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Abstract: The concept of fuzzy multiset is well established in dealing with many real life problems.
It is possible to find various applications of algebraic hypercompositional structures in natural,
technical and social sciences, where symmetry, or the lack of symmetry, is clearly specified and
laid out. In this paper, we use fuzzy multisets to introduce the concept of fuzzy multi-Hv-ideals
as a generalization of fuzzy Hv-ideals. Moreover, we introduce the concept of generalized fuzzy
multi-Hv-ideals as a generalization of generalized fuzzy Hv-ideals. Finally, we investigate the
properties of these new concepts and present different examples.

Keywords: Hv-structures; Hv-ring; fundamental equivalence relation; Hv-ideal; multiset; fuzzy
multiset; fuzzy multi-Hv-ideal.

MSC: 20N25, 20N20

1. Introduction

Symmetry is one of the central concepts of science, especially theoretical physics, mathematics
and geometry of the 20th century. A given phenomenon or object is symmetrical if it is possible to
introduce or consider a certain symmetry operation by which the phenomenon or object becomes in a
certain sense identical to itself. The notion of symmetry has fascinated thinkers since antiquity (e.g.,
Pythagoreans). Later, in the so-called Erlangen program, Felix Klein tied a group of symmetry to each
geometry. Mathematically, these symmetry operations are most often described by the term “group“. We
distinguish continuous symmetry, which are described mathematically mainly by the term “Lie groups“,
and discrete symmetry, which are described mainly by the term “discrete group“. In mathematics, a
symmetric relation is one in which variables can be exchanged or index permutations can be made
without changing the relation (understood as a geometric object). The natural generalization of classical
group theory is the approach of algebraic hyperstructures, introduced by F. Marty [1] during the eighth
Congress of Scandinavian Mathematicians that was held in 1934. Marty generalized the notion of a
group (which is a non-empty set with a binary operation satisfying some axioms and the operation
of two elements is an element) to that of a hypergroup. A hypergroup is a non-empty set equipped
with an associative and reproductive hyperoperation, where the composition of any two elements
in it is a non-empty set. Since then, researchers started studying different kinds of hyperstructures
such as: hyperrings, hypermodules, hypervector spaces, and many others by considering both parts:
theoretical part as well as their applications to different subjects of science. Later in 1990, Th. Vougiouklis
introduced weak hyperstructures (or Hv-structures) as a generalization of the concept of algebraic
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hyperstructures (hypergroups, hyperrings, hypermodules). The name “weak hyperstructures” is due to
having some axioms of classical algebraic hyperstructures are replaced by their corresponding weak
axioms in weak hyperstructures. Many researchers such as Corsini [2], Corsini and Leoreanu [3],
Davvaz [4,5], Davvaz and Leoreanu-Fotea [6], Davvaz and Cristea [7] and Vougiouklis [8] wrote books
related to (weak) hyperstructure theory and their applications. An overview about hyperstructure
theory was published by Hoskova and Chvalina in [9].

On the other hand, fuzzy mathematics is an almost new branch in mathematics which was
introduced in 1965 by Zadeh (see [10]). It is an extension of the classical notion of set and it is related
to fuzzy set theory and fuzzy logic. Fuzzy sets are sets whose elements have degrees of membership
that vary between 0 and 1 both inclusive. In classical set theory, the elements’ membership in a certain
set is usually identified by the condition that an element either belongs to the set or does not belong
to it. By contrast, fuzzy set theory enables the gradual evaluation of the membership of elements in
a set with values ranging between 0 and 1. If the membership function of a fuzzy set takes only the
values 0, 1 then we go back to the classical notion of a set. As a generalization of fuzzy sets, Yager [11]
introduced the concept of Fuzzy Multiset and investigated a calculus for them. Fuzzy Multiset permits
the occurrence of an element more than once and each occurrence may have the same or different
membership values.

In [12], Onasanya and Hoskova-Mayerova introduced multi-fuzzy groups induced by multisets.
In [13,14], the authors studied fuzzy multi-polygroups and fuzzy multi-hypergroups. Moreover,
Davvaz [15] and Davvaz et al. [16] discussed fuzzy Hv-ideals and generalized fuzzy Hv-ideals and
investigated their properties. Our paper generalizes the work in [12,13,15,17] to combine Hv-rings
and fuzzy multisets. More specifically, it is concerned about fuzzy multi-Hv-ideals and generalized
fuzzy multi-Hv-ideals and it is constructed subsequently: Our motivation is described in Introduction,
Section 2 presents basic notions with respect to (weak) hyperstructures and fuzzy multisets that are
used throughout the paper. Section 3 defines and studies the properties of fuzzy multi-Hv-ideals and
their relation to Hv-ideals. Finally, Section 4 defines generalized fuzzy multi-Hv-ideals and studies
their properties.

2. Basic Definitions

In this section, we present some preliminary definitions and results related to hyperstructure
theory [3,4,6] and fuzzy multisets [18] that are used throughout the paper.

2.1. (Weak) Hyperstructure Theory

Let H be a non-empty set and P∗(H) be the set of all non-empty subsets of H. Then, a mapping
◦ : H × H → P∗(H) is called a binary hyperoperation on H. The couple (H, ◦) is called a hypergroupoid.
In this definition, if X and Y are two non-empty subsets of H and h ∈ H, then we define:

X ◦Y =
⋃

x∈X
y∈Y

x ◦ y, h ◦ X = {h} ◦ X and X ◦ h = X ◦ {h}.

Hv-structures were introduced by T. Vougiouklis, and studied in detail in [8,19,20], as a
generalization of the ordinary algebraic hyperstructures. The equalities presented in some axioms
of classical algebraic hyperstructures are substituted by non-empty intersection in Hv-structures.
A hypergroupoid (H, ◦) is called a quasi-hypergroup if a ◦ H = H ◦ a = H for all a ∈ H. And it is called
an Hv-semigroup if (x ◦ (y ◦ z)) ∩ ((x ◦ y) ◦ z) 6= ∅ for all x, y, z ∈ H. A hypergroupoid (H, ◦) is called
an Hv-group if it is a quasi-hypergroup and an Hv-semigroup. A multivalued system (R,+, ·) is an
Hv-ring if (1) (R,+) is an Hv-group; (2) (R, ·) is is an Hv-semigroup; (3) “·” is weak distributive with
respect to +.

Let {Rα : α ∈ Γ} be a collection of Hv-rings (See [7]) and ∏α∈Γ Rα = {< xα >: xα ∈ Rα}.
Then (∏α∈Γ Rα,⊕,⊗) is an Hv-ring, where
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< xα > ⊕ < yα >= {< zα >: zα ∈ xα + yα, α ∈ Γ},

< xα > ⊗ < yα >= {< zα >: zα ∈ xα · yα, α ∈ Γ}.

A subset S of an Hv-ring (R,+, ·) is called an Hv-subring if (S,+, ·) is an Hv-ring. To prove that
(S,+, ·) is an Hv-subring of (R,+, ·), it suffices to show that x + S = S + x = S and x · y ⊆ S for all
x, y ∈ R. An Hv-subring S of (R,+, ·) is called an Hv-ideal of R if R · S ⊆ S and S · R ⊆ S.

Let (R,+, ?) and (S,+′, ?′) be two Hv-rings. Then f : R→ S is said to be strong homomorphism if
f (x + y) = f (x) +1 f (y) and f (x ? y) = f (x) ?′ f (y) for all x, y ∈ R. (R,+, ?) and (S,+′, ?′) are called
isomorphic Hv-rings, and written as R ∼= S, if there exists a bijective function f : R → S that is also a
strong homomorphism.

Fundamental relations are used as a tool to connect and relate the classes of hyperstuctures
and algebraic structures together. In [8], Vougiouklis defined the notion of fundamental relation
on Hv-rings. Koskas [21] introduced the fundamental relation β? on hypergroups and later in 1990,
Vougiouklis [8] introduced the fundamental relation γ? on hyperrings. These fundamental relations β?

(for hypergroups (Hv-groups)) and γ? (for hyperrings (Hv-rings)) are defined as the smallest strongly
regular equivalence relations so that the quotient would be group and ring respectively. Many authors
studied fundamental relations such as: Antampoufis and Hoskova-Mayerova [22], Corsini [2], Cristea
and Norouzi [23–26], Davvaz [16], Freni [27], etc..

For all n > 1, we define the relation γ on an Hv-ring (R,+, ·) as follows:

aγb⇐⇒ {a, b} ⊆ u, u is any finite sum of finite products of elements in R.

Clearly, the relation γ is reflexive and symmetric. The γ?, the transitive closure of γ, is called the
fundamental equivalence relation on R and (R/γ?,⊕,�) is its fundamental ring, where for all a, b ∈ R,

γ?(a)⊕ γ?(b) = γ?(c) for all c ∈ γ?(a) + γ?(b),

γ?(a)� γ?(b) = γ?(c) for all c ∈ γ?(a) · γ?(b).

2.2. Fuzzy multisets

A multiset (or bag) is a set containing repeated elements. [28,29] A fuzzy multiset is a generalization
of fuzzy set and it was introduced by Yager in [11] under the name fuzzy bag. In these fuzzy bags the
count of the number of elements itself becomes a crisp bag.

Definition 1 ([10]). Let U be any non-empty set. A fuzzy set on U is characterized by a membership function
µA(x) that assigns any element in U a grade of membership in A. The fuzzy set may be represented by the set of
ordered pairs A = {(x, µA(x)) : x ∈ U}, where µA(x) ∈ [0, 1].

Definition 2 ([30]). Let X be a non-empty set and Q be the set of all crisp multisets drawn from the interval
[0, 1]. A fuzzy multiset A drawn from X is represented by a function CMA : X → Q.

In the above definition, the value CMA(x) is a crisp multiset drawn from [0, 1]. For each x ∈ X,
CMA(x) is defined as the decreasingly ordered sequence of elements and it is denoted by:

{µ1
A(x), µ2

A(x), . . . , µ
p
A(x)} : µ1

A(x) ≥ µ2
A(x) ≥ . . . ≥ µ

p
A(x).

A fuzzy set on a set X can be considered as a special case of fuzzy multiset where CMA(x) =
{µ1

A(x)} for all x ∈ X.

Example 1. Let X = {a, b, c, d}. Then A = {(0.7, 0.5)/b, (0.7, 0.2, 0.1, 0.1)/c, (0.3, 0.1)/d} and B =

{(1, 1)/a, (0.7, 0.6, 0.5, 0.1)/b, (0.3, 0.1)/c, (0.5, 0.4, 0.1)/d} are fuzzy multisets of X.
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In Example 1, by (0.7, 0.5)/b we mean that CMA(b) = (0.7, 0.5).

Definition 3 ([31]). Let X, Y be non-empty sets, f : X → Y be a mapping, and A a fuzzy multiset of X and B
a fuzzy multiset of Y. Then

1. The image of A under f is denoted by f (A) or

CM f (A)(y) =

{∨
f (x)=y CMA(x) if f−1(y) 6= ∅

0 otherwise.

2. The inverse image of B under f is denoted by f−1(B) where CM f−1(B)(x) = CMB( f (x)).

Example 2. Let X be a non-empty set, S be a non-empty subset of X, and A be a fuzzy multiset of S. By
considering the inclusion map f : S→ X, f (x) = x for all x ∈ S, we get that

CM f (A)(x) =

{
CMA(x) if x ∈ S

0 otherwise.

is a fuzzy multiset of X.

3. Fuzzy Multi-Hv-Ideal

In this section, we introduce for the first time the notion of fuzzy multi-Hv-ideal as a generalization
of fuzzy Hv-ideal, present several examples and results related to this new concept. The results in [15]
related to fuzzy Hv-ideals can be considered as a special case of the results of this section.

Definition 4. Let (R,+, ·) be an Hv-ring. A fuzzy multiset A (with fuzzy count function CMA) over R is a
fuzzy multi-Hv-ideal of R if for all x, y ∈ R, the following conditions hold.

1. CMA(x) ∧ CMA(y) ≤ inf{CMA(z) : z ∈ x + y};
2. for every x, a ∈ R there exists y ∈ R such that x ∈ a + y and CMA(x) ∧ CMA(a) ≤ CMA(y);
3. for every x, a ∈ R there exists z ∈ H such that x ∈ z + a and CMA(x) ∧ CMA(a) ≤ CMA(z);
4. CMA(x) ∨ CMA(y) ≤ CMA(z) for all z ∈ x · y.

Remark 1. Let (R,+, ·) be an Hv-ring with “+" a commutative hyperoperation and A be a fuzzy multiset
over R. To prove that A is a fuzzy multi-Hv-ideal of R, it suffices to prove Conditions 1, 2, and 4 or Conditions 1,
3, and 4 of Definition 4. This is clear as in the case of commutative Hv-group, Conditions 2 and 3 are equivalent
to each other.

Example 3. Let (R,+, ·) be an Hv-ring with a fixed element a ∈ R and A be a fuzzy multiset of R defined as
CMA(x) = CMA(a) for all x ∈ R. Then A is a fuzzy multi-Hv-ideal of R (the constant fuzzy multi-Hv-ideal.).

Remark 2. Let (R,+, ·) be an Hv-ring. Then we can define at least one fuzzy multi-Hv-ideal of R which is
mainly the one that is defined in Example 3.

We present some examples on non-constant fuzzy multi-Hv-ideals.

Example 4. Let (R1,+1, ·1) be the Hv-ring defined as follows:

+1 0 1

0 0 R1

1 R1 1
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·1 0 1

0 0 0

1 0 R1

It is clear that A = {(0.8, 0.6, 0.6, 0.1)/0, (0.5, 0.4, 0.4)/1} is a fuzzy multi-Hv-ideal of R1.

Example 5. Let (R2,+2, ·2) be the Hv-ring defined by the following tables:

+2 a b c

a a b c

b b b R2

c c R2 c

·2 a b c

a a a a

b a b c

c a b c

It is clear that A = {(0.9, 0.7, 0.6, 0.6, 0.1)/a, (0.8, 0.4, 0.2)/b, (0.8, 0.4, 0.2)/c} is a fuzzy multi-Hv-ideal
of R2.

Example 6. Let (R3,+3, ·3) be the Hv-ring defined by the following tables:

+3 d e f

d d e f

e e {e, f } d

f f e d

·3 d e f

d d d d

e d e f

f d f d

It is clear that both: A = {(0.9, 0.7, 0.6, 0.6, 0.1)/d, (0.9, 0.7, 0.6, 0.6, 0.1)/ f } and
B = {(0.9, 0.8, 0.8, 0.1)/d} are fuzzy multi-Hv-ideals of R3.

Proposition 1. Let (R,+) be an Hv-group and “·" be any hyperoperation on R with {x, y} ⊆ x · y for all
x, y ∈ R. Then A is a fuzzy multi–Hv-ideal of the Hv-ring (R,+, ·) if and only if A is the constant fuzzy
multi-Hv-ideal of R.

Proof. It is clear that if A is the fuzzy multiset described in Example 3 then A is a fuzzy multi-Hv-ideal
of R. Let A be a fuzzy multi-Hv-ideal of R and a ∈ R. Having x, a ∈ x · a for all x ∈ R and Condition 4
of Definition 4 implies that both CM(x) and CM(a) are greater than or equal CM(x) ∨ CM(a). Thus,
CMA(x) = CMA(a) for all x ∈ R.
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Example 7. Let (R,+, ·) be the Hv-ring defined by the following tables:

+ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

· 0 1 2

0 {0, 1} {0, 1} {0, 2}

1 {0, 1} 1 {1, 2}

2 R {1, 2} {1, 2}

Using Proposition 1, we get that the constant fuzzy multi-Hv-ideal of R is the only fuzzy multi-Hv-ideal of R.

Notation 1. Let (R,+, ·) be an Hv-ring, A be a fuzzy multiset of R and CMA(x) =

(µ1
A(x), µ2

A(x), . . . , µ
p
A(x)). Then

• CMA(x) = 0 if µ1
A(x) = 0,

• CMA(x) > 0 if µ1
A(x) > 0,

• CMA(x) = 1 if CMA(x) = (1, . . . , 1︸ ︷︷ ︸
s times

) where

s = max{k ∈ N : CMA(y) = (µ1
A(y), µ2

A(y), . . . , µk
A(y)), µk

A(y) 6= 0, y ∈ R}.

Definition 5. Let (R,+, ·) be an Hv-ring and A be a fuzzy multiset of R. Then A? = {x ∈ R : CMA(x) > 0}
and A? = {x ∈ R : CMA(x) = 1}.

Proposition 2. Let (R,+, ·) be an Hv-ring and A be a fuzzy multi-Hv-ideal of R. Then A? is either the empty
set or an Hv-ideal of R.

Proof. Let a ∈ A? 6= ∅. First, we show that a + A? = A? + a = A?. We prove a + A? = A? and
A? + a = A? is done similarly. For all x ∈ A? and z ∈ a+ x, we have CMA(z) ≥ CMA(a)∧CMA(x) >
0. The latter implies that z ∈ A? and hence, A? + a ⊆ A?. Moreover, for all x ∈ A?, Condition 2 of
Definition 4 implies that there exist y ∈ R such that x ∈ a + y and CMA(y) ≥ CMA(x) ∧ CMA(a) > 0.
The latter implies that y ∈ A? and x ∈ a + A?. Thus, A? ⊆ a + A?. Now, we prove that R · A? ⊆ A?

and A? · R ⊆ A?. We prove that R · A? ⊆ A? and A? · R ⊆ A? is done similarly. Let r ∈ R and
x ∈ A?. Then for all z ∈ r · x, Condition 4 of Definition 4 implies that CM(z) ≥ CM(r) ∨ CM(x) > 0.
Thus, z ∈ A?.

Proposition 3. Let (R,+, ·) be an Hv-ring and A be a fuzzy multi-Hv-ideal of R. Then A? is either the empty
set or an Hv-ideal of R.

Proof. Let a ∈ A? 6= ∅. First, we show that a + A? = A? + a = A?. We prove a + A? = A? and
A? + a = A? is done similarly. For all x ∈ A? and z ∈ a+ x, we have CMA(z) ≥ CMA(a)∧CMA(x) =
1. The latter implies that z ∈ A? and hence, A? + a ⊆ A?. Moreover, for all x ∈ A?, Condition 2 of
Definition 4 implies that there exist y ∈ R such that x ∈ a + y and CMA(y) ≥ CMA(x) ∧ CMA(a) = 1.
The latter implies that y ∈ A? and x ∈ a + A?. Thus, A? ⊆ a + A?. Now, we prove that R · A? ⊆ A?

and A? · R ⊆ A?. We prove that R · A? ⊆ A? and A? · R ⊆ A? is done similarly. Let r ∈ R and x ∈ A?.
Then for all z ∈ r · x, Condition 4 of Definition 4 implies that CM(z) ≥ CM(r) ∨ CM(x) = 1. Thus,
z ∈ A?.
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Example 8. Let (R3,+3, ·3) be the Hv-ring presented in Example 6. Having
A = {(0.9, 0.7, 0.6, 0.6, 0.1)/d, (0.9, 0.7, 0.6, 0.6, 0.1)/ f }, B = {(0.9, 0.8, 0.8, 0.1)/d} fuzzy multi-Hv-ideals
of R3, we get that A? = {d, f } and B? = {d} are Hv-ideals of R3. Also, A? = B? = ∅.

Notation 2. Let (R,+, ·) be an Hv-ring, A be a fuzzy multiset of R and CMA(x) =

(µ1
A(x), µ2

A(x), . . . , µ
p
A(x)). We say that CMA(x) ≥ (t1, . . . , tk) if p ≥ k and µi

A(x) ≥ ti for all i = 1, . . . , k.
If CMA(x) � (t1, . . . , tk) and (t1, . . . , tk) � CMA(x) then we say that CMA(x) and (t1, . . . , tk) are
not comparable.

Theorem 1. Let (R,+, ·) be an Hv-ring, A a fuzzy multiset of R with fuzzy count function CM and t =

(t1, . . . , tk) where ti ∈ [0, 1] for i = 1, . . . , k and t1 ≥ t2 ≥ . . . ≥ tk. Then A is a fuzzy multi-Hv-ideal of R if
and only if CMt is either the empty set or an Hv-ideal of R.

Proof. Let CMt be an Hv-ideal of R and x, y ∈ R. By setting t0 = CM(x) ∧ CM(y), we get that
x, y ∈ CMt0 . Having CMt0 an Hv-ideal of R implies that for all z ∈ x + y, CM(z) ≥ t0 = CM(x) ∧
CM(y). We prove Condition 2 of Definition 4 and Condition 3 is done similarly. Let a, x ∈ R and
t0 = CM(x)∧CM(a). Then a, x ∈ CMt0 . Having CMt0 an Hv-ideal of R implies that a+CMt0 = CMt0 .
The latter implies that there exist y ∈ CMt0 such that x ∈ a + y. Thus, CM(y) ≥ t0 = CM(x) ∧ CM(a).
We prove now Condition 4 of Definition 4. Let x, y ∈ R and z ∈ x · y. By setting t1 = CM(x) and
t2 = CM(y), we get that x ∈ CMt1 and y ∈ CMt2 . Having CMt1 · R ⊆ CMt1 and R · CMt2 ⊆ CMt2

implies that z ∈ CMt1 and z ∈ CMt2 . Thus, CM(z) ≥ t1 ∨ t2 ≥ CM(x) ∨ CM(y).
Conversely, let A be a fuzzy multi-Hv-ideal of R and CMt 6= ∅. We need to show that CMt =

a + CMt = CMt + a for all a ∈ CMt. We prove that CMt = a + CMt and CMt = CMt + a is done
similarly. Let x ∈ CMt. Then CM(z) ≥ CM(x) ∧ CM(a) ≥ t for all z ∈ a + x. The latter implies that
z ∈ CMt. Thus, a + CMt ⊆ CMt. Let x ∈ CMt. Since A is a fuzzy multi-Hv-ideal of R, it follows
that there exist y ∈ R such that x ∈ a + y and CM(y) ≥ CM(x) ∧ CM(a) ≥ t. The latter implies
that y ∈ CMt and hence, CMt ⊆ a + CMt. We prove now that R · CMt ⊆ CMt and CMt · R ⊆ R is
done similarly. Let y ∈ CMt and x ∈ R. For all z ∈ x · y, Condition 4 of Definition 4 implies that
CM(z) ≥ CM(x) ∨ CM(y) ≥ t. Thus, z ∈ CMt.

Corollary 1. Let (R,+, ·) be an Hv-ring. If R has no proper Hv-ideals then every fuzzy multi-Hv-ideal of R is
the constant fuzzy multi-Hv-ideal.

Proof. Let A be a fuzzy multi-Hv-ideal of R and suppose, to get contradiction, that A is not the
constant fuzzy multi-Hv-ideal. Then there exist x, y ∈ R with CM(x) 6= CM(y). We have three
cases for CM(x) 6= CM(y): CM(x) < CM(y), CM(x) > CM(y), and CM(x) and CM(y) are not
comparable. If CM(x) < CM(y) then y ∈ CMt and x /∈ CMt for t = CM(y). If CM(x) > CM(y) or
CM(x) and CM(y) are not comparable, then x ∈ CMt and y /∈ CMt for t = CM(x). Using Theorem 1,
we get that CMt( 6= R) is an Hv-ideal of R.

Proposition 4. Let (R,+, ·) be an Hv-ring and S be an Hv-ideal of R. Then S = CMt for some t = (t1, . . . , tk)

where ti ∈ [0, 1] for i = 1, . . . , k and t1 ≥ t2 ≥ . . . ≥ tk.

Proof. Let t = (t1, . . . , tk) where ti ∈ [0, 1] for i = 1, . . . , k and define the fuzzy multiset A of R as
follows:

CM(x) =

{
t if x ∈ S

0 otherwise.
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It is clear that S = CMt. We still need to prove that CM is a fuzzy multi-Hv-ideal of R. Using
Theorem 1, it suffices to show that CMα 6= ∅ is an Hv-ideal of R for all α = (a1, . . . , as) with ai ∈ [0, 1]
and a1 ≥ . . . ≥ as for i = 1, . . . , s. One can easily see that

CMα =


R if α = 0

S if 0 < α ≤ t

∅ if (α > t) or (α and t are not comparable).

Thus, CMα is either the empty set or an Hv-ideal of R.

Next, we deal with some operations on fuzzy multi-Hv-ideals.

Definition 6. Let (R,+, ·) be an Hv-ring and A, B be fuzzy multisets of R. Then A ◦ B is defined by the
following fuzzy count function.

CMA◦B(x) = ∨{CMA(y) ∧ CMB(z) : x ∈ y + z}.

Theorem 2. Let (R,+, ·) be an Hv-ring and A be a fuzzy multiset of H. If A is a fuzzy multi-Hv-ideal of R
then A ◦ A = A.

Proof. Let z ∈ R. Then CMA(z) ≥ CMA(x) ∧ CMA(y) for all z ∈ x + y. The latter implies that
CMA(z) ≥ ∨{CMA(x) ∧ CMB(y) : z ∈ x + y} ≥ CMA◦A(z). Thus, A ◦ A ⊆ A. Having (R,+, ·) an
Hv-ring and A a fuzzy multi-Hv-idear of R implies that for every x ∈ R there exist y ∈ R such that
x ∈ x + y and CMA(y) ≥ CMA(x). Moreover, we have CMA◦A(x) = ∨{CMA(y) ∧ CMB(z) : x ∈
y + z} ≥ CMA(x) ∧ CMA(y) = CMA(x). Thus, A ⊆ A ◦ A.

Definition 7. Let R be a non-empty set and A be a fuzzy multiset of R. We define A′, the complement of A, to
be the fuzzy multiset defined as: For all x ∈ R,

CMA′(x) = 1− CMA(x).

Example 9. Let R = {a, b, c} be a set and A be a fuzzy multiset with fuzzy count function CM defined as:
CM(a) = 0, CM(b) = (1, 1, 1), CM(c) = (0.5, 0.3, 0.1). Then A′ = {(1, 1, 1)/a, (0.9, 0.7, 0.5)/c}.

Remark 3. Let (R,+, ·) be an Hv-ring and A be the constant fuzzy multi-Hv-ideal of R defined in Example 3.
Then A′ is also a fuzzy multi-Hv-ideal of R.

Remark 4. Let (R,+, ·) be an Hv-ring and A be a fuzzy multi-Hv-ideal of R. Then A′ is not necessary a fuzzy
multi-Hv-ideal of R.

We illustrate Remark 4 by the following example.

Example 10. Let the triple (R3,+3, ·3) be the Hv-ring defined in Example 6 and B = {(0.9, 0.8, 0.8, 0.1)/d}
be a fuzzy multi-Hv-ideals of R3.

Then B′ = {(0.9, 0.2, 0.2, 0.1)/d, (1, 1, 1, 1)/e, (1, 1, 1, 1)/ f } is not a fuzzy multi-Hv-ideals of R3. This
is clear as d ∈ d · e and CMB′(d) � CMB′(d) ∨ CMB′(e) = (1, 1, 1, 1).

Proposition 5. Let (Rα,+α, ·α) be an Hv-ring with a fuzzy multiset Aα for all α ∈ Γ. If Aα is a fuzzy
multi-Hv-ideal of Rα for all α ∈ Γ then ∏α∈Γ Aα is a fuzzy multi-Hv-ideal of the ∏α∈Γ Rα. Where
CM∏α∈Γ Aα

(< xα >) = infα∈Γ CMAα
(xα).

Proof. The proof is straightforward.
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We present an example when |Γ| = 2.

Example 11. Let (R1,+1, ·1) be the Hv-ring presented in Example 4 and

A = {(0.8, 0.6, 0.6, 0.1)/0, (0.5, 0.4, 0.4)/1}

be a fuzzy multi-Hv-ideal of R1. Then A× A given by:

{(0.8, 0.6, 0.6, 0.1)/(0, 0), (0.5, 0.4, 0.4)/(0, 1), (0.5, 0.4, 0.4)/(1, 0), (0.5, 0.4, 0.4)/(1, 1)}

is a fuzzy multi-Hv-ideal of R1 × R1.

The next two propositions discuss the strong homomorphic image and pre-image of a fuzzy
multi-Hv-ideal.

Proposition 6. Let (R1,+1, ·1), (R2,+2, ·2) be Hv-rings, A be a fuzzy multiset of R1 and f : R1 → R2 be
a surjective strong homomorphism. If A is a fuzzy multi-Hv-ideal of R1 then f (A) is a fuzzy multi-Hv-ideal
of R2.

Proof. Let y1, y2 ∈ R2 and y3 ∈ y1 +2 y2. Since f−1(y1) 6= ∅ and f−1(y2) 6= ∅, it follows that
there exist x1, x2 ∈ R1 such that CMA(x1) =

∨
f (x)=y1

CMA(x) and CMA(x2) =
∨

f (x)=y2
CMA(x).

Having f a homomorphism implies that y3 ∈ f (x1) +2 f (x2) = f (x1 +1 x2). The latter implies that
there exists x3 ∈ x1 + x2 such that y3 = f (x3). Since A is a fuzzy multi-Hv-ideal of R1, it follows
that CM f (A)(y3) ≥ CMA(x3) ≥ CMA(x1) ∧ CMA(x2) = CM f (A)(y1) ∧ CM f (A)(y2). We prove now
Condition 2 of Definition 4 and Condition 3 is done similarly. Let y, b ∈ R2. Since f−1(y) 6= ∅
and f−1(b) 6= ∅ then there exist x1, a ∈ R1 such that CMA(x1) =

∨
f (x)=y CMA(x) and CMA(a) =∨

f (x)=b CMA(x). Having A a fuzzy multi-Hv-ideal of R1 implies that there exist x2 ∈ R1 with
x1 ∈ a +1 x2 and CMA(x2) ≥ CMA(x1) ∧ CMA(a). Since f is a strong homomorphism, it follows
that y = f (x1) ∈ f (x2) +2 b and CM f (A)( f (x2)) ≥ CMA(x2) ≥ CMA(x1) ∧ CMA(a) = CM f (A)(y) ∧
CM f (A)(b). We prove now Condition 4 of Definition 4 for f (A). Let y1, y2 ∈ R2 and y3 ∈ y1 ·2 y2.
Since f−1(y1) 6= ∅ and f−1(y2) 6= ∅, it follows that there exist x1, x2 ∈ R1 such that CMA(x1) =∨

f (x)=y1
CMA(x) and CMA(x2) =

∨
f (x)=y2

CMA(x). Having f a strong homomorphism implies
that y3 ∈ f (x1) ·2 f (x2) = f (x1 ·1 x2). The latter implies that there exists x3 ∈ x1 ·1 x2 such that
y3 = f (x3). Since A is a fuzzy multi-Hv-ideal of R1, it follows that CM f (A)(y3) ≥ CMA(x3) ≥
CMA(x1) ∨ CMA(x2) = CM f (A)(y1) ∨ CM f (A)(y2).

Proposition 7. Let (R1,+1, ·1), (R2,+2, ·2) be Hv-rings, B be a fuzzy multiset of R2 and f : R1 → R2 be a
surjective strong homomorphism. If B is a fuzzy multi-Hv-ideal of R2 then f−1(B) is a fuzzy multi-Hv-ideal
of R1.

Proof. Let x1, x2 ∈ R1 and x3 ∈ x1 +1 x2. Then CM f−1(B)(x3) = CMB( f (x3)). Having f (x3) ∈ f (x1 +1

x2) = f (x1) +2 f (x2) implies that CM f−1(B)(x3) = CMB( f (x3)) ≥ CMB( f (x1)) ∧ CMB( f (x2)) =

CM f−1(B)(x1) ∧ CM f−1(B)(x2). We prove now Condition 2 of Definition 4 and Condition 3 is done
similarly. Let x, a ∈ R1. Having y = f (x), b = f (a) ∈ R2 and B a fuzzy multi-hypergroup of R2 implies
that there exist z ∈ R2 such that y ∈ b +2 z and CMB(z) ≥ CMB(y) ∧ CMB(b). Since f is a surjective
strong homomorphism, it follows that there exist w ∈ R1 such that f (w) = z and x ∈ a +1 w. We
get now that CM f−1(B)(w) = CMB(z) ≥ CMB(y) ∧ CMB(b) = CM f−1(B)(x) ∧ CM f−1(B)(a). To prove
Condition 4 for f−1(B), let x3 ∈ x1 ·1 x2. Then f (x3) ∈ f (x1) ·2 f (x2). Having CM f−1(B)(x3) =

CMB( f (x3)) ≥ CMB( f (x1)) ∨ CMB( f (x2)) = CM f−1(B)(x1) ∨ CM f−1(B)(x2) completes the proof.
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Corollary 2. Let (R,+, ·) be an Hv-ring with fundamental relation γ? and A be a fuzzy multiset of R. If A is
a fuzzy multi-Hv-ideal of R then B is a fuzzy multi-Hv-ideal of (R/γ?,⊕,�). Where

CMB(γ
?(x)) =

∨
α∈γ?(x)

CMA(α).

Proof. Let A be a fuzzy multi-Hv-ideal of R and f : R→ R/γ? be the map defined by f (x) = γ?(x).
Then f is a surjective homomorphism. Proposition 6 asserts that f (A) is a fuzzy multi-Hv-ideal of
R/γ? where

CM f (A)(γ
?(x)) =

∨
f (α)=γ?(x)

CMA(α) =
∨

α∈γ?(x)

CMA(α) = CMB(γ
?(x)).

Therefore, B is a fuzzy multi-Hv-ideal of (R/γ?,⊕,�).

Definition 8. Let (R,+, ·) be a ring. A fuzzy multiset A (with fuzzy count function CMA) over R is a fuzzy
multi-ideal of R if for all x, y ∈ R, the following conditions hold.

1. CMA(x) ∧ CMA(y) ≤ CMA(x + y) for all x, y ∈ R;
2. CMA(−x) ≥ CMA(x) for all x ∈ R;
3. CMA(x) ∨ CMA(y) ≤ CMA(x · y) for all x, y ∈ R.

Proposition 8. Let (R,+, ·) be an Hv-ring with fundamental relation γ? and A be a fuzzy multiset of R. If A
is a fuzzy multi-Hv-ideal of R then B is a fuzzy multi-ideal of the ring (R/γ?,⊕,�). Where

CMB(γ
?(x)) =

∨
α∈γ?(x)

CMA(α).

Proof. Corollary 2 asserts that Conditions 1 and 3 of Definition 8 are satisfied. We need to prove
Condition 2. Having (R/γ?,⊕,�) a ring implies that there exist a zero element, say 0 such that
0⊕ γ?(x) = γ?(x) ⊕ 0 = γ?(x) and 0� γ?(x) = γ?(x) � 0 = 0 for all γ?(x) ∈ R/γ?. Having B
a fuzzy multi-Hv-ideal of (R/γ?,⊕,�) implies that CMB(0) ≥ CMB(γ

?(x)) for all γ?(x) ∈ R/γ?.
Since (R/γ?,⊕,�) a ring, it follows that for every γ?(x) ∈ R/γ? there exist −γ?(x) ∈ R/γ? with
−γ?(x) ⊕ γ?(x) = 0. Having B a fuzzy multi-Hv-ideal of (R/γ?,⊕,�) and using Condition 2
of Definition 4 implies that for γ?(x) and 0 there exists γ?(y) such that 0 ∈ γ?(x) ⊕ γ?(y) and
CMB(γ

?(y)) ≥ CMB(0) ∧ CMB(γ
?(x)) = CMB(γ

?(x)). It is clear that γ?(y) = −γ?(x).

Example 12. Let (R3,+3, ·3) be the Hv-ring presented in Example 6. One can easily see that the fundamental
ring R3/γ? = {γ?(d), γ?(e)} and is isomorphic to the ring of integers under standard addition and
multiplication modulo 2. Using Proposition 8, we get that {(0.9, 0.7, 0.6, 0.6, 0.1)/γ?(d)} is a fuzzy multi-ideal
of R3/γ?.

4. Generalized Fuzzy Multi-Hv-Ideal

In this section, we generalize the notion of fuzzy multi-Hv-ideal defined in Section 3 to generalized
fuzzy multi-Hv-ideal, investigate its properties, and present some examples.

Notation 3. Let A be a fuzzy multiset of a non-empty set R with a fuzzy count function CM. We say that:

1. xt ∈ CM when CM(x) ≥ t,
2. xt ∈ qCM when CM(x) + t ≥ 1,

3. xt ∈ ∨qCM when xt ∈ CM or xt ∈ qCM,
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4. 0.5 = (0.5, . . . , 0.5︸ ︷︷ ︸
s times

) where

s = max{k ∈ N : CMA(y) = (µ1
A(y), µ2

A(y), . . . , µk
A(y)), µk

A(y) 6= 0, y ∈ R}.

Definition 9. Let (R,+, ·) be an Hv-ring. A fuzzy multiset A (with fuzzy count function CM) over R is an
(∈,∈ ∨q)-fuzzy multi-Hv-ideal of R if for all x, y ∈ R, 0 ≤ t, r ≤ 1, the following conditions hold.

1. xt ∈ CM, yr ∈ CM implies zt∧r ∈ ∨qCM for all z ∈ x + y;
2. xt ∈ CM, ar ∈ CM implies yt∧r ∈ ∨qCM for some y ∈ R with x ∈ a + y;
3. xt ∈ CM, ar ∈ CM implies zt∧r ∈ ∨qCM for some z ∈ R with x ∈ z + a;
4. yt ∈ CM, x ∈ R implies zt ∈ ∨qCM for all z ∈ x · y

(xt ∈ CM, y ∈ R implies zt ∈ ∨qCM for all z ∈ x · y).

Remark 5. Let (R,+, ·) be an Hv-ring and A a fuzzy multiset of R. If A is a fuzzy multi-Hv-ideal of R then
A is an (∈,∈ ∨q)-fuzzy multi-Hv-ideal of R.

Example 13. Let (R,+, ·) be any Hv-ring. Then the constant fuzzy multiset of R is an (∈,∈ ∨q)-fuzzy
multi-Hv-ideal of R.

Example 14. Let (R1,+1, ·1) be the Hv-ring presented in Example 4. Having A =

{(0.8, 0.6, 0.6, 0.1)/0, (0.5, 0.4, 0.4)/1} is a fuzzy multi-Hv-ideal of R1 implies that A =

{(0.8, 0.6, 0.6, 0.1)/0, (0.5, 0.4, 0.4)/1} is an (∈,∈ ∨q)-fuzzy multi-Hv-ideal of R1.

The converse of Remark 5 does not always hold. We illustrate this idea by the following example.

Example 15. Let (R,+, ·) be the Hv-ring defined by the following tables:

+ a b c d

a a b c d

b b {a, b} d c

c c d {a, c} b

d d c b {a, d}

· a b c d

a a a a a

b a b b b

c a c c c

d a d d d

One can easily see that

A = {(0.7, 0.6, 0.5)/a, (0.9, 0.8, 0.8)/b, (0.9, 0.8, 0.8)/c, (0.9, 0.8, 0.8)/d}

is an (∈,∈ ∨q)-fuzzy multi-Hv-ideal of R but not a fuzzy multi-Hv-ideal of R. This is clear as a ∈ a · b but
CMA(a) � CMA(a) ∨ CMA(b).

Proposition 9. Let t = (t1, . . . , tk), s = (s1, . . . , sp) with t1 ≥ . . . ≥ tk and s1 ≥ . . . ≥ sp. If t < s then
there exists r = (r1, . . . , rm) such that t < r < s.
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Proof. We have the following cases:
Case k < p. Take r = (s1, . . . , sp,

sp+1
2 ).

Case k = p. Then there exists i ∈ {1, . . . , k} with ti < si. Since si, ti are real numbers, it follows that
there exists a real number ri with ti < ri < si. By taking r = (t1, . . . , ti−1, ri, ri ∧ si+1, . . . , ri ∧ sk), we get
that t < r < s.

Theorem 3. Let (R,+, ·) be an Hv-ring, A a fuzzy multiset of R with fuzzy count function CM, and for all
x ∈ R, CM(x) and 0.5 are comparable. If A is an (∈,∈ ∨q)-fuzzy multi-Hv-ideal of R then the following
conditions hold:

(a) CM(x) ∧ CM(y) ∧ 0.5 ≤ CM(z) for all z ∈ x + y;
(b) For all x, a ∈ R there exists y ∈ R such that x ∈ a + y and

CM(a) ∧ CM(x) ∧ 0.5 ≤ CM(y).

(c) For all x, a ∈ R there exists z ∈ R such that x ∈ z + a and

CM(a) ∧ CM(x) ∧ 0.5 ≤ CM(z).

(d) For all z ∈ x · y, CM(y) ∧ 0.5 ≤ CM(z) and CM(x) ∧ 0.5 ≤ CM(z).

Proof. It suffices to show that (1)→ (a), (2)→ (b), (3)→ (c), and (4)→ (d).
(1)→ (a): Let x, y ∈ R. Since each of CM(x), CM(y) are comparable with 0.5, we can consider the

cases: CM(x) ∧ CM(y) < 0.5 and CM(x) ∧ CM(y) ≥ 0.5.
For the case CM(x) ∧ CM(y) < 0.5, suppose that there exists z ∈ x + y with CM(z) < CM(x) ∧

CM(y) ∧ 0.5. We get that CM(z) < CM(x) ∧ CM(y). Proposition 9 asserts that there exists r with
CM(z) < r < CM(x) ∧ CM(y). The latter implies that xr, yr ∈ CM and z /∈ CM. Moreover, having
CM(z) + r < 0.5 + r ≤ 1 implies that z /∈ qCMr. We get that zr /∈ ∨qCM which contradicts (1).

For the case CM(x) ∧ CM(y) ≥ 0.5, suppose that there exists z ∈ x + y with CM(z) < CM(x) ∧
CM(y) ∧ 0.5. We get that x0.5, y0.5 ∈ CM and CM(z) < 0.5. It is clear that z0.5 /∈ ∨qCM which
contradicts (1).

(2)→ (b): Let x, a ∈ R. Since each of CM(x), CM(a) are comparable with 0.5, we can consider the
cases: CM(x) ∧ CM(a) < 0.5 and CM(x) ∧ CM(a) ≥ 0.5.

For the case CM(x) ∧ CM(a) < 0.5, suppose that for all y ∈ R with x ∈ a + y we have CM(x) ∧
CM(a) = CM(x) ∧ CM(a) ∧ 0.5 > CM(y). Proposition 9 asserts that there exists r with CM(y) < r <
CM(x) ∧ CM(a). It is clear that xr, yr ∈ CM and yr /∈ ∨qCM. The latter contradicts (2).

(3)→ (c): This case is done in a similar manner to that of (2)→ (b).

(4)→ (d): Let x, y ∈ R. Since CM(y) is comparable with 0.5, we can consider the cases: CM(y) <
0.5 and CM(y) ≥ 0.5.

For the case CM(y) < 0.5, suppose that there exists z ∈ x · y with CM(z) < CM(y)∧ 0.5 < CM(y).
Proposition 9 asserts that there exists r with CM(z) < r < CM(y). Then yr ∈ CM and zr /∈ ∨qCM
which contradicts (4).

For the case CM(y) ≥ 0.5, suppose that there exists z ∈ x · y with CM(z) < CM(y) ∧ 0.5 ≤ 0.5.
Then y0.5 ∈ CM and z0.5 /∈ ∨qCM which contradicts (4).

Remark 6. Theorem 3 can be used only when CM(x) and 0.5 are comparable. Otherwise, we should use
Definition 9.

Note that according to Remark 6, we can not use Theorem 3 to the fuzzy multiset given in
Example 5 as CMA(0) = (0.9, 0.7, 0.6, 0.6, 0.1) is not comparable with 0.5 = (0.5, 0.5, 0.5, 0.5, 0.5).
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Remark 7. In case of fuzzy Hv-ideal of an Hv-ring, the conditions of Theorem 3 are necessary and sufficient for
a fuzzy set to be a fuzzy Hv-ideal (see [16]). Whereas in our case (fuzzy multiset), the converse of Theorem 3 is
not always true. (See Example 16.)

Example 16. Let (R,+, ·) be the Hv-ring defined in Example 15 and let A be the fuzzy multiset of R with
count function CM defined by: CM(a) = (0.7, 0.6, 0.5), CM(b) = (0.7, 0.5, 0.5), CM(c) = CM(d) =

(0.6, 0.6, 0.6). Having 0.5 = (0.5, 0.5, 0.5), it is easy to see that Conditions (a), (b), (c), and (d) of Theorem 3
are satisfied. But A is not an (∈,∈ ∨q)-fuzzy multi-Hv-ideal of R. By taking t = (0.6, 0.6, 0.3), we get that
ct ∈ CM. Having b ∈ b · c, CM(b) � t and CM(b) + t = (1.3, 1.1, 0.8) � 1 implies that Condition 4 of
Definition 9 is not satisfied.

5. Conclusions

This paper has introduced algebraic hyperstructures of fuzzy multisets, for the first time, in the
forms of fuzzy multi-Hv-ideals and generalized fuzzy multi-Hv-ideals. Several interesting properties
related to the new defined notions were investigated and operations on fuzzy multi-Hv-ideals were
defined and discussed. It is well known that the concept of fuzzy multiset is well established in dealing
with many real life problems. As a result, we can deal with real life problems involving the concept of
fuzzy multiset with a different perspective.
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