
symmetryS S

Article

Keller-Box Analysis of Buongiorno Model with
Brownian and Thermophoretic Diffusion for Casson
Nanofluid over an Inclined Surface

Khuram Rafique 1 , Muhammad Imran Anwar 1,2,3, Masnita Misiran 1, Ilyas Khan 4,* ,
Sayer O. Alharbi 5, Phatiphat Thounthong 6 and Kottakkaran Sooppy Nisar 7

1 School of Quantitative Sciences, Universiti Utara Malaysia, Sintok 06010, Kedah, Malaysia;
Khurram.rafique1005@gmail.com (K.R.); masnita@uum.edu.my (M.M.)

2 Department of Mathematics, Faculty of Science, University of Sargodha, Sargodha 40411, Pakistan
3 Higher Education Department (HED), Punjab 54000, Pakistan; imrananwar@uos.edu.pk
4 Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City 72915, Vietnam
5 Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952,

Saudi Arabia; so.alharbi@mu.edu.sa
6 Renewable Energy Research Centre, Department of Teacher Training in Electrical Engineering Faculty of

Technical Education King Mongkut’s University of Technology North Bangkok, 1518, Pracharat 1 Rd.,
Bangsue, Bangkok 10800, Thailand; phatiphat.t@fte.kmutnb.ac.th

7 Department of Mathematics, College of Arts and Science, Prince Sattam bin Abdulaziz University,
Wadi Al-Dawaser 11991, Saudi Arabia; n.sooppy@psau.edu.sa

* Correspondence: ilyaskhan@tdtu.edu.vn

Received: 10 August 2019; Accepted: 17 September 2019; Published: 5 November 2019
����������
�������

Abstract: The key objective of the study under concern is to probe the impacts of Brownian motion
and thermophoresis diffusion on Casson nanofluid boundary layer flow over a nonlinear inclined
stretching sheet, with the effect of convective boundaries and thermal radiations. Nonlinear ordinary
differential equations are obtained from governing nonlinear partial differential equations by using
compatible similarity transformations. The quantities associated with engineering aspects, such as
skin friction, Sherwood number, and heat exchange along with various impacts of material factors
on the momentum, temperature, and concentration, are elucidated and clarified with diagrams.
The numerical solution of the present study is obtained via the Keller-box technique and in limiting
sense are reduced to the published results for accuracy purpose.

Keywords: Keller-box technique; Casson nanofluid; MHD; Power law fluid; Convective boundaries;
Radiation effect; Inclined surface

1. Introduction

Brownian motion and thermophoresis diffusions are the key notions of abnormal improvement
in thermal conductivity by using binary fluids (base fluid along with nanoparticles). The influence
of Brownian motion and thermophoresis is focused in the Buongiorno model. This model supports
engineers and scholars through its utilization in the field of science and technology. It is also pointed
out that nanoparticles occupying Brownian motion and thermophoresis effects cause improvement
of thermal conductivity. The Brownian motion principle along thermophoresis particle installation
supports, in manufacturing, germanium dioxide optical fibers and, in communication engineering,
silicon. The impacts of Brownian motion and thermophoresis diffusion on Casson nanofluid flow on a
stretching sheet were discussed by Anwar et al. [1]. Afify [2] scrutinized the Brownian movement and
thermophosis impact on Casson nanofluid flow with convective boundaries. The impacts of radiations
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on Casson nanofluid flow with Brownian motion and thermophoresis influence were studied by
Souayeh et al. [3]. Rashidi et al. [4] discussed heat exchange and particle motion by considering the
discrete phase model (DPM). Bhatti et al. [5] examined electro-magnetohydrodynmaic (MHD) flow
with heat exchange by incorporating the thermal radiations effect. Ellahi et al. [6] investigated a shiny
thin film with metallic tactile covering nanoparticles through a rotating disk. Numerous scholars [7–12]
considered the Buongiorno model to investigate flow characteristics.

The most significant concerns of a creator and craftsman in the construction of different items,
in the pursuit of excellence, is the lessening of expenses and time. The role of heat and fluids
in industries is undeniable. Discovering approaches towards the advancement of procedures and
the quantity of energy exchange has consistently been a concern for researchers and specialists
from the earlier times to the current era. The discovery of nanoparticles and the advancement in
nanotechnology is viewed as a tremendous change in innovation and science. Choi [13] was the
initiator of the nanofluid concept. A mixture of a base fluid (water, ethylene glycol and so on)
with nano-scale particles called nanoparticles is termed as a nanofluid. Nanofluids have a higher
thermal conductivity as compared to base fluids, due to which the energy exchange procedure
is enhanced. The radiation effects on Casson nanofluid flow on a nonlinear slanted sheet were
investigated by Ghadikolaei et al. [14]. The effect of a magnetic field on the flow of a nanofluid over
an inclined sheet was studied by Suriyakumar and Devi [15]. Khan et al. [16] examined the flow of a
Jeffery nanofluid over a slanted sheet. Thumma et al. [17] discussed the flow of a nanofluid over a
nonlinear inclined stretching sheet. Parkash et al. [18] discussed the nanofluid flow through a channel
analytically. Zeeshan et al. [19] examined the flow of titanium dioxide-water base nanofluid because of
entropy generation. Shehzad et al. [20] calculated the silver-water base nanofluid flow in a porous
medium because of entropy generation. Hussain et al. [21] studied multiphase flow synthesis with
nano-size hafnium particles with the effect of electro-hydrodynamic effect. Ellahi et al. [22] discussed
the thermally charged MHD bi-phase flow coating with non-Newtonian nanofluid along slipper walls.
Recently, many scholars discussed nanofluid flow by incorporating different impacts [23–26].

Non-Newtonian fluids have gained considerable attention from scientists and engineers because of
their key role in the field of industry and engineering. The study under concern has direct noteworthy
use in association with non-Newtonian fluids, such as Casson fluids (honey, human blood etc.),
power law fluids and nanofluids etc. Reddy [27] investigated the movement of Casson liquid over
a slanted sheet. Hakeem et al. [28] investigated the inclined Lorentz force on Casson fluid flow
on an extended sheet. Rawi et al. [29] studied the unsteady flow of Casson fluid through a slanted
sheet. Casson fluid flow on an inclined sheet with multiple impacts was discussed by Jain and
Parmar [30]. Ellahi et al. [31] discussed the two-phase Couette flow of couple stress by incorporating
the magnetic field impacts. Ellahi et al. [32] investigated the blood flow of couple stress fluid with
chemical reaction effects. For further detailed literature related to non-Newtonian fluid flow on inclined
sheets, see [33–40].

Heat exchange due to thermal radiations has become an active area of research due to its vast
range of applications in the field of nuclear power plants, missiles, satellites and in nanotechnology.
Moreover, it is significant that thermal radiation is not suitable for the engineering of thermal tools with
large variations in temperature [41]. The thermal radiation impact on flow and heat exchange is a key
factor to design advanced energy conversion systems [42]. Recently, Ghadikolaei et al. [43] investigated
the flow of Casson nanofluid on a porous inclined sheet numerically. Saidulu [44] discussed the
radiation impacts on the flow of a nanofluid over an exponential inclined surface.

To the best of the authors’ knowledge, no study on Casson nanofluid flow over an inclined
nonlinear stretching sheet along with radiation effects and convective boundaries has been reported
yet. Besides, the fact that a lot of work has already been done on non-Newtonian fluids with different
geometries, but due to the growing applications of non-Newtonian fluids in the field of industry,
the authors choose this study on an inclined sheet. The non-Newtonian fluid flow on an inclined sheet
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plays a vital role in MHD generators, gas turbines, and extrusion of plastic sheets. The numerical
solution of the current problem is obtained using the Keller-box method.

2. Problem Formulation

Suppose two-dimensional incompressible Casson nanofluid flow over a nonlinear inclined
stretching sheet slanted at γ, where uw(x) = axm is the extending speed and u∞(x) = 0 is free stream
speed, in which x is the coordinate stated towards the extending sheet and ‘a’ is considered as constant.
The transverse magnetic field ‘B0’ is taken as normal to the track of flow. The Brownian motion
and thermophoresis effects are considered. The temperature T and nanoparticle fraction C take the
values Tw and Cw at the wall. The thermal radiation impact is incorporated with a convective heating
procedure considered by the temperature T f and heat exchange factor h f , which is proportional to x−1.
Meanwhile, the encompassing structures for nanofluid temperature and mass divisions T∞ and C∞ are
achieved as y keeps an eye on infinity, as displayed in Figure 1.

Symmetry 2019, 11, x FOR PEER REVIEW 3 of 19 

 

Suppose two-dimensional incompressible Casson nanofluid flow over a nonlinear inclined 
extending sheet slanted at 𝛾 , where 𝑢 (𝑥) = 𝑎𝑥  is the extending speed and 𝑢 (𝑥) = 0 is free 
stream speed, in which x is the coordinate stated towards the extending sheet and ‘a’ is considered as 
constant. The transverse magnetic field ‘𝐵 ’ is taken as normal to the track of flow. The Brownian 
motion and thermophoresis effects are considered. The temperature 𝑇 and nanoparticle fraction 𝐶 
take the constant values 𝑇  and 𝐶  at the wall. The thermal radiation impact is incorporated with 
a convective heating procedure considered by the temperature 𝑇  and heat exchange factor ℎ , 
which is proportional to 𝑥 . Meanwhile, the encompassing structures for nanofluid temperature 
and mass divisions 𝑇  and 𝐶  are achieved as y keeps an eye on infinity, as displayed in Figure 1. 

 
Figure 1. Physical geometry with coordinate system. 

The flow equations for this study are given by 𝜕𝑢𝜕𝑥 + 𝜕𝑣𝜕𝑦 = 0, (1) 𝑢 + 𝑣 = 𝜈(1 + ) + 𝑔[𝛽 (𝑇 − 𝑇 ) + 𝛽 (𝐶 − 𝐶 )]𝑐𝑜𝑠𝛾 −( ) 𝑢, 
(2) 

𝑢 𝜕𝑇𝜕𝑥 + 𝑣 𝜕𝑇𝜕𝑦 =  𝛼 𝜕 𝑇𝜕𝑦 − 1(𝜌𝑐) 𝜕𝑞𝜕𝑦 + 𝜏 𝐷 𝜕𝐶𝜕𝑦 𝜕𝑇𝜕𝑦 + 𝐷𝑇 𝜕𝑇𝜕𝑦 , (3) 

𝑢 𝜕𝐶𝜕𝑥 + 𝑣 𝜕𝐶𝜕𝑦 = 𝐷 𝜕 𝐶𝜕𝑦 + 𝐷𝑇 𝜕 𝑇𝜕𝑦 . (4) 

Here, the Rosseland estimation (for radiation flux) is characterized as  𝑞 = − 4𝜎∗3𝑘∗  𝜕𝑇𝜕𝑦  (5) 

where the Stephen-Boltzmann coefficient is given by 𝜎∗  and the mean absorption constant is 
represented by 𝑘∗. Meanwhile, the temperature changes between the local temperature 𝑇 and free 
steam 𝑇  are very small, by ignoring higher order terms in the expansion of 𝑇  in Taylor succession 
about 𝑇  for: 

Figure 1. Physical geometry with coordinate system.

The flow equations for this study are given by

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

= ν

(
1 +

1
β

)
∂2u
∂y2 + g[βt(T − T∞) + βc(C−C∞)]cosγ−

σB0
2(x)
ρ

u, (2)

u
∂T
∂x

+ v
∂T
∂y

= α
∂2T
∂y2 −

1
(ρc) f

∂qr

∂y
+ τ

DB
∂C
∂y
∂T
∂y

+
DT

T∞

(
∂T
∂y

)2, (3)

u
∂C
∂x

+ v
∂C
∂y

= DB
∂2C
∂y2 +

DT

T∞
∂2T
∂y2 . (4)

Here, the Rosseland estimation (for radiation flux) is characterized as

qr = −
4σ∗

3k∗
∂T4

∂y
(5)



Symmetry 2019, 11, 1370 4 of 18

where the Stephen-Boltzmann coefficient is given by σ∗ and the mean absorption constant is represented
by k∗. Meanwhile, the temperature changes between the local temperature T and free steam T∞ are
very small, by ignoring higher order terms in the expansion of T4 in Taylor succession about T∞ for:

T4 � 4T3
∞T − 3T4

∞. (6)

By using Equations (5) and (6), the Equation (3) is converted into

u
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∞
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∂y
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(
∂T
∂y

)2, (7)

where in the directions x and y, the velocity constituents are u and v, individually, g is the gravitational
acceleration, the strength of the magnetic field is defined by B0, σ is the electrical conductivity,
viscosity is given by µ, the density of conventional fluid is given by ρ f , the density of the nanoparticle is
given by ρp, β is the Casson parameter, the thermal expansion factor is denoted by βt, the concentration
expansion constant is given by βc, DB denotes the Brownian dissemination factor and DT represents
the thermophoresis dispersion factor. The thermal conductivity is given by k, the heat capacity of
the nanoparticles symbolically is given as (ρc)p, the heat capacity of the conventional liquid is given

by (ρc) f ,α = k
(ρc) f

denotes the thermal diffusivity parameter, and the symbolic representation of the

relation among the current heat capacity of the nanoparticle and the liquid is τ =
(ρc)p

(ρc) f
.

In this problem, boundary conditions are considered as

u = uw(x) = axm, v = 0 , −k ∂T
∂y = h f

(
T f − T

)
, C = Cw at y = 0,

u→ u∞(x) = 0, v→ 0 , T→ T∞ , C→ C∞ at y→∞
(8)

For the conversion of the Equations (2), (4) and (7) into ordinary differential equations, we use
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Here, primes signify the differentiation concerning η, λ is the buoyancy parameter, δ is the solutal
buoyancy parameter, the magnetic constraint is given by M, ν denotes the kinematic viscosity of the
liquid, the Prandtl number is given as Pr, the Lewis number is given by Le, Nb denotes the Brownian
motion parameter, Nt indicates the thermophoresis factor and N denotes the radiation factor.

The resultant boundary settings are

f (η) = 0, f ′(η) = 1, θ′(0) = −γ1(1− θ(0)), φ(η) = 1 at η = 0,
f ′(η)→ 0, θ(η)→ 0, φ(η)→ 0 as η→∞.

(15)

Here, γ1 = n
k
√

Rex
is the convective parameter termed as Biot number.

The skin friction, Sherwood number and Nusselt number for the current study are regarded as

Nux =
xqw

k(Tw − T∞)
, Shx =

xqm

DB(Cw −C∞)
, C f =

tw

uw2ρ f
, (16)

where
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[
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,
]
∂T
∂y
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∂y

, τw = µ

(
1 +

1
β

)
∂u
∂y

, at y = 0.

The related terms of dimensionless reduced Nusselt number −θ′(0), reduced Sherwood number
−φ′(0) and skin friction coefficient C f x =

(
1 + 1

β

)
f ′′ (0) are defined as

−θ′(0) =
Nux(

1 + 4
3 N

)√
m+1

2 Rex

,−φ′(0) =
Shx√

m+1
2 Rex

, C f x = C f

√
2

m + 1
Rex, (17)

where Rex = uwx
ν , is the local Reynolds number.

The converted nonlinear differential Equations (11)–(13) with the boundary settings (15)
are elucidated by a Keller-box scheme consisting of the steps as finite-differences scheme,
Newton’s technique and block elimination process, clearly explained by Anwar et al. [7]. The Keller-box
technique has been widely applied because it is the most flexible as compared to other approaches.
It is informal to practice, much quicker, friendly to program and effective.

3. Results and Discussion

In this part of the study, the numerical outcomes of the converted nonlinear ordinary differential
Equations (11)–(13) with boundary settings (15) are elucidated by the Keller-box method. For the
numerical results of physical parameters of our concern, namely, Brownian motion denoted by Nb,
thermophoresis given by Nt, magnetic factor M, buoyancy factor λ, solutal buoyancy constraint δ,
inclination factor γ, Prandtl number Pr, Lewis number Le, radiation factor N, Casson fluid parameter β,
Biot number γ1 and parameter m, several figures and tables are prepared. In Table 1, in the deficiency
of λ, δ, M, and N, and taking factor m = 1, with γ = 90◦ and β→∞ , the outcomes of −θ′(0), −φ′(0)
(reduced Nusselt number, reduced Sherwood number) are equated with the results of Khan and
Pop [45]. The magnitudes are established as brilliant settlement. The effects on −θ′(0), −φ′(0) and
C f x(0) against several values of involved physical parameters Nb, β, Nt, M, N, λ, δ, γ, Pr, Le, γ1

and m are presented in Table 2. It is noted that −θ′(0) drops when increasing the values of Nb, Pr, β, N,
Le, m, and γ1, and it increased by enhancing the numerical values of γ, λ, δ, M and Nt. Moreover, it is
perceived that −φ′(0) is enhanced with larger values of Nb, Pr, N, Le, λ, and δ, and drops for bigger
values of m, M, β, γ, γ1 and Nt. Physically, by enhancing the Brownian motion impact, the thermal
boundary layer thickness increases, and it effects a large amount of the fluid. Moreover, the Sherwood
number increases and the Nusselt number decreases as we boost the thermophoresis effect; this is
due to the fact that the thermal boundary layer turns thicker due to deeper diffusion penetration into
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the fluid. On the other hand, C f x(0) rises with the growing values of Nb, Pr, Le, β, M, N,γ, and m,
and drops with the higher values of Nt, λ, δ, γ1 and Pr.

Table 1. Contrast of the reduced Nusselt number −θ′(0) and the reduced Sherwood number −φ′(0)
against γ = 90◦, γ1 →∞ , β→∞ , M, N,λ, δ = 0, with m = 1, and Pr = Le = 10.

Nb Nt Khan and Pop [45] Present Results

−θ
′

(0) −φ
′

(0) −θ
′

(0) −φ
′

(0)

0.1 0.1 0.9524 2.1294 0.9524 2.1294
0.2 0.2 0.3654 2.5152 0.3654 2.5152
0.3 0.3 0.1355 2.6088 0.1355 2.6088
0.4 0.4 0.0495 2.6038 0.0495 2.6038
0.5 0.5 0.0179 2.5731 0.0179 2.5731

Table 2. Values of the reduced Nusselt number −θ′(0), the reduced Sherwood number −φ′(0) and the
skin friction coefficient C f x(0).

Nb Nt Pr Le M N β λ δ γ1 m γ −θ
′

(0) −φ
′

(0) Cfx(0)

0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0936 1.6159 0.5417
0.5 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0447 1.6541 0.5449
0.1 0.13 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0961 1.6038 0.5406
0.1 0.1 10.0 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0563 1.7133 0.6235
0.1 0.1 6.5 10.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0919 2.3622 0.5785
0.1 0.1 6.5 5.0 0.3 1.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0957 1.5958 0.6332
0.1 0.1 6.5 5.0 0.1 5.0 1.0 0.1 0.9 0.1 0.5 45◦ 0.0527 1.6374 0.5421
0.1 0.1 6.5 5.0 0.1 1.0 5.0 0.1 0.9 0.1 0.5 45◦ 0.0916 1.5833 0.6563
0.1 0.1 6.5 5.0 0.1 1.0 1.0 1.0 0.9 0.1 0.5 45◦ 0.0952 1.6184 0.5250
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 2.0 0.1 0.5 45◦ 0.0949 1.6376 0.3809
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.2 0.5 45◦ 0.1779 1.5828 0.5363
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 1.5 45◦ 0.1253 1.5763 0.6968
0.1 0.1 6.5 5.0 0.1 1.0 1.0 0.1 0.9 0.1 0.5 60◦ 0.0968 1.6098 0.5818

Figure 2 demonstrates the velocity profile against the magnetic effect. It is observed that the
magnetic parameter produces Lorentz force, due to which the velocity of the fluid retards and the
velocity profile drops for higher values of the magnetic parameter. Moreover, Figure 3 shows that the
temperature contour is enhanced by upgrading the magnetic parameter, and the reason behind this
is that the Lorentz force boosts the temperature. Consequently, the thickness of the boundary layer
upturns with the increasing of the magnetic parameter. Besides, a different effect of magnetic field on
concentration is noticed in Figure 4.

The influence of the nonlinear parameter on the velocity profile is shown in Figure 5. It is noted
that the velocity field is not much pronounced in the case of a linear or nonlinear stretching sheet as
compared to a uniformly moving surface. Similar behavior is shown in Figure 6 for the temperature
profile. Moreover, an opposite effect is shown in Figure 7 for the concentration profile. Figure 8
represents the Casson effect suppressed the velocity of the fluid. It is meaningful because β reduces the
yield stress in the Casson fluid. Physically, an enhancement in the Casson parameter tends to reduce
the yield stress, which implies that the plastic dynamic viscosity of the liquid is enhanced and the
momentum boundary layer becomes thicker [46].
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Figure 9 indicates that the buoyancy force parameter λ has a directly proportional relation
with the velocity profile. Physically, an increment in the buoyancy force causes a reduction of the
viscous force, due to which the fluid particles move faster. In summary, the enhancement in buoyancy
force tends to enhance the velocity profile. Figure 10 reveals the effect of solutal buoyancy impact
on the velocity profile. The concentration difference, length and viscosity of the fluid affected the
solutal buoyancy parameter. Therefore, as we enhance the solutal buoyancy parameter, the viscosity
declines and the concentration increases, due to which the velocity of the fluid increases [47]. Figure 11
reflects the impact of inclination factor γ on the velocity profile. It is observed in Figure 11 that the
velocity contour runs down by improving the values of γ. Moreover, the conditions specify that the
maximum gravitational force acts on the flow in the case of γ = 0, because in this state the sheet will
be vertical. On the other hand, for γ = 90

◦

, the sheet will be horizontal, which causes a drop in
velocity profile as the power of the bouncy forces drop. Figure 12 represents the impact of radiations
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on the temperature profile. It reveals that the temperature profile increases with large values of
thermal radiation parameter; the reason behind this is that the heat exchange is enhanced and the
boundary layer thickness declines [48]. Figure 13 indicates that the temperature profile is enhanced
near the boundary layer by improving the values of the Biot number. A similar behavior in the case of
concentration outline against higher values of the Biot number is seen in Figure 14.
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Figure 15 represents that the temperature profile drops by improving the parameter Pr. This is
because the bigger values of Pr cause improvement in viscosity and decline in the thermal boundary layer
thickness. Figure 16 shows the result of Lewis number Le on the concentration profile. The boundary
layer viscosity reduces by enhancing the values of Lewis number Le.
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Figures 17 and 18 show the effect of Brownian motion on the temperature and concentration profiles,
respectively. The temperature profile upturns with improving Nb; on the other hand, concentration
distribution has the opposite impact. Physically, the boundary layer heats up due to the development
in Brownian motion, which accelerates the nanoparticles from the extending sheet to the stationary
fluid. Therefore, the concentration of nanoparticles reduces. Figures 19 and 20 reveal the impact of Nt
on temperature and concentration profile for altered values. It is observed that both temperature and
concentration contours are directly proportional to the Nt.
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4. Conclusions

In the article under study, we investigate the heat and mass transfer of Casson nanofluid flow
over an inclined sheet, with convective boundaries and thermal radiation effects taken in account.
The numerical results are elucidated with the Keller-box method. We found an excellent agreement
between the current outcomes and already published results. The core findings of the problem under
concern are the following:

â The temperature profile increases near the boundary layer by improving the Biot number.
â The velocity and temperature profiles drop by improving the nonlinear power index.
â The heat exchange improved upon improving the radiation parameter.
â The velocity distribution retards by increasing the Casson parameter.
â The Nuselt number decreases by increasing the Casson parameter.
â The skin friction declines by improving the Biot number.
â The velocity profile shows an inverse relation with the inclination factor.
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