condition derived by
Heaviside [67]. Due to the self-duality, frequency-independent response is realized and backscattering
vanishes, while a signal decays as it propagates.

Figure 22. LC ladder with resistance and conductance.

3.2. Circuit Model for Huygens’ Metasurface

Two-dimensional artificial structures called metasurfaces have been extensively investigated for
controlling the amplitude and phase of transmitted and/or reflected electromagnetic waves [68].
The wavefront control of light can be realized by designing metasurfaces with spatial variations of
phase responses [69–72]. The amplitude and phase responses of metasurfaces are generally interdependent.
Nevertheless, it is possible to control the phase of the transmitted light with constant power transmission,
which could be 100% in ideal conditions without losses, by carefully designing the resonant components
of the metasurfaces. Metasurfaces for the arbitrary control of transmission properties, or amplitude and
phase control, are called Huygens’ metasurfaces, which have been introduced by Pfeiffer and Grbic [73].
In this subsection, we clarify the role of self-duality in Huygens’ metasurfaces.

� Transmission and Reflection for Huygens’ Metasurfaces

It is assumed that monochromatic plane electromagnetic waves with a specific polarization are
normally incident on an isotropic metasurface placed at z = 0 in a vacuum with a wave impedance
of Z0. In this paper, the variable with a tilde represents the complex amplitude of a harmonically
oscillating quantity A = Ãe jωt + c.c., where c.c. denotes the complex conjugate of the preceding term.
The complex amplitudes of macroscopic electric and magnetic fields, which are averaged over the
typical scale of metasurface elements, are represented by Ẽ− and H̃− (Ẽ+ and H̃+) for the input (output)
side z ≤ 0 (z ≥ 0) in the proximity to the surface. Although electric and magnetic fields are represented
by vectors, we here focus on scalar amplitudes for a specific polarization. Electromagnetic response of
the metasurface is characterized by two parameters: electric sheet admittance Ye and magnetic sheet
impedance Zm. The averaged electric fields Ẽav = (Ẽ− + Ẽ+)/2 induce surface currents K̃ = YeẼav,
which demand the boundary condition H̃− − H̃+ = K̃ on z = 0 [74]. In the same way, the magnetic
counterpart can be considered, and the averaged magnetic fields H̃av = (H̃− + H̃+)/2 produce surface
magnetic currents K̃m = ZmH̃av, which require the boundary condition Ẽ− − Ẽ+ = K̃m. The boundary
conditions are summarized as

H̃− − H̃+ = Ye
Ẽ− + Ẽ+

2
, (22)

Ẽ− − Ẽ+ = Zm
H̃− + H̃+

2
. (23)
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For the incident wave propagating in the +z direction with the electric field Ẽin e− jkz and the
magnetic field H̃in e− jkz(= Ẽin e− jkz/Z0), the total electric and magnetic fields (Ẽ, H̃) are represented
as (Ẽin e− jkz + $Ẽin e jkz, H̃in e− jkz − $H̃in e jkz) in z ≤ 0 and (τẼin e− jkz, τH̃in e− jkz) in z ≥ 0, where τ

and $ are the amplitude transmission and reflection coefficients. By substituting these fields at the
metasurface (z = 0) into Equations (22) and (23), the amplitude transmission and reflection coefficients
are obtained as

τ = (Z2−Z1)Z0
(Z0+Z1)(Z0+Z2)

,

$ = Z1Z2−(Z0)
2

(Z0+Z1)(Z0+Z2)
,

(24)

where Z1 = Zm/2 and Z2 = 2/Ye. Hence, the reflection vanishes for Z1Z2 = (Z0)
2. In addition to

the no-reflection condition, if Z1 and Z2 are purely imaginary impedances, which are expressed as
Z1 = (Z0)

2/Z2 = jbZ0 with a dimensionless number b ∈ R, the transmission coefficient can be written as

τ =
1− jb
1 + jb

. (25)

The incident waves are perfectly transmitted through the metasurface due to the fact that |τ|2 = 1
for any b, and the transmitted waves acquire a phase of θ = −2 arctan b. Such metasurfaces, which are
typical examples of Huygens’ metasurfaces, realize arbitrary phase shift θ without losses in an ideal
case by tailoring the design of the metasurface structures. Both of the electric and magnetic responses
are indispensable for the no-reflection condition.

� Circuit Model for Huygens’ Metasurfaces

The propagation of electromagnetic waves in a vacuum can be modeled as signal propagation
in a transmission line with the wave impedance Z0, and the metasurface is represented by circuit
elements inserted in the transmission line as shown in Figure 23a. In this model, the electric field Ẽ
and magnetic field H̃ are replaced with voltage Ṽ and current Ĩ, respectively; therefore, the circuit
model of the metasurface should satisfy the following conditions:

Ĩ− − Ĩ+ = Ye
Ṽ− + Ṽ+

2
, (26)

Ṽ− − Ṽ+ = Zm
Ĩ− + Ĩ+

2
. (27)

A circuit called a lattice circuit as shown in Figure 23b satisfies the above conditions [75].
The electric and magnetic responses are represented by impedances Z2(= 2/Ye) and Z1(= Zm/2),
respectively. Equations (26) and (27) can be confirmed separately for Figure 23b, considering excitation
by waves from both sides of the metasurface. For in-phase excitation Ṽ− = Ṽ+, all currents are sunk
into the bridge circuit, and the currents become antiphase Ĩ− = − Ĩ+. There is no voltage across Z1,
and the currents flow only in Z2. Hence, we obtain Ṽ− = Z2 Ĩ−, which is identical to Equation (26) for
Ṽ− = Ṽ+ and Ĩ− = − Ĩ+. In the opposite case, Ṽ− = −Ṽ+ and Ĩ− = Ĩ+, the currents flow only in Z1,
and Ṽ− = Z1 Ĩ−, so the equation that corresponds to Equation (27) can be derived.

� Zero Backscattering Due to Self-Duality

For Figure 23a, Zin = Ṽ−/ Ĩ− provides the input impedance for the metasurface, or lattice circuit,
followed by the transmission line in z > 0. The uniform semi-infinite transmission line in z > 0 can be
regarded as a resistor with an impedance of Z0 as shown in Figure 21g. As a result, the total system viewed
from the input side z < 0 is well described by a bridge circuit as shown in Figure 23c, and Zin is identical to
the impedance of the bridge circuit. As described in Section 2.6, the bridge circuit satisfying Z1Z2 = (Z0)

2

is self-dual for the inversion center Z0, and the input impedance Zin is always Z0. The reflection vanishes
under this condition, where the wave impedance Z0 is impedance-matched to the load represented by the
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bridge circuit. As a result, all energy is transmitted to the transmission line in z > 0. Thus, the no-reflection
condition for Huygens’ metasurfaces is interpreted in terms of self-duality.

(a)

m
et

as
ur

fa
ce

transmission
line

Ṽ− Ṽ+

Ĩ− Ĩ+Z0 Z0 tuptuotupni

Z1

(b)

z0

Ṽ−

Ĩ−

Z0

Ṽ+

(c)

Ĩ+

Z2Z2

Z1

Z2

Z2

Z1

Z1

Figure 23. (a) circuit model for propagating electromagnetic waves incident on a metasurface; (b) circuit
model of Huygens’ metasurfaces with Z1 = Zm/2 and Z2 = 2/Ye; (c) lumped circuit model for the
metasurface followed by a semi-infinite transmission line.

4. Keller–Dykhne Duality

Circuit duality can be extended for a continuous system. As with circuits, the effective response of
a continuous system is associated with that of the dual one; thus, a self-dual response is automatically
guaranteed. Such a constraint can induce critical behaviors of self-dual systems. Here, these topics
are reviewed. Next, we introduce differential forms to clearly extract the structure of the duality in a
continuous system. The correspondence between the dualities in continuous and discrete systems is
formulated through discretization of continuous fields. In this section, we always use the right-hand
vector product, in other words, A, B, and A× B obey the right-hand rule.

4.1. Two-Dimensional Resistive Sheets

Consider an electric field E(x, y) and current density K(x, y) on a two-dimensional resistive
sheet located at z = 0 with a sheet conductance G(x, y). Here, we assume that the fields inside the
thin sheet are uniform along z and omit z-dependency for the fields. Thus, we treat the fields as
two-dimensional vector fields independent of z. An example configuration is shown in Figure 24a.
The physical dimensions of E, K, and G are V/m, A/m, and 1/Ω, respectively. From KVL and KCL,
we obtain

∇× E = 0, (28)

∇ · K = 0. (29)

Figure 24. (a) two-dimensional resistive sheet with boundary conditions; (b) solution for a sheet with
a constant sheet conductance G(x, y) = Gref. Black lines represent the current flow. The potential is
shown as a color map with isopotential gray contours.
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Note that these equations can be directly obtained from Maxwell’s equations; by omitting the
time-derivative terms for steady states, we can obtain Equations (28) and (29) from Faraday’s law and
the law of charge conservation. Ohm’s law is given by

K = GE, (30)

where G is a conductance and generally a 2× 2 matrix. For a metallic electrode, the boundary condition
is written as

n× E = 0, (31)

where n is the unit vector normal to the boundary. For an open boundary, the boundary condition is
given by

n · K = 0. (32)

From Equation (28), the electric field is represented by

E = −∇ϕ (33)

with a potential ϕ(x, y). Combining Equation (33) with Equations (29) and (30), we obtain

∇ · G∇ϕ = 0. (34)

The boundary of the i-th electrode is specified by the Dirichlet boundary condition

ϕ = ϕi, (35)

which is constant along the boundary. The open boundary is given by the Neumann boundary condition

n · G∇ϕ = 0. (36)

For a simplified system with a constant scalar conductance, we have the Laplace equation

∇2 ϕ = 0 (37)

from Equation (34). An example solution of the Laplace equation calculated by COMSOL
Multiphysics R© is shown in Figure 24b.

4.2. Duality in Laplace Equation

In this subsection, we discuss duality in Laplace equations [76]. The solution of the Laplace
equation is called a harmonic function. A harmonic function can be considered as a part of a holomorphic
function. To see this fact, consider a holomorphic function w(z) = u(z) + jv(z) with z = x + jy,
u(z) = Re[w(z)], and v(z) = Im[w(z)]. The holomorphism leads to the Cauchy–Riemann equations:

∂u
∂x

=
∂v
∂y

, (38)

∂u
∂y

= − ∂v
∂x

. (39)

These equations can be expressed as  ∂v
∂x
∂v
∂y

 = J

 ∂u
∂x
∂u
∂y

 (40)
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with J =

[
0 −1
1 0

]
, which induces counterclockwise 90◦ rotation. As we differentiate Equations (38)

and (39) along x and y, respectively, and combine the results, we obtain

∇2u = 0, (41)

which states that u is harmonic. Similarly, v is also harmonic. Here, v is called a harmonic conjugate of u.
If u is given, how can we obtain its harmonic conjugate v? Focusing on v(x, y) = v(x0, y0) +∫

path:(x0,y0)→(x,y)(∇v) · dr with Equation (40), we have

v(x, y) = v(x0, y0) +
∫

path:(x0,y0)→(x,y)
(J∇u) · dr, (42)

where r = [x y]T and (x0, y0) is a fixed point. We have assumed that the considered region is
simply connected to define Equation (42). When we consider a small displacement ∆r along a line
v(x, y) = const., we have (J∇u) · ∆r = 0, which leads to ∇u ‖ ∆r. Therefore, u and v constitute
an orthogonal coordinate around the point ∇u 6= 0, as shown in Figure 25a. In this subsection, the
operation of taking the harmonic conjugate is treated as a duality transformation.

Figure 25. (a) holomorphic function w(z) = u(z) + jv(z) defines an orthogonal coordinate around a
point with dw/dz 6= 0; (b) harmonic potential ϕ and the lines of force −∇ϕ; (c) harmonic conjugate ψ

for ϕ and the lines of force −∇ψ.

The above result induces duality for the potential problem of the Laplace equation. Let ψ be the
harmonic conjugate of a harmonic potential ϕ. The relation between ϕ and ψ is depicted in Figure 25b,c.
Now, we come back to resistive sheet problems. The current stream lines and isopotential contours are
replaced with each other under the harmonic conjugate as shown in the simplest example of Figure 26.
Furthermore, we can see that the harmonic conjugate interchanges the Dirichlet and the Neumann
boundary conditions because of the 90◦ rotation.

Figure 26. Current and potential distributions for (a) original and (b) its dual resistive sheets with a
uniform conductance.
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4.3. Generalized Duality

Harmonic duality can be extended to a two-dimensional resistive sheet with a spatially
inhomogeneous sheet conductance G(x, y). Keller proved the duality for a system composed of
two different conductances [6], and Dykhne generalized it to a system with an arbitrary scalar function
G(x, y) [7]. The extended duality is often called Keller–Dykhne duality. Furthermore, Mendelson
generalized the duality for a tensor G(x, y) [8].

Here, we review the derivation of the duality. As with circuit duality, we set a reference resistance
Rref(= 1/Gref). Referring to a 90◦ rotation in Equation (40), we introduce the following dual fields on z = 0:

E? = Rref JK = Rrefez × K, (43)

K? = Gref JE = Grefez × E, (44)

with the unit vector ez along the z direction. The 90◦ rotation interchanges divergence and rotation of a
two-dimensional vector field v(x, y) as

∇× (ez × v) = ez∇ · v, (45)

∇ · (ez × v) = −ez · (∇× v), (46)

where we used ∇ × (A × B) = A(∇ · B) − B(∇ · A) + (B · ∇)A − (A · ∇)B and ∇ · (A × B) =

B · (∇× A)− A · (∇× B). Thus, KVL and KCL for E? and K? automatically follow: ∇× E? = 0 and
∇ · K? = 0. In addition, Ohm’s law in Equation (30) is converted to

K? = G?E? (47)

with
G? = (Gref)

2 JG−1 J−1. (48)

For R = G−1 and R? = (G?)−1, we obtain

R? JRJ−1 = (Rref)
2. (49)

Therefore, E? and K? give a solution for the sheet with G? under interchanging the Dirichlet
and Neumann boundary conditions. Note that G can be a tensor. For a scalar G, we simply obtain
G?G = (Gref)

2.

4.4. Effective Response and Duality

Duality can relate the effective response of an original sheet with its dual counterpart. To see this
statement, consider a resistive sheet with two terminals as shown in Figure 27a. Between electrodes,
we have the voltage V = −

∫
c1

E · dr and current flow I =
∫

c2
K · n2 dr. The effective conductance

between the terminals is defined as Geff = I/V. The dual system is also shown in Figure 27b,
and the voltage and current are represented by V? = −

∫
c2

E? · dr and I? =
∫

c1
K? · n1dr, respectively.

Using A · (B× C) = B · (C× A) = C · (A× B), we obtain

V? = Rref I, (50)

I? = GrefV. (51)

Therefore, the effective conductance G?
eff for the dual system is given by

G?
eff Geff = (Gref)

2. (52)
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If the system is self-dual and passive, which means that there is no active element with a negative
resistance, then Geff = G?

eff = Gref automatically follow. Thus, self-duality determines the effective
response regardless of the structural geometry.

 

G(x,y)

c2

c1

n1

n2

(a) (b)

G⋆(x,y)

Figure 27. (a) resistive sheet with a sheet conductance G(x, y) and two terminals; (b) corresponding
counterpart with G? = (Gref)

2 JG−1 J−1. Unit normal vectors are denoted by n1 and n2 for curves c1

and c2, respectively.

4.5. Self-Duality and Singularity

The self-dual effective response can sometimes predict a critical behavior of the system. To see
how critical behavior appears in self-dual systems, we consider an ideal checkerboard with different
admittances Y1 and Y2, as shown in Figure 28a. Here, the AC response with an angular frequency
ω is discussed for the checkerboard. For a capacitive admittance Y1 = jωC and an inductive
admittance Y2 = ( jωL)−1, the checkerboard is self-dual with respect to a reference conductance
Gref =

√
Y1Y2 =

√
C/L. Then, we obtain a real effective admittance Yeff = Gref due to the self-duality.

The positive real admittance indicates that the system is lossy. However, the system is lossless
because the effective admittance composed only of capacitors and inductors must be purely imaginary.
Therefore, we do not have a physical solution for such a checkerboard composed of capacitors and
inductors. Thus, the lossless ideal checkerboard is singular.

The above observation can be also interpreted from a branch cut for the self-dual admittance
Yeff(Y1, Y2) =

√
Y1Y2 [77]. We fix Y2 at a point of the negative imaginary axis and gradually displace Y1

from Y2 as shown in Figure 28b. When we consider Yeff(Y1) =
√

Y1Y2 as a function of Y1, Yeff(Y1) must
have a branch cut in the complex plane. The previous discussion clearly shows that the branch cut is
located along the positive imaginary axis. This result indicates that two approaches from Re(Y1) > 0
and Re(Y1) < 0 regions to a point at the singular branch lead to different values of Yeff. The effective
admittance on the branch is critically sensitive to loss or gain of the system.

The above result can be generalized for arbitrary Y2. Using linearity

Yeff(sY1, sY2) = sYeff(Y1, Y2) (53)

for a scalar s, we can write Yeff as Yeff = Y2RrefYeff(ηGref, Gref) with η = Y1/Y2. Therefore, all system
characteristics are derived from yeff(η) := RrefYeff(ηGref, Gref) satisfying yeff(η) = η yeff(η

−1) due to
the self-duality Yeff(Y1, Y2) = Yeff(Y2, Y1). Because singular Y1 is represented by Y1 = sY2(s < 0) in the
previous discussion, self-dual yeff(η) has a branch cut along the negative real axis of η.
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Figure 28. (a) ideal checkerboard sheet with sheet admittances Y1 and Y2; (b) domain of definition
for the effective admittance Yeff(Y1) =

√
Y1Y2. The branch cut along the positive imaginary axis is

indicated by a wavy line.

4.6. Differential-Form Approach for Duality

Although Keller–Dykhne duality was formulated through vector analysis, the essence of the
duality can be vividly extracted by differential forms. Furthermore, differential forms are suitable
to discretize continuous fields to circuit systems. Discretizing differential forms, we bridge between
Keller–Dykhne duality and circuit duality.

Here, let us introduce differential forms and the exterior derivative in plain terms. To this end,
we only focus on Cartesian coordinates. For more technical details of differential forms, see [59,78].

� Covector and 1-Form

First, consider an electric field at a point (x0, y0). The Cartesian basis is denoted by {ex, ey}.
A displacement ∆r = ∆xex + ∆yey and the electric potential difference ∆ϕ are related through

− ∆ϕ = Ex(x0, y0)∆x + Ey(x0, y0)∆y. (54)

It is possible to consider an electric field E as a linear function as E : ∆r 7→ −∆ϕ. Physically, we may
understand the electric field as an apparatus that measures the (minus) electric potential difference for a
displacement ∆r. Such a linear map from a vector to a scalar is called a covector. Introducing a dual basis
{dx, dy}with respect to the Cartesian basis {ex, ey}, we can write the covector as

E(x0, y0) = Ex(x0, y0)dx + Ey(x0, y0)dy. (55)

The action of the interior product between E(x0, y0) and a displacement vector ∆r is written as

∆ry E(x0, y0) = Ex(x0, y0)∆x + Ey(x0, y0)∆y. (56)

From the definition, we have exydx = 1, eyydx = 0, eyydy = 1, and exydy = 0. A covector α should
be depicted as a set of parallel lines with an outer orientation as shown in Figure 29a. As the covector
becomes stronger, the lines become denser. The interior product vy α gives the signed number of lines that
the vector v pierces. Note that we consider a limit operation in the strict sense as follows: we set a small
resolution value ε and define a set of lines {Lm|m ∈ Z}with Lm = {r|ry α = mε}. The number of the lines
of {Lm} pierced by v is denoted as N(ε). Then, we obtain vy α = limε→0 εN(ε).

The electric field is given by a covector field

E(x, y) = Ex(x, y)dx + Ey(x, y)dy, (57)

which smoothly depends on (x, y). Covector fields are generally called 1-forms. An example of a
1-form is shown in Figure 29b. For a general 1-form α, vy α is evaluated at the tangent space to which
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v belongs: vy α = vy α(x0, y0) for v whose starting point is (x0, y0). The 1-form α can be integrated
along a curve c as ∫

c
α := lim

N→∞

N−1

∑
i=0

∆riy α, (58)

where curve c(t) : [0, 1]→ E2 is discretized as ∆ri = c(ti+1)− c(ti) with ti = i/N (E2: two-dimensional
Euclidean space). Note that ∆ri is considered to be in the tangent space of c(ti). This definition can be
linearly extended for any 1-chain c, and a 1-form is considered as a 1-cochain. By integrating, we can
express a voltage difference as V = −

∫
c E.

Figure 29. (a) illustration of a covector α. The signed number of lines that a vector v pierces is given by
vy α. The positive direction of α is depicted by carets; (b) covector field (1-form); (c) discretized curve c
with displaced vectors ∆ri to define the integral of a 1-form α along c.

� Tensors and Products

Similar to a covector, a (covariant) tensor maps p input vectors to a scalar output: T(v1, v2, · · · , vp),
which has linearity in each slot. The interior product of a vector v and a tensor T can be defined as
vy T = T(v,t, · · · ), which indicates that the first slot is filled with v and the other slots are left waiting
for inputs (t).

To obtain a higher-order tensor, other products are introduced. First, the tensor product of two
covectors α and β is defined as follows: α⊗ β(u, v) = α(u)β(v) for u, v in a vector space U. For 1-forms,
the tensor product operates on each tangent space.

Second, the wedge product for two 1-forms α and β is defined as an antisymmetrized tensor

α ∧ β =
1
2
(α⊗ β− β⊗ α). (59)

The wedge product of two 1-forms satisfies

α ∧ β = −β ∧ α, (60)

α ∧ α = 0. (61)

As dx ∧ dx = dy ∧ dy = 0, only dx ∧ dy plays an important role. For u = uxex + uyey and
v = vxex + vyey, we have

dx ∧ dy(u, v) =
1
2

det

[
ux vx

uy vy

]
. (62)

Due to the antisymmetry dx ∧ dy(u, v) = −dx ∧ dy(v, u), dx ∧ dy measures a signed area of a
triangle spanned by u and v. In Figure 30a, we illustrate dx ∧ dy as directed circles and dx ∧ dy(u, v)
counts the number of circles inside the triangle spanned by u and v. If the direction from u to v is the
same (opposite) as the direction of the circles, the circles are counted as positive (negative) numbers.
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Figure 30. (a) dx ∧ dy as directed circles; (b) example of a 2-form; (c) discretization for integration.

� 2-Forms and Integration

We can also consider a field ω = f (x, y)dx ∧ dy with a scalar function f (x, y), where ω is called a
2-form. An example of a 2-form is shown in Figure 30b, where the dense circle area has a stronger field
than the sparse area. For integration, we discretize a directed 2-cell S as S =

⋃
i Si with disjoint small

triangles Si (Figure 30c). A 2-form can be integrated on S as∫
S

ω = lim ∑
i

f (xi, yi)ω(∆ui, ∆vi), (63)

where ∆ui and ∆vi span a triangle Si with the same direction of S and (xi, yi) ∈ Si. The limit is taken
for finer meshes. Generally, S can be an arbitrary 2-chain. Then, a 2-form can be considered as a
2-cochain. Note that integration of a general tensor T without antisymmetry cannot be defined and
the antisymmetry is essential for integration. To define the integral, the integration over subdivided
triangles should be the same as that of the original triangle. At least, T(u, v) = T

(
u, u+v

2
)
+ T

( u+v
2 , v

)
is required for arbitrary u and v. Considering u = v, we obtain T(u, u) = 0 for arbitrary u.
Then, the antisymmetry T(u, v) = −T(v, u) must hold due to T(u + v, u + v) = 0.

� Exterior Derivative

The exterior derivative for a scalar function f (x, y) is defined as

d f =
∂ f
∂x

dx +
∂ f
∂y

dy, (64)

which corresponds to the gradient of the function f . For a 1-form α = αxdx + αydy, we define the
exterior derivative as

dα = (dαx) ∧ dx + (dαy) ∧ dy. (65)

By direct calculation,

dα =

(
∂αy

∂x
− ∂αx

∂y

)
dx ∧ dy,

this corresponds to a rotation. By using the exterior derivative, KVL is represented as dE = 0.

� Stokes’ Theorem

How may one relate an exterior derivative to the boundary of a chain? Green’s theorem

∮
∂S
( f dx + gdy) =

∫∫
S

(
∂g
∂x
− ∂ f

∂y

)
dxdy (66)

can be rewritten as the following equation for a 2-chain S with a 1-form α:∫
S

dα =
∫

∂S
α. (67)
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Equation (67) generally holds for higher-dimensional spaces, and it is known as Stokes’ theorem.
Stokes’ theorem relates the boundary operator ∂ with the exterior derivative d.

� Twisted 1-Form

Next, we consider a representation of current density. As discussed in Section 2.3, current flow
should be calculated for an outer-oriented 1-chain, so the current density is an outer-oriented 1-cochain.
The outer-oriented 1-chain č was represented as č = {čo|o =�,	} by using the inner-oriented
1-chain čo depending on a plane orientation o. Thus, current density K should be represented as
K = {Ko|o =�,	} with the two 1-forms satisfying

K−o = −Ko, (68)

where −o represents the opposite orientation of o. The set of two 1-forms satisfying Equation (68) is
called a twisted 1-form. On the other hand, ordinary forms are called untwisted. A twisted 1-form α̌ at a
point P is an outer-oriented covector α̌P, which is depicted as the inner-oriented lines in Figure 31a.
To stress the twist, we put the check symbol (ˇ) for twisted objects, but sometimes omit the mark to
reduce the notation complexity. In Figure 31b, the twisted 1-form K is depicted by (local) stream lines.
We can count the total current flow across a curve by the integration. The integration of K along an
outer-oriented 1-chain č is defined as ∫

č
K :=

∫
čo

Ko. (69)

The exterior derivative of K is also defined as

(dK)o = dKo. (70)

KCL states that ∫
∂Š

K =
∫

Š
dK = 0 (71)

for any outer-oriented 2-cell Š. Considering small Š, we obtain dK = 0 as KCL.

(a) (b)

P

v̌ v̌ 」α̌P:

number of 
piercing

α̌

č

α̌P

Figure 31. (a) interior product between an outer-oriented vector v̌ and an outer-oriented covector α̌P at
a point P; (b) integration of a twisted 1-form α̌ along an outer-oriented 1-chain č.

�Metric Tensor

To express Ohm’s law, we will define the Hodge star operation. To define the Hodge star operation,
we need to introduce a metric tensor. In the two-dimensional Euclidean space E2, we can define the
inner product of vectors u = uxex + uyey and v = vxex + vyey as

g(u, v) = u · v (72)

with u · v = uxvx + uyvy. Here, g is called the metric tensor. We can define a covector g[(u) for a vector
u satisfying

g[(u) = g(u,t). (73)
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Therefore, vy g[(u) = g(u, v) holds. The operation of g[ on ex and ey is graphically shown in
Figure 32. The inverse map of g[ is written as g] = (g[)−1.

Figure 32. Conversion between a vector and a covector.

� Area Form as a Twisted 2-Form

With respect to the metric of E2, {ex, ey} is an orthogonal basis: g(ei, ej) = δij (δij: Kronecker
delta). Using the orthogonal coordinate, we can define a twisted 2-form “Area” as

Area	 = dx ∧ dy, (74)

Area� = −dx ∧ dy. (75)

The area form measures the unsigned area of an outer-oriented 2-chain.

� Hodge Star

Now, we define the Hodge star operation for a 1-form α as

(?α)o = g](α)yAreao (76)

with respect to an orientation o of the plane. The star operator ? maps a 1-form to a twisted 1-form.
Naturally, we can define a Hodge star operation for a twisted 1-form α̌ as:

? α̌ = g](α̌o)yAreao. (77)

Then, the Hodge operator maps a twisted 1-form to an untwisted 1-form. The multiple operations
of ? are shown in Figure 33. In this figure, we can see

? ? = −Id, (78)

where Id is the identity operator. Therefore, ? defines the complex structure in the two-dimensional plane.
By using the Hodge star, we can represent Ohm’s law with a scalar sheet conductance G as K = G ? E.
Note that the Hodge operator can be defined for other p-forms, but the sign of ?? generally depends on
the order p, the dimension of the space, and the metric signature, rather than Equation (78) [59].
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Figure 33. Complex structure of Hodge operations for untwisted and twisted 1-forms.

4.7. Summary of Basic Equations in Differential-Form Approach

Now, we summarize the basic equations with differential forms for a two-dimensional resistive
sheet with a nonuniform scalar conductance. The electric field is represented by a 1-form E, while the
current density field is given by a twisted 1-form K. KVL and KCL are formulated as

dE = 0, (79)

dK = 0, (80)

respectively. The scalar Ohm’s law is rewritten as

K = G ? E (81)

with a scalar sheet conductance G(= 1/R). These equations are schematically shown in Figure 34.
Although we only focused on Cartesian coordinates, Equations (79)–(81) are coordinate free. Therefore,
we can use an arbitrary coordinate for analysis. Another feature of the differential-form formalism is
the exclusion of the metric in Equations (79) and (80). The metric appears through the Hodge star in
Equation (81). Thus, Equations (79) and (80) are metric-free equations and easy to be discretized while
keeping the geometrical structure, as we see later.

untwisted twisted

E K
G⋆

−R⋆
d d

0 0

Figure 34. Structure of basic equations in a two-dimensional resistive sheet.

4.8. Keller–Dykhne Duality with Differential Forms

Now, we formulate Keller–Dykhne duality with differential forms. Electric and current fields
are represented by untwisted and twisted 1-forms, respectively. To exchange these fields with two
different kinds of orientations, we need to fix an orientation v of the plane. Here, we define a twisted
scalar Ωv = {(Ωv)o|o =�,	} satisfying (Ωv)v = +1 and (Ωv)−v = −1. The pseudoscalar Ωv is
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regarded as the plane orientation v. For a twisted form ω̌, Ωv extracts the component Ωvω̌ = ω̌v.
Now, we consider the replacement as

E? = RrefΩvK, (82)

K? = −GrefΩvE (83)

with respect to a reference resistance Rref(= 1/Gref). Clearly, these fields satisfy

dE? = 0, (84)

dK? = 0. (85)

From Equation (81) with Equations (82) and (83), we obtain

K? = G? ? E?, (86)

where we use Equation (78) and G? = (Gref)
2/G for a scalar G.

4.9. Discretization

Discretizing a two-dimensional sheet, we can obtain circuit duality again. In this subsection,
we rigorously confirm this statement.

� Discretization

For a sheet region U, we consider a cellular paving K with nodes N , edges E , and faces F .
We write the relations among nodes, edges, and faces as

∂ei =
|N |

∑
j=1

nj∆j
i (i = 1, 2, · · · , |E |), (87)

∂ fi =
|E |

∑
j=1

ejΠj
i (i = 1, 2, · · · , |F |) (88)

for ei ∈ E and fi ∈ F . The totality of p-forms on U is denoted by Cp(U). We can define φp : Cp(U)→
Cp(K) as [

φp(ω)
]
(c) =

∫
c

ω (89)

for ω ∈ Cp(U) and all c ∈ Cp(K). Here, φp makes a continuous field ω discretized. Now, we obtain a
commutative diagram:

C0(U) C1(U) C2(U)

C0(K) C1(K) C2(K)

d

φ0

d

φ1 φ2

d d

(90)

Commutativity can be checked as follows. We can calculate for all f ∈ C0(U), c ∈ C1(K) as

[
φ1(d f )

]
(c) =

∫
c

d f =
∫

∂c
f =

[
φ0( f )

]
(∂c) =

[
dφ0( f )

]
(c), (91)

where we used Stokes’ theorem. Similarly, we obtain φ2(dα) = d[φ1(α)], for all α ∈ C1(U).
The commutative diagram of Equation (90) indicates that the discretization by φ keeps the algebraic
structure of d.
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Using φ, we can discretize an electric field (untwisted 1-form) E as V = ∑
|E |
i=1 Viei with Vi =

∫
ei

E.
Moreover, KVL (dE = 0) is discretized as

dV = 0, (92)

which is explicitly expressed as ∑
|E |
j=1 VjΠj

i = 0. Therefore, Πj
i represents the discretized rotation of

the field.
For a current density K (twisted 1-form), we should consider the integration on the dual lattice.

The set of all twisted p-forms on U is represented as Čp(U). We have

[
φ̌p(ω̌)

]
(č) =

∫
č

ω̌ (93)

for ω̌ ∈ Čp(U) and all č ∈ Cp(K?). Then, another diagram similar to Equation (90) is obtained:

Č0(U) Č1(U) Č2(U)

C0(K?) C1(K?) C2(K?)

d

φ̌0

d

φ̌1 φ̌2

d d

(94)

Remembering (?1)
−1 : C1(K?) → C1(K), we can define I = (?1)

−1(φ̌1(K)
)
= ∑

|E |
i=1 Iiei with

Ii =
∫

ěi
K =

∫
(?1)−1ei K. Now, the discretized KCL is obtained as

∂I = 0, (95)

for which component representation is ∑
|E |
j=1 ∆i

j I j = 0. Therefore, ∆i
j indicates the discretized minus

divergence.
For the discretization of Ohm’s law, we interpolate E from Ei as

E ≈
|E |

∑
i=1

Eiwei , (96)

where {wei} are called interpolation forms. As the interpolation forms {wei}, so-called Whitney forms
can be used [62,79–82]. Now, Ohm’s law is discretized as

Ii =
|E |

∑
j=1

(∫
ěi

G ? wej

)
Ej. (97)

� Correspondence between Keller–Dykhne Duality and Circuit Duality

Now, we establish correspondence between Keller–Dykhne duality and circuit duality. These two
dualities are related through the diagram shown in Figure 35. In this section, we prove the
commutativity of the two paths (1) and (2) in the figure.

Figure 35. Relation between Keller–Dykhne duality and circuit duality.
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(1) For I and V discretized from K and E, we can consider the dual circuit with current I? :=
Gref(?

1)−1(V) and voltage V? := Rref ?1 (I) distributions for a circuit on K?:

I? = Gref

|E |

∑
i=1

Vi(?
1)−1(ei) = Gref

|E |

∑
i=1

Vi ěi, (98)

V? = Rref

|E |

∑
i=1

Ii ?1 (ei) = Rref

|E |

∑
i=1

Ii ěi. (99)

(2) On the other hand, we discretize E? = RrefKv and K? = −GrefΩvE in a dual mesh K?. We need
to choose a specific orientation v of the plane, and (ěi)v is regarded as an inner-oriented edge in
K?. Here, we introduce the ?-conjugate operation to give an outer-oriented dual edge as ei

? = ěi.
The dual edge (ěi)v

? is outer-oriented, and represented as
(
(ěi)v

?)
v
= −ei (Figure 36), which reflects

the complex algebraic structure of the plane. Then, discretized E? and K? are given as(∫
(ěi)v

E?

)
(ěi)v = Rref

(∫
ěi

K
)
(ěi)v = (V?)v, (100)

(∫
(ěi)v

?
K?

)
(ěi)v =

(∫
−ei

(K?)v

)
(ěi)v = Gref

(∫
ei

E
)
(ěi)v = (I?)v. (101)

These equations indicate the commutativity of the diagram shown in Figure 35.
Thus, Keller–Dykhne duality corresponds to circuit duality through discretization.

Figure 36. Interchange between a primary mesh and dual mesh.

5. Electromagnetic Duality

The electric field induced by an electric dipole has similar properties to the magnetic field created
by a magnetic dipole. Such similarities can be considered as an emergent form of electromagnetic duality.
To correctly understand electromagnetic duality, we need to clarify the difference between electric
and magnetic fields. To this end, we utilize inner- and outer-oriented vectors called polar and axial
vectors, respectively [78]. By using these concepts, we accurately formulate electromagnetic duality,
while the role of orientation of the space in electromagnetic duality is elucidated. The analogy between
electromagnetic duality and Keller–Dykhne duality is also discussed.

5.1. Preliminary

� Polar and Axial Vectors

Here, we introduce two different kinds of vectors. Consider a line segment in a three-dimensional
space. As discussed in Section 2.3, we can set an inner or outer orientation of the line. An inner-oriented
line is called a polar vector and is represented by an arrow depicted in Figure 37a. The totality of polar
vectors forms a vector space, in which we define the sum of vectors and scalar multiplication of a
vector. An electric field is represented by a polar-vector field. On the other hand, an outer-oriented
line can be considered as shown in Figure 37b. Such an outer-oriented line segment is called an axial
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vector. Axial vectors also form a vector space. As we saw in Section 2.3, an outer-oriented object can
be represented by two-different inner-oriented ones. Here, we can represent the orientation of the
space by a helix, of which the winding direction is right- or left-handed. The helix winding direction is
arranged to be the same as the outer orientation of the axial vector, then the advance direction of the
corresponding screw induces the inner orientation of the line as shown in Figure 38. In other words,
when fingers of the left or right hand representing the helix handedness are curled in the direction
of the outer orientation, the thumb points out the inner orientation. Then, an axial vector is denoted
by a = {ao|o ∈ O} with polar vectors satisfying a−o = −ao for the set O of two spatial orientations.
Importantly, an axial vector is a geometric object independent of the orientation of the space, although
the polar vector obtained from the axial vector depends on the spatial orientation.

(a) (b)

Figure 37. (a) polar vector; (b) axial vector.

Figure 38. Representation of an axial vector by polar vectors depending on the space orientation.
A spatial orientation is entered in the subscript position and its output is a polar vector which depends
on the spatial orientation.

�Magnetic Field as Axial Vectors

To explain the necessity of the axial vectors, we consider Ampère’s law. The conventional
image of a magnetic field induced by a current flowing along a line (x = y = 0) is depicted in
Figure 39a, where the direction of the magnetic field is determined by the so-called right-hand
rule. However, there are three unnatural points in this illustration: (i) Why is the right-hand rule
required? (ii) Mirror reflection with respect to x = 0 or y = 0 does not change the current flow,
but it alters the direction of the vector field. Here, mirror reflection Mx with respect to x = 0
operates as [Mxv](x, y, z) = −vx(−x, y, z)ex + vy(−x, y, z)ey + vz(−x, y, z)ez for a polar vector field
v(x, y, z) = vx(x, y, z)ex + vy(x, y, z)ey + vz(x, y, z)ez. (iii) Mirror reflection with respect to z = 0
changes the direction of the current, but the vector field is unchanged under the operation. These three
problems are resolved when we consider magnetic fields as axial vector fields. A proper illustration
of the magnetic field is shown in Figure 39b, where the magnetic line is outer-oriented. In this
representation, we do not need the right-hand rule. The field in Figure 39b is symmetric with respect
to x = 0 or y = 0, while it is antisymmetric with respect to z = 0. Figure 39a is now interpreted as the
right-hand component for Figure 39b.
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Figure 39. Ampère’s law represented by (a) polar and (b) axial magnetic lines.

� Vector Product

Another important operation that can generate an axial vector is the vector product of polar
vectors. Consider the vector product between polar vectors A and B. Clearly, A and B are invariant
under a mirror reflection with respect to the plane spanned by A and B. Therefore, it is natural
to consider A × B as an axial vector as shown in Figure 40a. Then, the mirror symmetry is kept.
The representation by polar vectors is also depicted in Figure 40b. The vector product between a polar
vector and an axial vector is also defined to give a polar vector.

Figure 40. (a) axial vector obtained from a vector product of polar vectors; (b) its polar-vector representation.

� Scalar and Pseudoscalar

For a scalar, we can consider an outer-oriented object. The codimension for a scalar is three in this
three-dimensional space. Therefore, an outer-oriented or twisted scalar can be represented by a helix
in this space. An outer-oriented scalar is often called a pseudoscalar. A pseudoscalar š is represented
by two scalars š = {šo|o ∈ O} with š−o = −šo.

For example, magnetic charge density ρm = ∇ · B is a pseudoscalar because magnetic flux density
B is an axial vector. Therefore, a magnetic charge should be a pseudoscalar if it exists. The difference
between electric and magnetic charges is illustrated in Figure 41.

+ +

+ +

+

(a) (b)

Figure 41. (a) electric charges as a scalar; (b) magnetic charges as a pseudoscalar.

5.2. Formulation of Electromagnetic Duality

�Maxwell’s Equations

Maxwell’s equations can be written as

∇× E +
∂B
∂t

= −Jm, ∇ · D = ρe, (102)

∇× H − ∂D
∂t

= Je, ∇ · B = ρm (103)
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with electric field E, electric displacement field D, electric current density Je, electric charge density ρe,
magnetic field H, magnetic flux density B, magnetic current density Jm, and magnetic charge density ρm.
While E, D, and J are polar vectors, H, B, and Jm are axial vectors. Electric and magnetic charge densities
are represented by a scalar and pseudoscalar, respectively. Here, we introduce Jm and ρm to investigate
the duality. Note that Jm and ρm are fictitious because a magnetic monopole does not exist. Material fields
(D, H) are determined from (E, B) through the constitutive equations as described later.

� Electromagnetic Duality Transformation

Electric and magnetic fields are represented by polar and axial vectors as shown in Figure 37,
respectively. To exchange these two different types of vectors, we need to fix the orientation of the
space to σ and introduce a pseudoscalar Ωσ as (Ωσ)σ = +1 and (Ωσ)−σ = −1. The pseudoscalar
Ωσ can be represented by a helix with winding of σ as shown in Figure 42. For an axial vector a,
Ωσ converts it to the polar component as Ωσa = aσ.

ΩR ΩL

(a) (b)

Figure 42. (a) ΩR and (b) ΩL.

We set a reference resistance Rref(=: 1/Gref). For a spatial orientation σ, the electromagnetic
duality transformation is given by

E? = RrefΩσ H, D? = GrefΩσB, (104)

H? = −GrefΩσE, B? = −RrefΩσD. (105)

Under the duality transformation, Maxwell’s equations are invariant as

∇× E? +
∂B?

∂t
= −J?m, ∇ · D? = ρ?e , (106)

∇× H? − ∂D?

∂t
= J?e , ∇ · B? = ρ?m (107)

with

ρ?e = GrefΩσρm, J?e = GrefΩσ Jm, (108)

ρ?m = −RrefΩσρe, J?m = −RrefΩσ Je. (109)

� Duality for Constitutive Equations

Consider the relations called constitutive equations

D = εE + ξH, (110)

B = ζE + µH, (111)

where ξ and ζ are twisted. Generally, ε, ξ, ζ, and µ are tensors. Under Equations (104) and (105),
the constitutive equations are transformed as

D? = ε?E? + ξ?H?, (112)

B? = ζ?E? + µ?H? (113)
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with

ε? = (Gref)
2µ, ξ? = −ζ, (114)

ζ? = −ξ, µ? = (Rref)
2ε. (115)

� Self-Dual Media

Now, we require the set of self-dual conditions ε? = ε, ξ? = ξ, µ? = µ, and ζ? = ζ.
Then, the following equations should hold:

ε = (Gref)
2µ, ξ = −ζ. (116)

Here, the Gref satisfying Equation (116) is called the admittance Y of the medium. For scalar
ε and µ, we have Y =

√
ε/µ. In particular, a vacuum with ε = ε0, µ = µ0, ξ = ζ = 0 is self-dual

with respect to the vacuum admittance Y0 =
√

ε0/µ0. In circuit theory, a self-dual system did not
have backscattering. This statement is also established in electromagnetic systems under certain
conditions [54]. In addition, the duality transformation can be extended to continuous one and
continuous self-dual symmetry leads to the helicity conservation law [55,83–88].

5.3. Analogy between Keller–Dykhne Duality and Electromagnetic Duality

Maxwell’s electromagnetic theory in a four-dimensional spacetime has an analogous structure to
the sheet problem discussed in Section 4. To see this analogy, we use the differential-form approach to
Maxwell’s equations [62,89–92]. The wedge product, exterior derivative, integral, and Hodge star are
naturally extended in dimensions greater than two.

In a three-dimensional space, an electric field and magnetic field are represented by an untwisted
1-form E and twisted 1-form H, respectively. On the other hand, a magnetic flux density is denoted by
an untwisted 2-form B, while an electric displacement is represented by a twisted 2-form D. Using these
quantities, we define untwisted and twisted 2-forms F and G as

F = E ∧ dt + B, (117)

G = −H ∧ dt + D, (118)

respectively. Maxwell’s equations without a source are equivalent to

dF = 0, (119)

dG = 0, (120)

with the four-dimensional exterior derivative d. Now, we consider a medium with a scalar permittivity
ε and permeability µ, while we set ξ = 0 and ζ = 0. The constitutive equation is given by

G = Y ? F (121)

with the admittance Y =
√

ε/µ (= 1/Z) and the four-dimensional Hodge star operator ?.
These equations are summarized in Figure 43. For 2-forms in the four-dimensional space, we have

? ? = −Id, (122)

with the identity operator Id. Equation (122) leads to a complex structure.
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Figure 43. Structure of Maxwell’s theory of electromagnetism.

Equations (119)–(121) perfectly correspond to Equations (79)–(81), respectively. When we fix an
orientation v of the four-dimensional spacetime, the duality transformation can be written as

F? = −RrefΩvG, (123)

G? = GrefΩvF. (124)

Then, the dual admittance is defined as

Y? = (Gref)
2/Y. (125)

The duality transformation of Equations (123) and (124) interchanges E and H in the
three-dimensional space. If we set Gref = Y, we obtain Y? = Y, which indicates the system is self-dual.
As an example, a vacuum is self-dual with respect to the vacuum admittance Y0 =

√
ε0/µ0 (= 1/Z0)

with vacuum permittivity ε0 and vacuum permeability µ0. Electromagnetic duality can be considered
as a manifestation of Poincaré duality in this spacetime [93].

6. Babinet Duality

Babinet’s principle known in optics and electromagnetism relates wave-scattering problems of two
complementary screens (Figure 44) [94]. Here, we call the duality appearing in Babinet’s principle as
Babinet duality. Babinet duality can be regarded as a high-frequency counterpart of Keller–Dykhne
duality, which is discussed in Section 4. At first, we introduce rigorous Babinet’s principle for
electromagnetic waves. Then, we analyze self-dual systems in terms of Babinet duality, such as
the Mushiake principle in antenna theory [13]. Finally, we discuss Babinet duality in the light of circuit
duality by using a transmission-line model of metasurfaces.

(a) (b)

opaque
region

transparent
region

opaque
region

transparent
region

incident
wave

x

y
z

x

y
z

Figure 44. (a,b) two scattering problems that are dual with each other. Opaque and transparent regions
are interchanged under the duality transformation. The screen in (b) is called the complementary
screen of that in (a), and vice versa.
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6.1. Babinet’s Principle for Electromagnetic Waves

Before moving on to Babinet’s principle for electromagnetic waves, we discuss the duality for
electromagnetic waves radiated from planar sheets. Next, the formulated duality is utilized to derive
Babinet’s principle for electromagnetic waves.

� Duality for Radiation from Planar Antennas

Here, we formulate the duality for fields radiated from nonuniform planar sheets in a vacuum,
while we stress the importance of axial vectors. Consider a sheet on z = 0 with an electric sheet
impedance Ze(x, y) and an external electric field Ẽext(x, y) as a voltage source. Generally, Ze(x, y) is
a tensor. Following Maxwell’s equations, the induced current distribution radiates electromagnetic
waves. The radiated electromagnetic field is represented by (Ẽ+, H̃+) and (Ẽ−, H̃−) in z ≥ 0 and
z ≤ 0, respectively. Mirror reflection with respect to z = 0 is expressed asMz and the considered
system is invariant under Mz. First, let us see the symmetry property of electromagnetic fields
on z = 0. The component of v perpendicular to the plane z = 0 is obtained by vn = (v · ez)ez.
Then, the projection of v onto z = 0 is given by vt = Pv = v− vn with P = −ez× ez×. A polar vector
p and axial vector a behave differently forMz as

Mz p = pt − pn, (126)

Mza = −at + an. (127)

These relations are schematically shown in Figure 45. From Equations (126) and (127), we obtain
the following symmetry at any point of the plane z = 0:

P Ẽ+ = P Ẽ−, ez · Ẽ+ = −ez · Ẽ−, (128)

P H̃+ = −P H̃−, ez · H̃+ = ez · H̃−. (129)

(a)
pt

pn an
at

Mz pn
Mz pt

Mz an
Mz at

(b)

z=0 z=0

Figure 45. Mirror reflection of (a) polar and (b) axial vectors.

Next, the boundary condition on z = 0 is given by

P Ẽ+ = P Ẽ−, (130)

Ẽ2D = P(Ẽ+ + Ẽext) = ZeK̃2D, (131)

with the two-dimensional electric field Ẽ2D on z = 0, the sheet current density K̃2D = ez × (H̃+ −
H̃−) = 2ez × H̃+ which is obtained from Equation (129). Equation (130) represents the continuity of
the tangential electric field, while Equation (131) is equivalent to Ohm’s law. The boundary conditions
for D̃ and H̃ are derived from these boundary conditions [95].

Finally, we consider the duality transformation. We fix a spatial orientation σ and introduce a
pseudoscalar Ωσ satisfying (Ωσ)σ = 1 and (Ωσ)−σ = −1. The following duality transformations
are considered:
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1. z ≥ 0:
Ẽ?
+ = −Z0Ωσ H̃+, H̃?

+ = Y0ΩσẼ+, (132)

2. z ≤ 0:
Ẽ?
− = Z0Ωσ H̃−, H̃?

− = −Y0ΩσẼ−, (133)

where Z0(= 1/Y0) is the impedance of a vacuum. The transformed fields (Ẽ?
±, H̃?

±) are invariant under
Mz as shown in Figure 46. With this symmetry of Equation (129), we immediately obtain P Ẽ?

+ = P Ẽ?
−

on z = 0. On the other hand, Equation (131) is transformed as

K̃?
2D = Y?

e Ẽ?
2D, (134)

where we defined

K̃?
2D = 2ez × H̃?

+ + K̃?
ext, (135)

K̃?
ext = 2Y0Ωσez × Ẽext (136)

with Z?
e = (Y?

e )
−1. Here, the following general impedance inversion holds:

Z?
e JZe J−1 =

(
Z0

2

)2
(137)

with

J =

[
0 −1
1 0

]
.

Note that the impedance Z0 can be replaced with
√

µ/ε if the screen is placed in an isotropic and
homogeneous medium with permeability µ and permittivity ε. Furthermore, Ẽ?

2D = P Ẽ?
+ and K̃?

2D

satisfy

Ẽ?
2D =

Z0

2
Ωσez × K̃2D, (138)

K̃?
2D =

(
Z0

2

)−1
Ωσez × Ẽ2D (139)

on z = 0. Equations (137), (138), and (139) perfectly correspond to Equations (49), (43), and (44).
For the dual setup with the sheet impedance Z?

e and current source K̃?
ext, the radiated fields are given

by (Ẽ?
±, H̃?

±). For a scalar Ze, the impedance inversion simplifies to

ZeZ?
e =

(
Z0

2

)2
. (140)

Note that Equation (140) includes the duality between the perfect electric conductor (Ze = 0) and
aperture (Ze = ∞). In other words, the sheet-impedance model is a generalization of the binarized
case, where only opaque and transparent regions were considered for screens as shown in Figure 44.
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Figure 46. Duality transformation keeping the mirror symmetry. (a) H± to E?
± and (b) E± to H?

±.

� Babinet’s Principle for Sheet-Impedance Screens

Here, we derive Babinet’s principle by applying the previous discussion to scattering problems.
We consider a scattering problem by a screen characterized with a sheet impedance of Ze(x, y) for an
incident electromagnetic field (Ẽin, H̃in) from z < 0, as shown in Figure 47a. Fields scattered by the
screen are denoted by (Ẽs,±, H̃s,±) for z ≥ 0 and z ≤ 0, respectively. These scattered fields are induced
by the external electric field Ẽext = P Ẽin(x, y, 0) on z = 0.

00
z

(a) (b)
Ze(x,y) Ze(x,y)

(Ẽin, H� in)

(Ẽs,−, H� s,−) (Ẽs,+, H� s,+)

(Ẽin, H� in)

(ẼTR, H� TR)

(Ẽs,−, H� s,−) (Ẽs,+, H� s,+)
z

⋆

⋆ ⋆

⋆ ⋆

⋆ ⋆ ⋆ ⋆

Figure 47. (a,b) two scattering problems that are dual with each other. The dual screen (b) is obtained
through the impedance inversion of Equation (137).

Next, we consider the dual wave scattering by Z?
e (x, y) for an incident wave

(Ẽ?
in, H̃?

in) = (Z0Ωσ H̃ in,−Y0ΩσẼin), (141)

from z < 0. In the dual problem, we have to inject an external current rather than apply an electric
field. To this end, we virtually consider total reflection by a perfect electric conductor sheet at z = 0.
The totally reflected field (Ẽ?

TR, H̃?
TR) is obtained by a mirror reflection of (Ẽ?

in, H̃?
in) in z > 0 with

respect to z = 0 and a phase flip:

(Ẽ?
TR, H̃?

TR) = −(MzẼ?
in,Mz H̃?

in). (142)

Using the total reflection, we can introduce an external current as

K̃?
ext = −2ez × H̃?

in = 2Y0Ωσez × Ẽext (143)

on z = 0. This virtually injected current radiates the electromagnetic field (Ẽ?
s,±, H̃?

s,±) as shown in
Figure 47b. Here, Equation (143) is identical to Equation (136). Therefore, (Ẽs,±, H̃s,±) and (Ẽ?

s,±, H̃?
s,±)

are related through Equations (132) and (133), if Z?
e satisfies Equation (137). Thus, we could relate the

scattered fields in the two problems. This duality relationship is the Babinet’s principle for vector waves.
Babinet’s principle leads to complementary relation on transmission coefficients. Consider a

normal incidence of a plane wave to a periodic screen (metasurface) with a sheet impedance Ze(x, y)
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on z = 0. The complex transmission coefficient to the transmitting mode with the same polarization is
denoted by τ. In the dual situation, the incident wave of Equation (141) enters the dual metasurface
Z?

e (x, y) satisfying Equation (137). The complex electric transmission coefficient in the dual setup is
represented by τ?. Now, the following dual relation holds:

τ + τ? = 1. (144)

The detailed derivation of this relation is given in Appendix B.

� Babinet’s Principle for Power Transmissions

Next, we consider the consequence of Babinet duality on power transmission spectra of periodic
screens, i.e., the square of the absolute value of the complex amplitude transmission coefficients.
Using the continuity equation 1 + $ = τ with a reflection coefficient $, we obtain

$ = −τ?. (145)

On the other hand, we have the energy–conservation relation

|τ|2 + |$|2 = 1, (146)

under the following conditions: (i) periodicity of screens is smaller than the wavelength and thus
energy scattering into the other diffraction modes except for the zeroth order modes is negligible,
and (ii) polarization conversion is negligible (τ⊥ = ρ⊥ = 0 in Appendix B). By using Equations (145)
and (146), we obtain

|τ|2 + |τ?|2 = 1. (147)

This equation indicates that the power transmission spectrum in the dual problem has the opposite
shape of that in the original one.

6.2. Self-Dual Systems in Terms of Babinet Duality

In this subsection, we discuss the manifestation of self-duality in terms of Babinet duality.
First, we introduce self-complementary antennas, and then we discuss the criticality of metallic
checkerboard-like metasurfaces.

� Self-Complementary Antennas

In antenna theory, it is well-known that antennas with self-complementary geometry show a
frequency-independent input impedance, which is defined as the ratio of voltage and current at a
feeding point of an antenna, and such antennas are called self-complementary antennas [13].

Before moving on to the self-complementary case, we introduce duality for the effective response
of antennas. Consider an antenna with an electric sheet admittance Ye(x, y)(= Ze(x, y)−1) on z = 0
as shown in Figure 48a. On a rectangular patch S, an external voltage distribution Ẽext(x, y) is
applied. We assume that Ẽext is directed in the y-direction. For the dual setup, we set Z?

e satisfying
Equation (137) and an external current K̃?

ext = 2Y0Ωσez × Ẽext on S in Figure 48b. In particular,
when antennas are made only of perfect electric conductor (Ye = ∞), the corresponding dual antennas
have complementary shapes, which are obtained by interchanging metallic regions and hole regions.
The input impedances of the original and dual antenna are denoted by Zin and Z?

in, respectively. From
Babinet duality, these input impedances satisfy

ZinZ?
in =

(
Z0

2

)2
, (148)
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as derived in Appendix C. This equation means that the input impedance of the dual antenna is related
to that of the original antenna.

S

(a)

x

y

z

(b)

S

metal

Figure 48. (a) antenna on z = 0 with voltage source on S; (b) dual antenna with current source on S.
Note that metallic and vacant regions are interchanged through the impedance inversion.

Now, we consider self-dual antennas. An example of a self-dual antenna is realized with a
self-complementary geometry as shown in Figure 49. From Equation (148) and self-dual condition
Zin = Z?

in, we obtain

Zin = Z?
in =

Z0

2
, (149)

and this means that the input impedance of self-complementary antennas is independent of frequency.
Thus, the principle of self-complementary antennas called the “Mushiake Principle” [96] plays an
important role in designing broadband antennas [13]. Because semi-infinite free spaces in z > 0 and
z < 0 are seen as two parallel transmission lines with the characteristic impedance of Z0, Equation (149)
shows that self-complementary antennas are perfectly matched to the composite impedance of Z0/2.

Figure 49. Example of a self-complementary antenna.

� Critical Transition of Metallic Checkerboard-Like Metasurfaces

Here, we discuss critical behaviors of metallic checkerboard-like metasurfaces from the point
of view of self-duality in Babinet duality. We assume the metasurfaces are placed in a vacuum
and made of a perfect electric conductor. If we assume the periodicity of the checkerboard-like
metasurfaces, we can classify them into three distinct cases as shown in Figure 50: (a) metallic patches
are disconnected (disconnected phase), (b) metasurface is self-complementary, i.e., the metallic patches
touch each other at ideal point contacts (self-complementary point), and (c) metallic patches are
connected (connected phase). Note that structures in (c) are complementary to those in (a) if w = w?;
therefore, the two phases are related through Babinet duality. Now, consider the transition from the
disconnected phase to the connected phase. Under this transition, the checkerboard-like metasurface
passes through the self-complementary point between the two phases, as shown in Figure 50. As we
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see below, the electromagnetic responses of checkerboard-like metasurfaces abruptly change at this
self-complementary point, and this point is actually a singular point [44,45,47].

At first, we explain general transmission properties of checkerboard-like metasurfaces.
We consider that a circularly polarized plane wave with wavevector k = kez is normally incident on
the metasurfaces, and we observe the transmission behind the metasurfaces. For the disconnected
phase shown in Figure 50a, the power-transmission spectrum is typically like the lower panel of
Figure 50a. The metasurfaces in the disconnected phase behave as capacitive filters, which highly
transmit lower frequency components, while they resonantly reflect around the higher resonance
frequency [97]. Note that the incident frequency axis is clipped at the lowest diffraction frequency
c0/a, where a is the size of the unit cell of the metasurfaces. Above the lowest diffraction frequency,
the incident energy is enabled to be transmitted into higher-order diffraction modes with k 6= ±kez.
In other words, effective loss (mode-conversion loss) appears for the zeroth-order mode. To restrict
our discussion to the single mode, we consider frequencies below c0/a in the following. In addition to
this constraint, thanks to the 4-fold rotational symmetry of the metasurfaces, polarization conversion is
prohibited (τ⊥ = ρ⊥ = 0). Then, we can use Equation (147) to obtain the power-transmission spectrum
of the complementary structures: |τ?|2 = 1− |τ|2. In other words, the connected phase shown in
Figure 50c exhibits transmission spectra with the upside-down shapes to those of the disconnected
phase: it highly reflects lower frequency components, while it resonantly transmits around the higher
resonant frequency, as shown in the lower panel of Figure 50c [97].

Now, we derive the criticality of the self-complementary structure. At the self-complementary
point shown in Figure 50b, we have

τ = τ?, (150)

from the self-duality of the problem. Combining above with Equations (144) and (145), we can derive

τ = τ? = −$ =
1
2

. (151)

Then, it is concluded that the self-complementary metasurface shows a finite dissipation A =

1− |τ|2 − |$|2 = 1/2. The finite dissipation obviously contradicts the assumption that the system is
made of a lossless perfect electric conductor. Note that this contradiction occurs below the diffraction
frequency c0/a. For frequencies above c0/a, scattering into the diffraction modes is enabled, and thus
A is composed of not only dissipation but also mode conversion. In addition to this contradiction, the
frequency-independent behavior also contradicts Foster’s reactance theorem, which states that the
imaginary part of the impedance of a lossless and passive system must increase monotonically with
the frequency [98]. Thus, the transmission spectra of such systems cannot be flat. Consequently, we
can conclude that there is no physical solution for the ideal self-complementary point and thus the
checkerboard-like metasurface at the self-complementary point is singular.



Symmetry 2019, 11, 1336 44 of 53

frequency0

0.5

1

disconnected

frequency0

0.5

1

self-complementary

???

frequency0

0.5

1

connected

c0/a c0/a c0/a

w
w

w⋆
w⋆

perfect 
electric 

conductor w → 0 w⋆→ 0

k

(a) (b) (c)

a

p
o
w

e
r 

tr
a
n

sm
is

si
o
n

Figure 50. Metallic checkerboard-like metasurfaces and their typical power-transmission spectra.
(a) disconnected phase; (b) self-complementary point; and (c) connected phase. The size of the unit cell
is denoted by a.

Note that the dissipative intermediate structure in the transition between the disconnected and
connected phases is physically consistent, although the lossless intermediate structure is singular.
Such a dissipative intermediate structure, which contains dissipative elements (resistive sheets with
sheet impedance of Z0/2) at the connecting points of the checkerboard-like metasurfaces, can be
characterized by the novel frequency-independent response with τ = −$ = 1/2 and dissipation
A = 1/2 [37], as shown in Figure 51. The frequency-independent response has been experimentally
observed in the terahertz frequency region [38]. In addition, introducing randomness into the
connectivity of the metallic patches also leads to the similar flat spectrum [42,48]. In this random case,
loss A results from mode conversion due to the randomness of the metasurface structure.

Figure 51. Resistive checkerboard-like metasurface, which is self-dual in terms of Babinet duality,
and its power transmission, reflection, and absorption spectra.

The criticality of metallic checkerboard-like metasurfaces is utilized for dynamical metasurfaces to
manipulate electromagnetic waves. By placing photoconductive materials like silicon or phase-change
materials like vanadium dioxide (VO2) between the metallic patches of checkerboard-like metasurfaces,
researchers have realized optically tunable waveguides [99], capacitive–inductive switchable filters [50],
dynamical polarizers [49], and dynamical switching of quarter-wavelength plates [52]. In addition
to these experiments, dynamical planar-chirality switching is also theoretically proposed [51].
The advantage of these dynamical checkerboard-like metasurfaces is that we can achieve deep
modulation of the electromagnetic characteristics of the metasurfaces because we dynamically induce
phase transitions of the checkerboard-like metasurfaces.
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6.3. Babinet Duality in Transmission-Line Models

Here, we consider Babinet duality in light of equivalent circuit models of metasurfaces.
As discussed in Section 3, responses of metasurfaces can be described by equivalent circuit models.
An electric metasurface in a vacuum can be modeled by an effective shunt impedance Zsh inserted
between two semi-infinite transmission lines with the characteristic impedance of Z0 and the phase
velocity of c0 as shown in Figure 52. The complex amplitude transmission coefficient τ := Ṽt/Ṽin

through the metasurface is written as

τ =
Zsh

Z0/2 + Zsh
. (152)

On the other hand, for the dual problem with the complementary metasurface, the dual
transmission coefficient τ? is written as

τ? =
Z?

sh
Z0/2 + Z?

sh
(153)

with the effective impedance of the dual metasurface Z?
sh.

Requiring the same duality relation with Equation (144):

τ + τ? = 1, (154)

we obtain

ZshZ?
sh =

(
Z0

2

)2
. (155)

This equation indicates that the effective impedance of the complementary metasurface is given by
the dual of the effective impedance of the original metasurface with respect to the reference impedance
Z0/2. In other words, the response of the complementary metasurface can be described by the dual
circuit to the equivalent circuit of the original metasurface.

In particular, when the shunting equivalent circuit is a self-dual circuit like the bridge circuit
shown in Figure 19, i.e., Zsh = Z?

sh = Z0/2 (see Section 2.6), we have τ = τ? = 1/2, and the
transmission and reflection characteristics are frequency independent. Thus, we can connect the
frequency-independent responses of self-dual resistive checkerboard-like metasurfaces to the constant
resistance property of self-dual circuits.

0
z

Z0, c0

ZshVin e
-jkz + Vr e

jkz

Z0, c0

~
Vt e

-jkz~~

Figure 52. Transmission-line model for scattering of plane waves by an electric metasurface.

7. Conclusions

A space can be discretized with primary and dual meshes. Topological properties of the primary
and dual meshes are related through Poincaré duality with each other. Especially in a 2n-dimensional
space such as a plane (n = 1) and spacetime (n = 2), the dual counterpart of an inner-oriented n-chain
is given by the outer-oriented n-chain. Thus, in an even-dimensional space, duality transformation
does not alter the dimension of an n-chain; rather, it changes the characteristics of orientation
for the chain. This special feature of even-dimensional spaces induces the complex structure for
n-chains. Inner-oriented and outer-oriented objects work as real and imaginary parts of a complex
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number, respectively. Due to this complex structure, the direction of an object is reversed when
duality transformations are applied twice for the object. Electromagnetic duality is induced by a
four-dimensional complex structure which appears from Poincaré duality. For a planar structure in
the three-dimensional structure, Babinet duality holds due to the combination of electromagnetic
duality and mirror symmetry. Keller–Dykhne duality is considered as an appearance of the Babinet
duality at lower frequencies of direct current and alternating current. Circuit duality is interpreted as a
discretized version of Keller–Dykhne duality.

Moreover, we can consider an additional invariance under duality transformation. When the
system has such internal symmetry, it is called self-dual. The effective response of a self-dual system
is automatically determined by the self-duality regardless of its components. This consequence
of self-duality can lead to a frequency-independent input impedance and zero backscattering.
Furthermore, critical response can even be predicted from self-duality, and it is leveraged to manipulate
the spectra and polarization of electromagnetic waves.

In conclusion, we have unveiled the underlying geometrical structures behind various dualities
in electromagnetic systems. Now, various dualities in electromagnetic systems emerge from the
correspondence between quantities with two different kinds of orientations through Poincaré duality.
The manifestations of self-duality in electromagnetic systems were consistently confirmed in a broad
frequency range.
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Appendix A. General Inner-Orientation Representation for Outer Orientation

The inner-orientation representation for outer orientation is generalized for any m-dimensional
space. We use the fact that an inner orientation of a vector space U can be specified by a totally
antisymmetric tensor ω : U × U × · · · × U → R, which is linear for all input slots and satisfies
ω(u1, u2, · · · , ui, · · · , uj, · · · , um) = −ω(u1, u2, · · · , uj, · · · , ui, · · · , um) for all possible i 6= j. For an
inner-oriented vector space U, we select a positively-oriented basis (e1, e2, · · · , em) and set ω satisfying
ω(e1, e2, · · · , em) = 1. If ω(e′1, e′2, · · · , e′m) > 0 is satisfied, a basis (e′1, e′2, · · · , e′m) has the positive
orientation. Reversely, for given ω 6= 0, we can specify a basis (e1, e2, · · · , em) with positive orientation
as ω(e1, e2, · · · , em) > 0. Now, consider an outer-oriented linear subspace W in U with l := dim W <

m := dim U. The surjective projection is denoted by u ∈ U 7→ [u] ∈ U/W. Assume that an orientation
of ambient space U is specified by a totally antisymmetric tensor with m slots ωU and take a basis
([u1], [u2], · · · , [um−l ]) which has positive orientation with respect to U/W. Then, we can define a
totally antisymmetric tensor ωW over W as

ωW(w1, w2, · · · , wl) := ωU(u1, u2, · · · , um−l , w1, w2, · · · , wl), (A1)

where w1, w2, · · · , wl ∈W and the first (m− l)-slots for the orientation tensor ωU are contracted by an
outer orientation. Thus, ωW determines the inner orientation of W depending on the ambient-space
orientation U. It is easily shown that the defined orientation of W does not depend on a specific choice
of u1, u2, · · · , um−l . The above discussion is applied to all tangent spaces smoothly, and then we can
represent an outer-oriented cell as two inner-oriented cells.
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Appendix B. Babinet’s Principle for Transmission and Reflection Coefficients

We derive Babinet’s principle for transmission and reflection coefficients for periodic
screens (metasurfaces) in order to get insight into Babinet’s principle under practical situations.
We assume that the complex amplitude of the electric field of the incident plane wave in Figure 47a
may be written as

Ẽin = Ẽinein exp(− jkz), (A2)

where ein is a unit polarization vector perpendicular to ez. Here, ein can be a linear polarization like ex,
ey or circular polarizations e± := (ex ± jey)/

√
2. Then, the scattered electric field can be expanded as

Ẽs,± =
(

Ẽsein + Ẽ⊥s e⊥in
)

exp(∓ jkz) (A3)

in the far-field region, where e⊥in is the unit polarization vector orthogonal to ein. While in general
all diffracted waves caused by the periodic screens should also be considered, we here focus on the
zeroth order modes with the wavevector ±kez for simplicity (for a more general formulation, see [37]).
Thus, the complex amplitude transmission coefficients for the parallelly and orthogonally polarized
modes τ and τ⊥ are given by

τ :=
Ẽin + Ẽs

Ẽin
, (A4)

τ⊥ :=
Ẽ⊥s
Ẽin

, (A5)

respectively. Similarly, we can write the complex amplitude reflection coefficients for the parallelly
and orthogonally polarized modes $ and $⊥ as

$ :=
Ẽs

Ẽin
= τ − 1, (A6)

$⊥ :=
Ẽ⊥s
Ẽin

= τ⊥, (A7)

respectively.
Next, we consider the dual problem shown in Figure 47b. Here, we fix the spatial orientation

as σ = R for simplicity, where R represents the right-hand system. As shown in Equation (141),
the complex amplitude of the electric field of the dual incident wave is given by

Ẽ?
in = Z0(H̃in)R

= Ẽin(ez × ein)R exp(− jkz)

= Ẽine?in exp(− jkz),

(A8)

where e?in := (ez × ein)R is the dual incident polarization vector and H̃in = Y0ez × Ẽin is used, which
can be derived from Faraday’s law. According to Equation (142), the totally reflected field is written as
Ẽ?

TR = −Ẽine?in exp( jkz). From Babinet’s principle, the dual scattered electric field is given by

Ẽ?
s,± = ∓Z0(H̃s,±)R

= ∓Z0(±Y0ez × Ẽs,±)R

= −
[

Ẽs(ez × ein)R + Ẽ⊥s (ez × e⊥in)R

]
exp(∓ jkz)

= −
(

Ẽse?in + Ẽ⊥s e⊥,?
in

)
exp(∓ jkz),

(A9)
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where e⊥,?
in := (ez × e⊥in)R is the dual orthogonal polarization vector. Finally, the dual complex

transmission and reflection coefficients can be expressed as

τ? := − Ẽs

Ẽin
, (A10)

τ⊥,? := − Ẽ⊥s
Ẽin

, (A11)

$? := − Ẽin + Ẽs

Ẽin
= τ? − 1, (A12)

$⊥,? := − Ẽ⊥s
Ẽin

= τ⊥,?. (A13)

Note that these coefficients are defined over the dual polarization basis e?in and e⊥,?
in . If ein is

linearly polarized, then e?in corresponds to the orthogonal linear polarization. On the other hand, if
ein is circularly polarized, then e?in = ± jein and the dual polarization state is the same as the original
one up to a phase factor ± j, where + (−) corresponds to the left (right) circular polarization. Here,
we define handedness of circularly polarized plane waves from the receivers’ side. This convention
is commonly used in optics.By comparing Equations (A10) and (A11) with Equations (A4) and (A5),
respectively, we finally obtain

τ + τ? = 1, (A14)

τ⊥ + τ⊥,? = 0. (A15)

Appendix C. Duality for Input Impedances of Antennas

We derive a dual relation for input impedances of antennas shown in Figure A1a,b. To simplify
the discussion, we fix the spatial orientation as σ = R, where R represents the right hand. Two curves
c1 and c2 on S are defined in Figure A1c. The total current along c1 is calculated as

Ĩ = −2
∫

c2

(H̃+)R · dr. (A16)

The electromotive force along c1 is given by

Ṽ =
∫

c1

Ẽext · dr. (A17)

For the dual antenna, we have a current along the c2 direction as

Ĩ? =
∫

c1

K̃?
ext · (ez × dr)R = 2

∫
c1

Y0Ẽext · dr = 2Y0Ṽ. (A18)

On the other hand, the electromotive force along c2 is given by

Ṽ? =
∫

c2

Ẽ?
+ · dr = −Z0

∫
c2

(H̃+)R · dr =
Z0

2
Ĩ. (A19)

Here, we introduce input impedances of antennas Zin = Ṽ/ Ĩ and Z?
in = Ṽ?/ Ĩ?, where the

real part of an antenna input impedance represents electromagnetic radiation as a loss. These input
impedances satisfy

ZinZ?
in =

(
Z0

2

)2
. (A20)
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(a) (b)

x

y

z

(c)

c2

c1

metal

S

S S

Figure A1. (a) antenna with a sheet admittance Ys(x, y)
(
=: Zs(x, y)−1) on z = 0 is connected to

voltage source Ẽext(x, y), which is assumed to be in the y direction, on S; (b) dual antenna with a sheet
admittance Y?

s (x, y) (=: Z?
s (x, y)−1) satisfying Equation (137) on z = 0 is connected to current source

K̃?
ext(x, y) = 2Y0Ωσez × Ẽext on S; (c) definition of two curves on S.
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