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Abstract: In this paper, we propose a discrete model for the quantum harmonic oscillator.
The eigenfunctions and eigenvalues for the corresponding Schrödinger equation are obtained through
the factorization method. It is shown that this problem is also connected with the equation for Meixner
polynomials.
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1. Introduction

The aim of this paper is to propose a discrete version of the stationary Schrödinger equation
for the quantum harmonic oscillator and to solve the associated spectral problem, i.e., to find the
eigenfunctions and eigenvalues for the corresponding Hamiltonian. There are in the literature several
ways for introducing such a discretization (see, for example, [1–3]). The most obvious one consists of
simply substituting in place of the quadratic potential V(x) = x2 of the continuous case the function
V(n) = n2 in the standard central difference expression for the corresponding Hamiltonian. In general,
it is not simple to find explicit expressions for the corresponding eigenfunctions and eigenvalues.
Moreover, even if we would find them, it is not always true that the spectrum in the discrete case
will satisfy the fundamental property of the continuous case, namely that the associated energy
levels form a discrete set of equidistant eigenvalues. The discrete version of the infinite square well
and the relationship with the tight-binding model was studied by Boykin and Klimeck [4]. In [5],
some properties of the mapping of the discrete Schrödinger equation into a two-term wave evolution
equation have been considered. In [6,7], the authors showed that supersymmetric quantum mechanics
is a simple, powerful tool for generating potentials with known spectra starting from a given initial
solvable one. In [8], the factorization method has been used to deal with second-order difference
equation on time scales. The construction of creation and annihilation operators for the harmonic
oscillator and hydrogen atom on the lattice starting from Rodrigues formula was done by Lorente [2].
The exact discretization of the Schrödinger equation was proposed in [9] based on Fourier transforms.

In a recent paper, we introduced a discrete version of Darboux transformations and Crum
formula for generating new potentials starting from an initial solvable one [10], and included a
different proposal for the discrete harmonic oscillator potential given by V(n) = n2 + n + 1, which
has an explicit solution for zero energy. Motivated by this, here we use such an alternative choice of
discretization and we solve the corresponding discrete stationary Schrödinger equation. We show that
the associated spectrum consists of an infinite set of equidistant energy levels, as it happens in the
continuous case.

To do that, we employ the factorization method for generating a sequence of Hamiltonians whose
eigenfunctions are interrelated through first-order difference operators. We also show that the solution
to the eigenvalue problem is connected with the difference equation for the Meixner polynomials.
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2. Preliminaries

In this section, we recall some notation from difference calculus and difference equations, and
well-known facts about classical discrete orthogonal polynomials.

We denote by `(Z;R) and `(Z;C) the sets of real- and complex-valued sequences, respectively.
We use the standard notation for shift operators as well as forward and backward difference operators
acting on `(Z;R) and `(Z;C) by

T±ψ(n) := ψ(n± 1),

∆ψ(n) :=
(
T+ − I

)
ψ(n) = ψ(n + 1)− ψ(n),

∇ψ(n) :=
(
I− T−

)
ψ(n) = ψ(n)− ψ(n− 1).

Thus, the forward second difference is given by

∆2ψ(n) = ψ(n + 2)− 2ψ(n + 1) + ψ(n).

A linear second-order difference equation can be written in general as follows

a(n)ψ(n + 2) + b(n)ψ(n + 1) + c(n)ψ(n) = 0,

where {a}, {b} and {c} are given sequences. It is well-known how to solve the above equation when
the coefficients are constant (see, e.g., [11]).

We want to propose here a discrete version of the Schrödinger equation for the harmonic oscillator(
− d2

dx2 + x2
)

ψ(x) = λψ(x).

There are different approaches for discretizing the one-dimensional time-independent Schrödinger
equation (see [4,5,9]). Very often, a discretization appears from the standard central difference formula(

−∆∇+ n2
)

ψ(n) = λψ(n).

In our considerations below, we modify the above equation as follows(
−∆2 + (n2 + n + 1)

)
ψ(n) = λψ(n + 1),

which can be written explicitly as

− ψ(n + 1) + (2− λ)ψ(n) + n(n− 1)ψ(n− 1) = 0, (1)

i.e., we consider one step forward shifted eigenfunctions.
In addition, there is a relationship of Equation (1) with classical orthogonal polynomials of a

discrete variable. Indeed, it is well-known that the equation of hypergeometric type

σ(n)∆∇ψm(n) + τ(n)∆ψm(n) + λmψm(n) = 0, (2)

describes such discrete classical orthogonal polynomials as Charlier, Meixner, Kravchuk, and Hahn
polynomials, among others (see [12,13]). The sequences σ(n) and τ(n) are second- and first-degree
polynomials, respectively, and

λm = −m
(

τ
′
+

m− 1
2

σ
′′
)

.
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If σ(n)ρ(n)ni
∣∣
n=a,b = 0, for all i ∈ N ∪ {0}, and the function ρ satisfies the analogue of Pearson

equation
∆ (σ(n)ρ(n)) = τ(n)ρ(n),

then the polynomial solutions of Equation (2) are orthogonal with respect to the weight function ρ

〈
ψm|ϕl

〉
=

b−1

∑
n=a

ψm(n)ϕl(n)ρ(n) = δmld2
m.

In particular, the Meixner polynomials are important in our research [14,15]. The Meixner
polynomials Mγ,µ

m (n) are obtained from the following sequences

σ(n) = n, (3)

τ(n) = (µ− 1)n + µγ, (4)

and constants
λm = (1− µ)m. (5)

In this case, the scalar product is defined on the interval [a, b] = [0, ∞). These polynomials can be
also defined through a generating function in the way(

1− t
µ

)n
(1− t)−n−γ =

∞

∑
m=0

1
m!

Mγ,µ
m (n)tm.

The explicit formulas for the Meixner polynomials are the following

Mγ,µ
m (n) = (−1)mm!

m

∑
k=0

(
n
k

)(
−n− γ

m− k

)
µ−k.

They can be also expressed in terms of the hypergeometric series

mFn

(
a1, . . . , am,
b1, . . . , bn

∣∣∣∣x
)

:=
∞

∑
k=0

=
(a1)k . . . (am)k
(b1)k . . . (bn)k

xk

k!
, m, n ∈ N,

by

Mγ,µ
m (n) = (γ)m2F1

(
−m,−n

γ

∣∣∣∣1− 1
µ

)
=

= (γ)m

∞

∑
k=0

1
k!
(−m)k(−n)k

(γ)k

(
1− 1

µ

)k
,

where the Pochhammer symbol is defined by

(a)k = a(a + 1) . . . (a + k− 1) for k > 0

and (a)0 = 1.

3. Sequence of Discrete Quantum Harmonic Oscillators

Let `k(Z;C), k ∈ Z, be the sets of complex-valued sequences {ψk} defined on Z and
square-summable 〈ψk|ψk〉k < +∞, with the scalar products

〈ψk|ϕk〉k :=
b−1

∑
n=a

ψk(n)ϕk(n)ρk(n), (6)
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where ρk are weight functions.
The main object of our considerations is the sequence of second-order operators Hk : `k(Z,C) −→

`k(Z,C) given by
Hk = −T+ + n(n− 1− k)T− + 2− k

and the problem of eigenvalues for these operators

Hkψm
k (n) = λm

k ψm
k (n). (7)

Here, m labels the energy levels and associated eigenfunctions. In this sequence, we recognize the
problem of eigenvalues for the discrete quantum harmonic oscillator (Equation (1)) for k = 0.

The family of operators Hk can be factorized as a product of first-order operators

Hk = A∗kAk + αk = Ak+1A∗k+1 + αk+1,

where the annihilation and creation operators Ak : `k(Z,C) −→ `k−1(Z,C) and A∗k : `k−1(Z,C) −→
`k(Z,C) are given by

Ak = T+ + (n− k)I,
A∗k = nT− − I.

In turn, the constants αk are given by

αk = 2− 2k.

This type of factorizations was presented in detail for the general situation in a discrete case
in [16–18] and in [19–21] for the τ- and q-cases too. It is based on classical methods taken from the
work of some founders of quantum mechanics such as Schrödinger [22] (see also [23–25]).

In general, the creation operator A∗k is the adjoint of the annihilation operator Ak relative to the
scalar product (6), where the weight functions ρk satisfy the Pearson type equations (see [17]). In our
case, we have

∆ (nρk(n)) =
(
− 1

n− k
− n

)
ρk(n), (8)

and the recursion relation
ρk−1(n) = −

1
n− k

ρk(n). (9)

The boundary conditions read as follows

aρk(a) = bρk(b) = 0.

If ρk were a positive weight function, then the operator Hk would be self-adjoint and its
eigenfunctions corresponding to different eigenvalues would be orthogonal〈

ψm
k |ψ

l
k

〉
k
= 0 for m 6= l.

From above expression, after a direct calculation, we find

ρk(n) =


(−1)n+k

n!(n− k− 1)!
for n > k

0 for n ≤ k
, (10)

a = k, (11)

b = ∞. (12)
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We see that the function ρk is not positive, i.e., 〈·|·〉k is not a scalar product, but it can be interpreted
as a pseudo-scalar product. In this case, an explicit calculation using Equations (8) and (9) also yields

〈ψk−1|Ak ϕk〉k−1 =
∞

∑
n=k

ψk−1(n)ρk−1(n)
(
T+ + n− k

)
ϕk(n) = (13)

=
∞

∑
n=k

ψk−1(n)ϕk(n + 1)ρk−1(n) +
∞

∑
n=k

ψk−1(n) (n− k) ϕk(n)ρk−1(n) =

=
∞

∑
n=k+1

nψk−1(n− 1)ϕk(n)ρk(n)−
∞

∑
n=k+1

ψk−1(n)ϕk(n)ρk(n) =

=
∞

∑
n=k+1

ϕk(n)ρk(n)
(
nT− − 1

)
ψk−1(n) = 〈A∗kψk−1|ϕk〉k .

Let us note that there exists an important class of solutions of Equation (7) such that λ0
k = αk. If

we consider the first-order difference equation

Akψ0
k(n) = 0, (14)

then any nonzero solution to this equation is automatically a solution of Equation (7) with eigenvalue
λ0

k = αk. It is easy to find now a solution to Equation (14) (the so-called ground state)

ψ0
k(n) = (−1)n(n− k− 1)!Ck for n > k, (15)

where Ck is a constant. If k ≥ 0, then the series
〈
ψ0

k |ψ
0
k
〉

k is convergent. The operators T± operate on
the level of ground states for different k as follows:

. . . ψ0
k

−T− // ψ0
k+1−T+

oo
−T− // ψ0

k+2 . . .
−T+

oo

Moreover, the function ψ0
k(n) can be used to construct the excited state solutions of Equation (7)

through the formula

(−1)mψm
k+m(n) = A∗k+m . . . A∗k+2A∗k+1ψ0

k(n) =
(
nT− − I

)m
ψ0

k(n)

or, equivalently, ψm
k (n) = (nT− − I)m

ψ0
k(n + m). These eigenfunctions correspond to the eigenvalues

λm
k = αk−m = 2− 2k + 2m. For example, a straightforward calculation leads to

ψ1
k(n) = (2n− k)ψ0

k(n) for λ1
k = −2k + 4,

ψ2
k(n) = (4n2 − 4nk + k2 − k)ψ0

k(n) for λ2
k = −2k + 6,

ψ3
k(n) = (8n3 − 12n2k + 6nk2 − 6nk + 4n− k3 + 3k2 − 2k)ψ0

k(n)

for λ3
k = −2k + 8.

Moreover, the conditions in Equations (10)–(12) mean that we restrict the sequences {ψm
k } to the

spaces `k({k + 1, k + 2, . . . },C).
These expressions suggest to look for solutions of the eigenvalue problem in Equation (7) for a

fixed k in the form

ψm
k (n) = Pm

k (n)ψ0
k(n).
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Substituting this expression into the difference equation (Equation (7)), after some calculations,
we get the equation for the sequence Pm

k (n):

(k− n)Pm
k (n + 1)− kPm

k (n) + nPm
k (n− 1) = (2− λm

k − 2k) Pm
k (n). (16)

We recognize this as the equation for the Meixner polynomials (see [26]). Comparing
Equations (16) and (2), we identify

σ(n) = n, (17)

τ(n) = k− 2n, (18)

λ = λm
k + 2k− 2. (19)

Finally, from the comparison of Equations (17)–(19) with Equations (3)–(5) under the condition
λm

k = αk−m, we can see that Pm
k are the generalized Meixner polynomials of the first kind

Pm
k (n) = M−k,−1

m (n).

To summarize the previous treatment, the eigenfunctions of the operators Hk are given by families
of polynomials, which are indexed by the parameter k, with ground states such that

Hk M−k,−1
m (n)ψ0

k(n) = 2(1− k + m)M−k,−1
m (n)ψ0

k(n).

From Equation (13) and restricting to the subspace `k({k + 1, k + 2, . . . },C), we only get that

〈
A∗kψ0

k−1|ψ
0
k

〉
k
=

∞

∑
n=k

ψ0
k−1(n)ψ

0
k(n + 1)ρk−1(n)+

+
∞

∑
n=k+1

ψ0
k−1(n) (n− k)ψ0

k(n)ρk−1(n) = ψ0
k−1(k)ψ

0
k(k + 1)ρk−1(k),

because the function ψ0
k is not defined at the point k. This means that we have the following relationship〈

ψ1
k |ψ

0
k
〉

k +
1
k!

= 0, where we have put Ck = 1. Similarly, we obtain

〈
ψm

k |ψ
0
k

〉
k
− (−1)m M−k+1,−1

m−1 (k)
k!

= 0

for m ≥ 1. In the language of the polynomials M−k,−1
m , we can rewrite it in the form

∞

∑
n=k+1

M−k,−1
m (n)

(−1)n+k(n− k− 1)!
n!

− (−1)m M−k+1,−1
m−1 (k)

k!
= 0.

4. Conclusions

In this work, we propose a discrete version of the harmonic oscillator, which has a spectrum
analogous to the corresponding problem in the continuous case. Our construction is based on a
factorization method applied to second-order difference equations. In this case, the eigenfunctions
turn out to be associated with the Meixner polynomials.
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