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Abstract: The paradigm shift prompted by Zadeh’s fuzzy sets in 1965 did not end with the fuzzy model
and logic. Extensions in various lines have produced e.g., intuitionistic fuzzy sets in 1983, complex
fuzzy sets in 2002, or hesitant fuzzy sets in 2010. The researcher can avail himself of graphs of various
types in order to represent concepts like networks with imprecise information, whether it is fuzzy,
intuitionistic, or has more general characteristics. When the relationships in the network are symmetrical,
and each member can be linked with groups of members, the natural concept for a representation is a
hypergraph. In this paper we develop novel generalized hypergraphs in a wide fuzzy context, namely,
complex intuitionistic fuzzy hypergraphs, complex Pythagorean fuzzy hypergraphs, and complex q-rung
orthopair fuzzy hypergraphs. Further, we consider the transversals and minimal transversals of complex
q-rung orthopair fuzzy hypergraphs. We present some algorithms to construct the minimal transversals
and certain related concepts. As an application, we describe a collaboration network model through a
complex q-rung orthopair fuzzy hypergraph. We use it to find the author having the most outstanding
collaboration skills using score and choice values.

Keywords: complex q-rung orthopair fuzzy set; complex q-rung orthopair fuzzy graphs;
complex q-rung orthopair fuzzy hypergraphs; transversals

1. Introduction

In 1965, fuzzy sets (FSs) were originally defined by Zadeh [1] as a novel approach to represent
uncertainty arising in various fields. The idea of “partial membership” was questioned by many
researchers at that time. The extension of crisp sets to FSs, i.e., the extension of membership function
µ(x) from {0, 1} to [0, 1], bears comparison to the generalization of Q to R. Just like R was extended to
Cwith the incorporation of imaginary quantities, FSs have been extended to complex fuzzy sets (CFSs)
by Ramot et al. [2]. A CFS is characterized by a membership function µ(x) whose range is not limited
to [0,1] but extends to the unit circle in the complex plane. Hence, µ(x) is a complex-valued function
that assigns a grade of membership of the form v(x)eiα(x), i =

√
−1 to any element x in the universe of

discourse. The membership function µ(x) of CFS consists of two terms, namely, an amplitude term
v(x) which lies in the unit interval [0, 1] and a phase term (periodic term) α(x) which lies in the interval
[0, 2π]. During the last few years, many researchers have paid special attention to CFSs. Yazdanbakhsh
and Dick [3] gives an updated review of the development of CFSs.

Atanassov [4] had proposed a different extension of FSs by intuitionistic fuzzy sets (IFSs). Fuzzy sets
give the degree of membership of an element in a given set (the non-membership of degree equals
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one minus the degree of membership), while IFSs give both a degree of membership and a degree of
non-membership, which are to some extent independent from each other. The truth (T) and falsity (F)
membership functions are used to characterize an IFS in such a way that the sum of truth and falsity degrees
should not be greater than one at any point. These figures allow for some indeterminacy in the expression
of memberships. Progress on the investigation of IFSs and related extensions of the FS concept continues
to be made. Liu et al. [5] introduced different types of centroid transformations of IF values. Feng et al. [6]
defined various new operations for generalized IF soft sets. Recently, Shumaiza et al. [7] have proposed
group decision-making based on the VIKOR method with trapezoidal bipolar fuzzy information. Akram
and Arshad [8] proposed a novel trapezoidal bipolar fuzzy TOPSIS method for group decision-making.
Alcantud et al [9] proposed a novel modelization of the party formation process, in which citizens’ private
opinions are described by means of continuous fuzzy profiles. A novel hesitant fuzzy model for group
decision-making was proposed by Alcantud and Giarlotta [10].

Of particular importance are two extensions of IFSs proposed by Yager [11–13]. In these papers
he introduced Pythagorean fuzzy sets (PFSs) and q-rung orthopair fuzzy sets (q-ROFSs). A q-ROFS is
characterized by means of truth and falsity degrees satisfying the constraint that the sum of the qth
powers of both degrees should be less than one. PFSs consist of the case where q = 2. Thus, q-ROFSs
generalize both the notions of IFSs and PFSs so that the uncertain information can be dealt with in
a more widened range. After that, Liu and Wang [14] applied certain simple weighted operators to
aggregate q-ROFSs in decision-making. Intertemporal choice problems have been investigated with
the help of fuzzy soft sets [15]. These problems appear in the analysis of environmental issues and
sustainable development with an infinitely long horizon, project evaluations, or health care [16,17].
In multi-attribute decision making, q-ROF Heronian mean operators were defined by Wei et al. [18].
For further applications of q-ROFSs, we refer the readers to the work presented in [19,20]. Complex
intuitionistic fuzzy sets (CIFSs) were introduced by Alkouri and Salleh [21] in order to generalize
IFSs in the spirit of [2] by adding non-membership degree ν(x) = s(x)eiβ(x) to the CFSs subjected
to the constraint 0 ≤ r + s ≤ 1. The CIFSs are used to handle information about uncertainty and
periodicity simultaneously. As an extension of both PFSs and CIFSs, Ullah et al. [22] proposed complex
Pythagorean fuzzy sets (CPFSs) and discussed some applications.

The vagueness in the representation of various objects and the uncertain interactions between
them originated the necessity of fuzzy graphs (FGs), that were first defined by Rosenfeld [23] (see also
the remarks made by Bhattacharya [24]). The notion of FGs was extended to complex fuzzy graphs
(CFGs) by Thirunavukarasu et al. [25]. Intuitionistic fuzzy graphs (IFGs) were defined by Parvathi
and Karunambigai [26]. The energy of Pythagorean fuzzy graphs (PFGs) was discussed by Akram and
Naz [27]. Akram and Habib [28] defined q-ROF competition graphs and discussed their applications.
Akram et al. [29] proposed a novel description on edge-regular q-ROFGs. Yaqoob et al. [30] defined
complex intuitionistic fuzzy graphs (CIFGs) and discussed an application of CIFGs in cellular networks
to test the proposed model. Later on, complex neutrosophic graphs were studied by Yaqoob and
Akram [31]. Recently, complex Pythagorean fuzzy graphs (CPFGs) and their applications in decision
making have been put forward by Akram and Naz [32].

A hypergraph, as an extension of a crisp graph, is a powerful tool to model different practical
problems in various fields, including biological sciences, computer science, sustainable development
and social networks [33–35]. Co-authorship networks, an important type of social network, have been
studied extensively from various angles such as degree distribution analysis, social community
extraction and social entity ranking. Most of the previous studies consider the co-authorship
relation between two or more authors as a collaboration using crisp hypergraphs. Han et al. [36]
proposed a hypergraph analysis approach to understand the importance of collaborations in
co-authorship networks. Zhang and Liu [37] proposed a hypergraph model of social tagging networks.
Ouvrard et al. [38] studied the hypergraph modeling and visualization of collaboration networks.

In order to allow for uncertainty in crisp hypergraphs, fuzzy hypergraphs (FHGs) were defined
by Kaufmann [39] as an extension of FGs. Lee-Kwang and Lee [40] discussed fuzzy partitions using
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FHGs. A valuable contribution to FGs and FHGs has been proposed by Mordeson and Nair [41]. Fuzzy
transversals of FHGs were studied by Goetschel et al. [42]. Intuitionistic fuzzy hypergraphs (IFHGs)
were defined by Parvathi et al. [43]. Further discussion on IFHGs can be seen in [44,45]. Akram and
Luqman [46] defined bipolar neutrosophic hypergraphs with applications. Transversals and minimal
transversals of m-polar FHGs were studied by Akram and Sarwar [47]. Luqman et al. [48] presented
q-ROFHGs and their applications. Further, Luqman et al. [49,50] have proposed m-polar and q-rung
picture fuzzy hypergraph models of granular computing.

The proposed research generalizes the concepts of CIFGs and CPFGs. These existing models can
only depict the uncertainty having periodic nature occurring in pairwise relationships. The existence
of various complex network models in which the relationships are more generalized rather than the
pairwise relationships motivates the extension of CIFGs and CPFGs to complex intuitionistic fuzzy
and complex Pythagorean fuzzy hypergraphs. Let us consider the modeling of research collaborations
through CIFGs and CPFGs. The uncertainty and periodicity of the given data are dealt with with the
help of phase terms and amplitude terms, respectively. Two research articles are connected through an
edge if both have the same author but if more than two articles are written by the same author then
CIFGs and CPFGs fail to model this situation. Thus the main objective of this study is to generalize
the concepts of CIFGS and CPFGs to complex q-rung orthopair fuzzy hypergraphs. As argued above,
complex q-ROF models provide more flexibility than IFSs and FSs. Therefore a complex q-rung
orthopair fuzzy hypergraph model proves to be a very general framework to deal with vagueness in
complex hypernetworks when the symmetrical relationships go beyond pairwise interactions. The
generality of the proposed model can be observed from the reduction of complex q-rung orthopair
fuzzy models to CIF and CPF models for q = 1 and q = 2, respectively. Moreover, most of the previous
studies consider the co-authorship relation between two or more authors as a collaboration using crisp
hypergraphs. Here we consider a complex q-rung orthopair fuzzy hypergraph model of co-authorship
network to represent the collaboration relations between authors having uncertainty and vagueness of
periodic nature simultaneously.

The contents of this paper are as follows. In Sections 2 and 3, we define complex intuitionistic
fuzzy hypergraphs and complex Pythagorean fuzzy hypergraphs, respectively. In Section 4, complex
q-ROF hypergraphs are discussed. In Section 5, we define the q-ROF transversals and minimal
transversals of q-ROF hypergraphs. Section 6 illustrates an application of q-ROF hypergraphs in
research collaboration networks. We also present an algorithm to select an author with powerful
collaboration characteristics using the score and choice values of q-rung orthopair fuzzy hypergraphs
and give a brief comparison of our proposed model with CIF and CPF models. The final Section 7
contains conclusions and future research directions.

2. Complex Intuitionistic Fuzzy Hypergraphs

In this section, we define the notion of complex intuitionistic fuzzy hypergraphs. A complex
intuitionistic fuzzy hypergraph extends the concept of CIFGs. The proposed hypergraph model is
used to handle the uncertain and periodic real-life situations when the relationships are analyzed
between more than two objects. The main model that we use in our research design is given in the
next definition:

Definition 1. [21] A complex intuitionistic fuzzy set (CIFS) I on the universal set Y is defined as,

I = {(u, TI(u)eiφI(u), FI(u)eiψI(u))|u ∈ Y},

where i =
√
−1, TI(u), FI(u) ∈ [0, 1], φI(u), ψI(u) ∈ [0, 2π], and for every u ∈ Y, 0 ≤ TI(u) + FI(u) ≤ 1.

For every u ∈ Y, TI(u) and FI(u) are the amplitude terms for membership and non-membership
of u, and φI(u) and ψI(u) are the phase terms for membership and non-membership of u. CIFSs where



Symmetry 2019, 11, 1381 4 of 27

the phase terms equal zero (for all u) reduce to ordinary IFSs. When in addition, the amplitude terms
for non-membership of all elements equal zero, we obtain a FS.

The application of this concept to graphs was produced in [30]. We represent definition of complex
intuitionistic fuzzy graphs as follows:

Definition 2. A complex intuitionistic fuzzy graph (CIFG) on Y is an ordered pair G = (A, B), where A is a
complex intuitionistic fuzzy set on Y and B is complex intuitionistic fuzzy relation on Y such that,

TB(ab) ≤ min{TA(a), TA(b)}, FB(ab) ≤ max{FA(a), FA(b)}, (for amplitude terms)

φB(ab) ≤ min{φA(a), φA(b)}, ψB(ab) ≤ max{ψA(a), ψA(b)}, (for phase terms)

0 ≤ TB(ab) + FB(ab) ≤ 1, and φ, ψ ∈ [0, 2π], for all a, b ∈ Y.

When we apply Definition 1 to hypergraphs we obtain the following structure that generalizes
Definition 2:

Definition 3. Let Y be a non-trivial set of universe. A complex intuitionistic fuzzy hypergraph (CIFHG) is
defined as an ordered pair H = (C,D), where C = {α1, α2, · · · , αk} is a finite family of complex intuitionistic
fuzzy sets on Y and D is a complex intuitionistic fuzzy relation on complex intuitionistic fuzzy sets αj’s such
that the following conditions hold:

(i)
TD({r1, r2, · · · , rl}) ≤ min{Tαj (r1), Tαj (r2), · · · , Tαj (rl)},
FD({r1, r2, · · · , rl}) ≤ max{Fαj (r1), Fαj (r2), · · · , Fαj (rl)}, (for amplitude terms)
φD({r1, r2, · · · , rl}) ≤ min{φαj (r1), φαj (r2), · · · , φαj (rl)},
ψD({r1, r2, · · · , rl}) ≤ max{ψαj (r1), ψαj (r2), · · · , ψαj (rl)}, (for phase terms)

0 ≤ TD + FD ≤ 1, and φD , ψD ∈ [0, 2π], for all r1, r2, · · · , rl ∈ Y.
(ii)

⋃
j

supp(αj) = Y, for all αj ∈ C.

Notice that Ek = {r1, r2, · · · , rl} is the crisp hyperedge of H = (C,D).

Note that the above formula reduces to Definition 2 if we consider only two vertices in an
hyperedge.

We illustrate the previous definition with a graphical example.

Example 1. Consider a CIFHG H = (C,D) on Y = {v1, v2, v3, v4}. The CIFR is defined as,
D({v1, v2, v3, v4}) = (0.2ei0.4π , 0.6ei0.3π), D({v1, v2}) = (0.3ei0.6π , 0.6ei0.3π), and D({v3, v4}) =

(0.2ei0.4π , 0.5ei0.3π). The corresponding CIFHG is shown in Figure 1.

b

b

bb

(v1, 0.3ei0.6π , 0.6ei0.3π)

(v2, 0.5e
i0.6π , 0.4ei0.3π)

(v3, 0.3e
i0.5π , 0.5ei0.3π)

(v4, 0.2e
i0.4π , 0.4e

i0.2π )

(D1, 0.2e
i0.4π , 0.6ei0.3π)

(D
2 , 0.3e i0.6π

, 0.6e i0.3π
)

(D
3 , 0.2e i0.4π

, 0.5e i0.3π
)

Figure 1. Complex intuitionistic fuzzy hypergraph.
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Simple CIFHGs are the following special types of CIFHGs:

Definition 4. A CIFHG H = (C,D) is simple if whenever Dj,Dk ∈ D and Dj ⊆ Dk, then Dj = Dk.
A CIFHG H = (C,D) is support simple if whenever Dj,Dk ∈ D, Dj ⊆ Dk, and supp(Dj) = supp(Dk),
then Dj = Dk.

Our next notion produces a link between CIFHGs and crisp hypergraphs. The subsequent
example illustrates this construction.

Definition 5. Let H = (C,D) be a CIFHG. Suppose that α, β ∈ [0, 1] and θ, ϕ ∈ [0, 2π] such that
0 ≤ α + β ≤ 1. The (αeiθ , βeiϕ)−level hypergraph of H is defined as an ordered pair H(αeiθ ,βeiϕ) =

(C(αeiθ ,βeiϕ),D(αeiθ ,βeiϕ)), where

(i) D(αeiθ ,βeiϕ) = {D(αeiθ ,βeiϕ)
j : Dj ∈ D} and D(αeiθ ,βeiϕ)

j = {u ∈ Y : TDj(u) ≥ α, φDj(u) ≥
θ, and FDj(u) ≤ β, ψDj(u) ≤ ϕ},

(ii) C(αeiθ ,βeiϕ) =
⋃

Dj∈D
D(αeiθ ,βeiϕ)

j .

Note that the (αeiθ , βeiϕ)−level hypergraph of H is a crisp hypergraph.

Example 2. Consider a CIFHG H = (C,D) as shown in Figure 1. Let α = 0.2, β = 0.5, θ = 0.5π,
and ϕ = 0.2π. The (αeiθ , βeiϕ)−level hypergraph of H is shown in Figure 2.

b

b

v1

v2

D (0.2e i0.5π
,0.5e i0.2π

)

2

Figure 2. (0.2ei(0.5)π , 0.5ei(0.2)π)−level hypergraph of H.

Definition 6. Let H = (C,D) be a CIFHG. The complex intuitionistic fuzzy line graph of H is defined as
an ordered pair l(H) = (Cl ,Dl), where Cl = D and there exists an edge between two vertices in l(H) if
|supp(Dj) ∩ supp(Dk)| ≥ 1. The membership degrees of l(H) are given as,

(i) Cl(Ek) = D(Ek),
(ii) Dl(EjEk) = (min{TD(Ej), TD(Ek)}ei min{φD(Ej),φD(Ek)}, max{FD(Ej), FD(Ek)}ei max{ψD(Ej),ψD(Ek)}).

Definition 7. A CIFHG H = (C,D) is said to be linear if for every Dj, Dk ∈ D,

(i) supp(Dj) ⊆ supp(Dk)⇒ j = k,
(ii) |supp(Dj) ∩ supp(Dk)| ≤ 1.

Example 3. Consider a CIFHG H = (C,D) as shown in Figure 1. By direct calculations, we have

supp(D1) = {v1, v2, v3, v4}, supp(D2) = {v1, v2}, supp(D3) = {v3, v4}.

Note that, supp(Dj) ⊆ supp(Dk) ⇒ j 6= k and |supp(Dj) ∩ supp(Dk)| � 1. Hence, CIFHG
H = (C,D) is not linear. The corresponding CIFHG H = (C,D) and its line graph is shown in Figure 3.
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b

b

bb

(v1, 0.3ei0.6π , 0.6ei0.3π)

(v2, 0.5e
i0.6π , 0.4ei0.3π)

(v3, 0.3e
i0.5π , 0.5ei0.3π)

(v4, 0.2e
i0.4π , 0.4e

i0.2π )

(D1, 0.2e
i0.4π , 0.6ei0.3π)

(D
2 , 0.3e i0.6π

, 0.6e i0.3π
)

(D
3 , 0.2e i0.4π

, 0.5e i0.3π
)

(0.2e i0
.4
π
, 0.6e i0

.3
π
)(0.2ei0.4π

,0.6ei0.3π
)

Figure 3. Complex intuitionistic fuzzy line graph of H.

Theorem 1. A simple strong CIFG is the complex intuitionistic line graph of a linear CIFHG.

Definition 8. The 2-section H2 = (C2,D2) of a CIFHG H = (C,D) is a CIFG having same set of
vertices as that of H, D2 is a CIFS on {e = ujuk|uj, uk ∈ El , l = 1, 2, 3, · · · }, and D2(ujuk) =

(min{min Tαl (uj), min Tαl (uk)}ei min{min φαl (uj),min φαl (uk)}, max{max Fαl (uj), max Fαl (uk)}
ei max{max ψαl (uj),max ψαl (uk)}) such that 0 ≤ TD2(ujuk) + FD2(ujuk) ≤ 1, φD2 , ψD2 ∈ [0, 2π].

Example 4. An example of a CIFHG is given in Figure 4. The 2-section of H is presented with dashed lines.

b

b

bb

(v1, 0.3e
i0.6π , 0.6ei0.3π)

(v2, 0.5e
i0.6π , 0.4ei0.3π)

(v3, 0.3e
i0.5π , 0.5ei0.3π)

(v4, 0.2e
i0.4π , 0.4e

i0.2π )

(0.3e i0.6π
, 0.6e i0.3π

)(0
.2
e
i0
.4
π , 0
.6
e
i0
.3
π )

(0
.2
ei0

.4
π
,0
.5
ei0

.3
π
)

(0
.3
e
i0
.5
π , 0
.5
e
i0
.3
π )

(0
.3
ei

0
.5
π
, 0
.6
ei

0
.3
π
)

(0.2ei0.4π , 0.4e
i0.2π)

Figure 4. Two-section of complex intuitionistic fuzzy hypergraph.
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Definition 9. Let H = (C,D) be a CIFHG. A complex intuitionistic fuzzy transversal (CIFT) τ is a CIFs of Y
satisfying the condition ρh(ρ) ∩ τh(ρ) 6= ∅, for all ρ ∈ D, where h(ρ) is the height of ρ.

A minimal complex intuitionistic fuzzy transversal t is the CIFT of H having the property that if τ ⊂ t,
then τ is not a CIFT of H.

3. Complex Pythagorean Fuzzy Hypergraphs

We now turn our attention to the next class of hypergraphs called complex Pythagorean fuzzy
hypergraphs. A complex Pythagorean fuzzy hypergraph is the generalization of CPFGs and CIFHGs.
The occurrence of truth and falsity degrees whose sum is not less than one but the sum of squares does
not exceed one in complex hypernetworks motivates the necessity of this proposed model.

Definition 10. [32] A complex Pythagorean fuzzy graph (CPFG) on Y is an ordered pair G∗ = (C, D), where
C is a CPFS on Y and D is CPFR on Y such that,

TD(ab) ≤ min{TC(a), TC(b)}, FD(ab) ≤ max{FC(a), FC(b)}, for amplitude terms

φD(ab) ≤ min{φC(a), φC(b)}, ψD(ab) ≤ max{ψC(a), ψC(b)}, for phase terms

0 ≤ T2
D(ab) + F2

D(ab) ≤ 1, and φD, ψD ∈ [0, 2π], for all a, b ∈ Y.

Definition 11. A complex Pythagorean fuzzy hypergraph (CPFHG) on Y is defined as an ordered pair H∗ =

(C∗,D∗), where C∗ = {β1, β2, · · · , βk} is a finite family of CPFSs on Y andD∗ is a CPFR on CPFSs βj’s such that,

(i)
TD∗ ({s1, s2, · · · , sl}) ≤ min{Tβ j (s1), Tβ j (s2), · · · , Tβ j (sl)},
FD∗ ({s1, s2, · · · , sl}) ≤ max{Fβ j (s1), Fβ j (s2), · · · , Fβ j (sl)}, for amplitude terms

φD∗ ({s1, s2, · · · , sl}) ≤ min{φβ j (s1), φβ j (s2), · · · , φβ j (sl)},
ψD∗ ({s1, s2, · · · , sl}) ≤ max{ψβ j (s1), ψβ j (s2), · · · , ψβ j (sl)}, for phase terms

0 ≤ T2
D∗ + F2

D∗ ≤ 1, and φD∗ , ψD∗ ∈ [0, 2π], for all s1, s2, · · · , sl ∈ Y.
(ii)

⋃
j

supp(β j) = Y, for all β j ∈ C∗.

Note that, Ek = {s1, s2, · · · , sl} is the crisp hyperedge of H∗ = (C∗,D∗).

Example 5. Consider a CPFHG H∗ = (C∗,D∗) on Y = {s1, s2, s3, s4, s5, s6}. The CPFR is defined
as, D∗(s1, s2, s3) = ((0.6ei(0.2)π , 0.5ei(0.9)π)), D∗(s4, s5, s6) = (0.6ei(0.4)π , 0.4ei(0.6)π), D∗(s3, s6) =

(0.6ei(0.6)π , 0.5ei(0.6)π), D∗(s2, s5) = (0.6ei(0.4)π , 0.5ei(0.6)π), and D∗(s1, s4) = (0.6ei(0.2)π , 0.9ei(0.9)π).
The corresponding CPFHG is shown in Figure 5.

b b b

b b b

(s1, 0.7e
i(0.8)π , 0.4ei(0.6)π) (s2, 0.6ei(0.4)π , 0.4ei(0.6)π)

(s3, 0.6e
i(0.6)π , 0.5ei(0.5)π)

(s4, 0.6ei(0.6)π , 0.5ei(0.5)π) (s5, 0.8ei(0.7)π , 0.3ei(0.5)π)

(s6, 0.9ei(0.2)π , 0.2ei(0.9)π)

(0
.6
e
i(0

.2
)π
, 0
.5
e
i(0

.9
)π
)

(0
.6
e
i(0

.4
)π
, 0
.4
e
i(0

.6
)π
)

(0
.6
e
i(0

.6
)π
, 0
.5
e
i(0

.6
)π
)

(0
.6
e
i(0

.4
)π
, 0
.5
e
i(0

.6
)π
) (0

.6
ei

(0
.2
)π
,0
.9
ei

(0
.9
)π
)

Figure 5. Complex Pythagorean fuzzy hypergraph.
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Definition 12. A CPFHG H∗ = (C∗,D∗) is simple if wheneverD∗j ,D∗k ∈ D∗ andD∗j ⊆ D∗k , thenD∗j = D∗k .
A CPFHG H∗ = (C∗,D∗) is support simple if whenever D∗j ,D∗k ∈ D∗, D∗j ⊆ D∗k , and supp(D∗j ) =

supp(D∗k ), then D∗j = D∗k .

Definition 13. Let H∗ = (C∗,D∗) be a CPFHG. Suppose that α1, β1 ∈ [0, 1] and θ, ϕ ∈ [0, 2π] such that
0 ≤ α2

1 + β2
1 ≤ 1. The (α1eiθ , β1eiϕ)−level hypergraph of H∗ is defined as an ordered pair H∗(α1eiθ ,β1eiϕ) =

(C∗(α1eiθ ,β1eiϕ),D∗(α1eiθ ,β1eiϕ)), where

(i) D∗(α1eiθ ,β1eiϕ) = {D∗(α1eiθ ,β1eiϕ)
j : D∗j ∈ D∗} and D∗(α1eiθ ,β1eiϕ)

j = {y ∈ Y : TD∗j
(y) ≥ α1, φD∗j

(y) ≥
θ, and FD∗j

(y) ≤ β1, ψD∗j
(y) ≤ ϕ},

(ii) C∗(α1eiθ ,β1eiϕ) =
⋃

D∗j ∈D∗
D∗(α1eiθ ,β1eiϕ)

j .

Note that, (α1eiθ , β1eiϕ)−level hypergraph of H∗ is a crisp hypergraph.

Example 6. Consider a CPFHG H∗ = (C∗,D∗) as shown in Figure 5. Let α1 = 0.5, β1 = 0.6, θ = 0.3π,
and ϕ = 0.7π. Then, (α1eiθ , β1eiϕ)−level hypergraph of H∗ is shown in Figure 6.

b b b

b b

s1
s2 s3

s4 s5

Figure 6. (α1eiθ , β1eiϕ)−level hypergraph of H∗.

Definition 14. Let H∗ = (C∗,D∗) be a CPFHG. The complex Pythagorean fuzzy line graph of H∗ is defined
as an ordered pair l(H∗) = (C∗l ,D∗l ), where C∗l = D∗ and there exists an edge between two vertices in l(H∗) if
|supp(Dj) ∩ supp(Dk)| ≥ 1, for all Dj, Dk ∈ D∗. The membership degrees of l(H∗) are given as,

(i) C∗l (Ek) = D∗(Ek),
(ii) D∗l (EjEk) = (min{TD∗(Ej), TD∗(Ek)}ei min{φD∗ (Ej),φD∗ (Ek)}, max{FD∗(Ej), FD∗(Ek)}

ei max{ψD∗ (Ej),ψD∗ (Ek)}).

Definition 15. A CPFHG H∗ = (C∗,D∗) is said to be linear if for every Dj, Dk ∈ D∗,
(i) supp(Dj) ⊆ supp(Dk)⇒ j = k,

(ii) |supp(Dj) ∩ supp(Dk)| ≤ 1.

Example 7. Consider a CPFHG H∗ = (C∗,D∗) as shown in Figure 5. By direct calculations, we have

supp(D1) = {s1, s2, s3}, supp(D2) = {s4, s5, s6}, supp(D3) = {s1, s4},
supp(D4) = {s2, s5}, supp(D5) = {s3, s6}.
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Note that, supp(Dj) ⊆ supp(Dk) ⇒ j = k and |supp(Dj) ∩ supp(Dk)| ≤ 1. Hence, CPFHG H∗ =

(C∗,D∗) is linear. The corresponding CPFHG H∗ = (C∗,D∗) and its line graph is shown in Figure 7.

b b b

b b b

(s1, 0.7e
i(0.8)π , 0.4ei(0.6)π) (s2, 0.6ei(0.4)π , 0.4ei(0.6)π)

(s3, 0.6e
i(0.6)π , 0.5ei(0.5)π)

(s4, 0.6ei(0.6)π , 0.5ei(0.5)π) (s5, 0.8ei(0.7)π , 0.3ei(0.5)π)

(s6, 0.9ei(0.2)π , 0.2ei(0.9)π)

(0.6e i(0.2)π
, 0.5e i(0.9)π

)

(0
.6
e
i(
0
.4
)π
, 0
.5
e
i(
0
.6
)π
)

(0.6e i(0.2)π
, 0.9e i(0.9)π

)

(0
.6
e
i(
0
.2
)π
, 0
.9
e
i(
0
.9
)π
)

(0.6e i(0
.4
)π

, 0.5e i(0
.6
)π

)

(0.6e i(0
.2
)π

, 0.9e i(0
.9
)π

)

Figure 7. Line graph of complex Pythagorean fuzzy hypergraph H∗.

Theorem 2. A simple strong CPFG is the complex Pythagorean fuzzy line graph of a linear CPFHG.

Definition 16. The 2-section H∗2 = (C∗2 ,D∗2 ) of a CPFHG H∗ = (C∗,D∗) is a CPFG having same set
of vertices as that of H∗, D∗2 is a CPFS on {e = ujuk|uj, uk ∈ El , l = 1, 2, 3, · · · }, and D∗2 (ujuk) =

(min{min Tβl (uj), min Tβl (uk)}ei min{min φβl
(uj),min φβl

(uk)}, max{max Fβl (uj), max Fβl (uk)}
ei max{max ψβl

(uj),max ψβl
(uk)}) such that 0 ≤ T2

D∗2
(ujuk) + F2

D∗2
(ujuk) ≤ 1, φD∗2 , ψD∗2 ∈ [0, 2π].

Example 8. An example of a CPFHG is given in Figure 8. The 2-section of H∗ is presented with dashed lines.

b b b

b b b
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i(0.8)π , 0.4ei(0.6)π) (s2, 0.6ei(0.4)π , 0.4ei(0.6)π)
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(s6, 0.9ei(0.2)π , 0.2ei(0.9)π)
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i(0
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Figure 8. Two-section of complex Pythagorean fuzzy hypergraph H∗.
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Definition 17. Let H∗ = (C∗,D∗) be a CPFHG. A complex Pythagorean fuzzy transversal (CPFT) τ is a
CPFS of Y satisfying the condition ρh(ρ) ∩ τh(ρ) 6= ∅, for all ρ ∈ D∗, where h(ρ) is the height of ρ.

A minimal complex Pythagorean fuzzy transversal t is the CPFT of H∗ having the property that if τ ⊂ t,
then τ is not a CPFT of H∗.

4. Complex q-Rung Orthopair Fuzzy Hypergraphs

This section explores the class of complex q-rung orthopair fuzzy graphs and complex q-rung
orthopair fuzzy hypergraphs. Complex q-rung orthopair fuzzy hypergraphs generalize the notions of
CIFHGs and CPFHGs. The class of Cq-ROFSs extends the classes of CIFSs and CPFSs. The space of
Cq-ROFSs increases as the value of parameter q increases. Based on these advantages of Cq-ROFSs, we
combine the theories of Cq-ROFSs and graphs to define complex q-rung orthopair fuzzy graphs and
complex q-rung orthopair fuzzy hypergraphs.

Definition 18. [13] A q-rung orthopair fuzzy set (q-ROFS) Q in the universal set Y is defined as, Q =

{(u, TQ(u), FQ(u))|u ∈ Y}, where the function TQ : Y→ [0, 1] defines the truth-membership and FQ : Y→ [0, 1]
defines the falsity-membership of the element u ∈ Y and for every u ∈ Y, 0 ≤ Tq

Q(u) + Fq
Q(u) ≤ 1, q ≥ 1.

Furthermore, πQ(u) = q
√

1− Tq
Q(u)− Fq

Q(u) is called the indeterminacy degree or q-ROF index of u to the set Q.

Definition 19. A complex q-rung orthopair fuzzy set (Cq-ROFS) S in the universal set Y is given as,

S = {(u, TS(u)eiφS(u), FS(u)eiψS(u))|u ∈ Y},

where i =
√
−1, TS(u), FS(u) ∈ [0, 1], φS(u), ψS(u) ∈ [0, 2π], and for every u ∈ Y, 0 ≤ Tq

S(u)+ Fq
S(u) ≤ 1,

q ≥ 1.

Remark 1.

• When q = 1, C1-ROFS is called a CIFS.
• When q = 2, C2-ROFS is called a CPFS.

Definition 20. Let S1 = {(u, TS1(u)e
iφS1

(u), FS1(u)e
iψS1

(u))|u ∈ Y} and S2 = {(u, TS2(u)e
iφS2 (u),

FS2(u)e
iψS2 (u))|u ∈ Y} be two Cq-ROFSs in Y, then

(i) S1 ⊆ S2 ⇔ TS1 ≤ TS2(u), FS1(u) ≥ FS2(u), and φS1(u) ≤ φS2(u), ψS1(u) ≥ ψS2(u) for amplitudes
and phase terms, respectively, for all u ∈ Y.

(ii) S1 = S2 ⇔ TS1 = TS2(u), FS1(u) = FS2(u), and φS1(u) = φS2(u), ψS1(u) = ψS2(u) for amplitudes
and phase terms, respectively, for all u ∈ Y.

Definition 21. Let S1 = {(u, TS1(u)e
iφS1

(u), FS1(u)e
iψS1

(u))|u ∈ Y} and S2 = {(u, TS2(u)e
iφS2 (u),

FS2(u)e
iψS2 (u))|u ∈ Y} be two Cq-ROFSs in Y, then

(i) S1 ∪ S2 = {(u, max{TS1(u), TS2(u)}e
i max{φS1

(u),φS2 (u)}, min{FS1(u), FS2(u)}e
i min{ψS1

(u),ψS2 (u)})
|u ∈ Y}.

(ii) S1 ∩ S2 = {(u, min{TS1(u), TS2(u)}e
i min{φS1

(u),φS2 (u)}, max{FS1(u), FS2(u)}e
i max{ψS1

(u),ψS2 (u)})
|u ∈ Y}.

Definition 22. A complex q-rung orthopair fuzzy relation (Cq-ROFR) is a Cq-ROFS in Y×Y given as,

R = {(rs, TR(rs)eiφR(rs), FR(rs)eiψR(rs))|rs ∈ Y×Y},

where i =
√
−1, TR : Y × Y → [0, 1], FR : Y × Y → [0, 1] characterize the truth and falsity degrees of R,

and φR(rs), ψR(rs) ∈ [0, 2π] such that for all rs ∈ Y×Y, 0 ≤ Tq
R(rs) + Fq

R(rs) ≤ 1, q ≥ 1.
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Example 9. Let Y = {b1, b2, b3} be the universal set and {b1b2, b2b3, b1b3} be the subset of Y × Y. Then,
the C5-ROFR R is given as,

R = {(b1b2, 0.9ei(0.7)π , 0.7ei(0.9)π), (b2b3, 0.6ei(0.7)π , 0.8ei(0.9)π), (b1b3, 0.7ei(0.8)π , 0.5ei(0.6)π)}.

Note that, 0 ≤ T5
R(xy) + F5

R(xy) ≤ 1, for all xy ∈ Y×Y. Hence, R is a C5-ROFR on Y.

Definition 23. A complex q-rung orthopair fuzzy graph(Cq-ROFG) on Y is an ordered pair G = (A,B),
where A is a complex q-rung orthopair fuzzy set on Y and B is complex q-rung orthopair fuzzy relation on Y
such that,

TB(ab) ≤ min{TA(a), TA(b)},
FB(ab) ≤ max{FA(a), FA(b)}, (for amplitude terms)

φB(ab) ≤ min{φA(a), φA(b)},
ψB(ab) ≤ max{ψA(a), ψA(b)}, (for phase terms)

0 ≤ Tq
B(ab) + Fq

B(ab) ≤ 1, q ≥ 1, for all a, b ∈ Y.

Remark 2. Note that,

• When q = 1, C1-ROFG is called a CIFG.
• When q = 2, C2-ROFG is called a CPFG.

Example 10. Let G = (A,B) be a C6-ROFG on Y = {s1, s2, s3, s4}, where A = {(s1, 0.7ei(0.9)π ,
0.9ei(0.7)π), (s2, 0.5ei(0.6)π , 0.6ei(0.5)π), (s3, 0.7ei(0.4)π , 0.4ei(0.7)π), (s4, 0.8ei(0.5)π , 0.5ei(0.8)π)} and B =

{(s1s4, 0.7ei(0.7)π , 0.8ei(0.8)π), (s2s4, 0.5ei(0.5)π , 0.6ei(0.8)π), (s3s4, 0.7ei(0.4)π , 0.5ei(0.8)π)} are C6-ROFS and
C6-ROFR on Y, respectively. The corresponding C6-ROFG G is shown in Figure 9.

b

b

b b

(s1, 0.7e
i(0.9)π, 0.9ei(0.7)π)

(s2, 0.5e
i(0.6)π, 0.6ei(0.5)π)(s3, 0.7e

i(0.4)π, 0.4ei(0.7)π)

(s4, 0.8e
i(0.5)π, 0.5ei(0.8)π)(s

1
s 4
, 0
.7
ei

(0
.7
)π
, 0
.8
ei

(0
.8
)π
)

(s
2 s

4 , 0.5e i(0.5)π
, 0.6e i(0.8)π

)
(s3

s4
, 0
.7e

i(0
.4
)π , 0

.5e
i(0

.8
)π )

Figure 9. Complex six-rung orthopair fuzzy graph.

We now define the more extended concept of complex q-ROF hypergraphs.
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Definition 24. The support of a Cq-ROFS S = {(u, TS(u)eiφS(u), FS(u)eiψS(u))|u ∈ Y} is defined as
supp(S) = {u|TS(u) 6= 0, FS(u) 6= 1, 0 < φS(u), ψS(u) < 2π}.. The height of a Cq-ROFS
S = {(u, TS(u)eiφS(u), FS(u)eiψS(u))|u ∈ Y} is defined as

h(S) = {max
u∈Y

TS(u)e
i max

u∈Y
φS(u), min

u∈Y
FS(u)e

i min
u∈Y

ψS(u)}.

If h(S) = (1ei2π , 0ei0), then S is called normal.

Definition 25. Let Y be a non-trivial set of universe. A complex q-rung orthopair fuzzy hypergraph
(Cq-ROFHG) is defined as an ordered pair H = (Q, η), where Q = {Q1, Q2, · · · , Qk} is a finite family
of complex q-rung orthopair fuzzy sets on Y and η is a complex q-rung orthopair fuzzy relation on complex
q-rung orthopair fuzzy sets Qj’s such that,

(i)

Tη({a1, a2, · · · , al}) ≤ min{TQj(a1), TQj(a2), · · · , TQj(al)},
Fη({a1, a2, · · · , al}) ≤ max{FQj(a1), FQj(a2), · · · , FQj(al)}, (for amplitude terms)

φη({a1, a2, · · · , al}) ≤ min{φQj(a1), φQj(a2), · · · , φQj(al)},
ψη({a1, a2, · · · , al}) ≤ max{ψQj(a1), ψQj(a2), · · · , ψQj(al)}, (for phase terms)

0 ≤ Tq
η + Fq

η ≤ 1, q ≥ 1, for all a1, a2, · · · , al ∈ Y.
(ii)

⋃
j

supp(Qj) = X, for all Qj ∈ Q.

Note that, Ek = {a1, a2, · · · , al} is the crisp hyperedge ofH = (Q, η).

Remark 3. Note that,

• When q = 1, C1-ROFHG is a CIFHG.
• When q = 2, C2-ROFHG is a CPFHG.

Definition 26. Let H = (Q, η) be a Cq-ROFHG. The height of H, given as h(H), is defined as h(H) =

(max ηlei max φ, min ηmei min ψ), where ηl = max Tρj(xk), φ = max φρj(xk), ηm = min Fρj(xk), ψ =

min ψρj(xk). Here, Tρj(xk) and Fρj(xk) denote the truth and falsity degrees of vertex xk to hyperedge ρj, respectively.

Definition 27. Let H = (Q, η) be a Cq-ROFHG. Suppose that µ, ν ∈ [0, 1] and θ, ϕ ∈ [0, 2π] such that
0 ≤ µq + νq ≤ 1. The (µeiθ , νeiϕ)−level hypergraph of H is defined as an ordered pair H(µeiθ ,νeiϕ) =

(Q(µeiθ ,νeiϕ), η(µeiθ ,νeiϕ)), where

(i) η(µeiθ ,νeiϕ) = {ρ(µeiθ ,νeiϕ)
j : ρj ∈ η} and ρ

(µeiθ ,νeiϕ)
j = {u ∈ Y : Tρj(u) ≥ µ, φρj(u) ≥ θ, and Fρj(u) ≤

ν, ψρj(u) ≤ ϕ},
(ii) Q(µeiθ ,νeiϕ) =

⋃
ρj∈η

ρ
(µeiθ ,νeiϕ)
j .

Note that, (µeiθ , νeiϕ)−level hypergraph ofH is a crisp hypergraph.

Example 11. Consider a C6-ROFHG H = (Q, η) on Y = {u1, u2, u3, u4, u5, u6}. The C6-ROFR η is
given as, η(u1, u2, u3) = (0.7ei(0.7)π , 0.8ei(0.8)π), η(u3, u4, u5) = (0.6ei(0.6)π , 0.8ei(0.8)π), η(u1, u6) =

(0.8ei(0.8)π , 0.8ei(0.8)π) and η(u4, u6) = (0.7ei(0.7)π , 0.8ei(0.8)π). The incidence matrix ofH is given in Table 1.
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Table 1. Incidence matrix of C6-ROFHGH.

u ∈ Y η1 η2 η3 η4

u1 (0.8ei(0.8)π , 0.6ei(0.6)π) (0, 0) (0, 0) (0.8ei(0.8)π , 0.6ei(0.6)π)

u2 (0.7ei(0.7)π , 0.6ei(0.6)π) (0, 0) (0, 0) (0, 0)
u3 (0.7ei(0.7)π , 0.8ei(0.8)π) (0.7ei(0.7)π , 0.8ei(0.8)π) (0, 0) (0, 0)
u4 (0, 0) (0.7ei(0.7)π , 0.8ei(0.8)π) (0.7ei(0.7)π , 0.8ei(0.8)π) (0, 0)
u5 (0, 0) (0.6ei(0.6)π , 0.8ei(0.8)π) (0, 0) (0, 0)
u6 (0, 0) (0, 0) (0.9ei(0.9)π , 0.8ei(0.8)π) (0.9ei(0.9)π , 0.8ei(0.8)π)

The corresponding C6-ROFHGH = (Q, η) is shown in Figure 10.

b b b
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Figure 10. Complex six-rung orthopair fuzzy hypergraph.

Let µ = 0.7, ν = 0.6, θ = 0.7π, and ϕ = 0.6π, then (0.7ei(0.7)π , 0.6ei(0.6)π)−level hypergraph of H is
shown in Figure 11.

b b
u1 u2

η
(0.7ei(0.7)π ,0.6ei(0.6)π)
1

η
(0.7ei(0.7)π ,0.6ei(0.6)π)
4

Figure 11. The (0.7ei(0.7)π , 0.6ei(0.6)π)−level hypergraph ofH.
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Note that,

η
(0.7ei(0.7)π ,0.6ei(0.6)π)
1 = {u1, u2}, η

(0.7ei(0.7)π ,0.6ei(0.6)π)
2 = {∅},

η
(0.7ei(0.7)π ,0.6ei(0.6)π)
3 = {∅}, η

(0.7ei(0.7)π ,0.6ei(0.6)π)
4 = {u1}.

5. Transversals of Complex q-Rung Orthopair Fuzzy Hypergraphs

In this section we study transversality. Prior to the main definition we need the following
auxiliary concept:

Definition 28. Let H = (Q, η) be a Cq-ROFHG and for 0 < µ ≤ T(h(H)), ν ≥ F(h(H)) > 0, 0 < θ ≤
φ(h(H)), and ϕ ≥ ψ(h(H)) > 0 let H(µeiθ ,νeiϕ) = (Q(µeiθ ,νeiϕ), η(µeiθ ,νeiϕ)) be the level hypergraph of H.
The sequence of complex numbers {(µ1eiθ1 , ν1eiϕ1), (µ2eiθ2 , ν2eiϕ2), · · · , (µneiθn , νneiϕn)} such that 0 < µ1 <

µ2 < · · · < µn = T(h(H)), ν1 > ν2 > · · · > νn = F(h(H)) > 0, 0 < θ1 < θ2 < · · · < θn = φ(h(H)),
and ϕ1 > ϕ2 > · · · > ϕn = ψ(h(H)) > 0 satisfying the conditions,

(i) if µk+1 < α ≤ µk, νk+1 > β ≥ νk, θk+1 < φ ≤ θk, ϕk+1 > ψ ≥ ϕk, then η(αeiφ ,βeiψ) = η(µkeiθk ,νkeiϕk ),
and

(ii) η(µkeiθk ,νkeiϕk ) ⊂ η(µk+1eiθk+1 ,νk+1eiϕk+1 ),

is called the fundamental sequence of H = (Q, η), denoted by Fs(H). The set of (µje
iθj , νje

iϕj)−level

hypergraphs {H(µ1eiθ1 ,ν1eiϕ1 ),H(µ2eiθ2 ,ν2eiϕ2 ), · · · ,H(µneiθn ,νneiϕn )} is called the set of core hypergraphs or the
core set ofH, denoted by cor(H).

Now we are ready to define:

Definition 29. LetH = (Q, η) be a Cq-ROFHG. A complex q-rung orthopair fuzzy transversal (Cq-ROFT)
τ is a Cq-ROFs of Y satisfying the condition ρh(ρ) ∩ τh(ρ) 6= ∅, for all ρ ∈ η, where h(ρ) is the height of ρ.

A minimal complex q-rung orthopair fuzzy transversal t is the Cq-ROFT ofH having the property that if
τ ⊂ t, then τ is not a Cq-ROFT ofH.

Let us denote the family of minimal Cq-ROFTs ofH by tr(H).

Example 12. Consider a C5-ROFHG H = (Q, η) on Y = {a1, a2, a3, a4, a5}. The C5-ROFR η is given as,
η({a1a3, a4}) = (0.6ei(0.6)π , 0.9ei(0.9)π), η({a2, a3, a5}) = (0.7ei(0.7)π , 0.9ei(0.9)π), and η({a1, a2, a4}) =

(0.6ei(0.6)π , 0.9ei(0.9)π). The incidence matrix ofH is given in Table 2.

Table 2. Incidence matrix of C5-ROFHGH.

a ∈ Y η1 η2 η3

a1 (0.8ei(0.8)π , 0.6ei(0.6)π) (0.8ei(0.8)π , 0.6ei(0.6)π) (0, 0)
a2 (0.7ei(0.7)π , 0.9ei(0.9)π) (0, 0) (0.7ei(0.7)π , 0.9ei(0.9)π)

a3 (0, 0) (0.8ei(0.8)π , 0.5ei(0.5)π) (0.8ei(0.8)π , 0.5ei(0.5)π)

a4 (0.6ei(0.6)π , 0.8ei(0.8)π) (0.6ei(0.6)π , 0.8ei(0.8)π) (0, 0)
a5 (0, 0) (0, 0) (0.7ei(0.7)π , 0.5ei(0.5)π)

The corresponding C5-ROFHG is shown in Figure 12.
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b b b

b b

(a1, 0.8ei(0.8)π, 0.6ei(0.6)π) (a3, 0.8e
i(0.8)π, 0.5ei(0.5)π)

(a
4 , 0.6e i(0.6)π

, 0.8e i(0.8)π
)

(a
5 , 0.7e i(0.7)π
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π )

(0.6e i(0.6)π
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)

(0.6ei(0.6)π, 0.8ei(0.8)π)

(0.7e
i(0.7)π , 0.9e

i(0.9)π)

Figure 12. Complex five-rung orthopair fuzzy hypergraph.

By routine calculations, we have h(η1) = (0.8ei(0.8)π, 0.6ei(0.6)π), h(η2) = (0.8ei(0.8)π, 0.5ei(0.5)π),
and h(η3) = (0.8ei(0.8)π, 0.5ei(0.5)π). Consider a C5-ROFS τ1 of Y such that τ1 = {(a1, 0.8ei(0.8)π, 0.6ei(0.6)π),
(a2, 0.7ei(0.7)π, 0.9ei(0.9)π), (a3, 0.8ei(0.8)π, 0.5ei(0.5)π)}. Note that,

η
(0.8ei(0.8)π ,0.6ei(0.6)π)
1 = {a1}, η

(0.8ei(0.8)π ,0.5ei(0.5)π)
2 = {a3}, η

(0.8ei(0.8)π ,0.5ei(0.5)π)
3 = {a3},

τ
(0.8ei(0.8)π ,0.6ei(0.6)π)
1 = {a1, a3}, τ

(0.8ei(0.8)π ,0.5ei(0.5)π)
1 = {a3}, τ

(0.8ei(0.8)π ,0.5ei(0.5)π)
1 = {a3}.

Thus, we have η
h(ηj)

j ∩ τ
h(ηj)

1 6= ∅, for all ηj ∈ η. Hence, τ1 is a C5-ROFT ofH. Similarly,

τ2 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π), (a3, 0.8ei(0.8)π , 0.5ei(0.5)π)},
τ3 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π), (a3, 0.8ei(0.8)π , 0.5ei(0.5)π), (a4, 0.6ei(0.6)π , 0.8ei(0.8)π)},
τ4 = {(a1, 0.8ei(0.8)π , 0.6ei(0.6)π), (a3, 0.8ei(0.8)π , 0.5ei(0.5)π), (a5, 0.7ei(0.7)π , 0.5ei(0.5)π)},

are C5-ROFTs ofH.

Definition 30. A Cq-ROFHG H1 = (Q1, η1) is a partial Cq-ROFHG of H2 = (Q2, η2) if η1 ⊆ η2,
denoted by H1 ⊆ H2. A Cq-ROFHG H1 = (Q1, η1) is ordered if the core set cor(H) = {H(µ1eiθ1 ,ν1eiϕ1 ),
H(µ2eiθ2 ,ν2eiϕ2 ), · · · ,H(µneiθn ,νneiϕn )} is ordered, i.e.,H(µ1eiθ1 ,ν1eiϕ1 ) ⊆ H(µ2eiθ2 ,ν2eiϕ2 ) ⊆ · · · ⊆ H(µneiθn ,νneiϕn ).
H is simply ordered ifH is ordered and η′ ⊂ η(µl+1eiθl+1 ,νl+1eiϕl+1 ) \ η(µl e

iθl ,νl e
iϕl ) ⇒ η′ * Q(µl e

iθl ,νl e
iϕl ).

Definition 31. A Cq-ROFS S on Y is elementary if S is single-valued on supp(S). A Cq-ROFHGH = (Q, η)

is elementary if every Qj ∈ Q and η are elementary.

Proposition 1. If τ is a Cq-ROFT of H = (Q, η), then h(τ) ≥ h(ρ), for all ρ ∈ η. Furthermore, if τ is
minimal Cq-ROFT ofH = (Q, η), then h(τ) = max{h(ρ)|ρ ∈ η} = h(H).

Lemma 1. LetH1 = (Q1, η1) be a partial Cq-ROFHG ofH2 = (Q2, η2). If τ2 is minimal Cq-ROFT ofH2,
then there is a minimal Cq-ROFT ofH1 such that τ1 ⊆ τ2.
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Proof. Let S1 be a Cq-ROFS on Y, which is defined as S1 = τ2 ∩ (∪Q1j∈Q1
Q1j). Then, S1 is a Cq-ROFT

ofH1 = (Q1, η1). Thus, there exists a minimal Cq-ROFT ofH1 such that τ1 ⊆ S1 ⊆ τ2.

Lemma 2. LetH = (Q, η) be a Cq-ROFHG then fs(tr(H)) ⊆ fs(H).

Proof. Let fs(H) = {(µ1eiθ1 , ν1eiϕ1), (µ2eiθ2 , ν2eiϕ2), · · · , (µneiθn , νneiϕn)} and τ ∈ tr(H). Suppose that
for u ∈ supp(τ), (Tτ(u), Fτ(u)) ∈ (µj+1, µj] × (νj+1, νj], φτ(u) ∈ (θj+1, θj], and ψτ(u) ∈ (ϕj+1, ϕj].
Define a function λ by

Tλ(v)eiφ =

{
µje

iθj , if u = v,

Tτ(u)eiφτ(u), otherwise.
, Fλ(v)eiψ =

{
µje

iϕj , if u = v,

Fτ(u)eiψτ(u), otherwise.

From definition of λ, we have λ(µje
iθj ,νje

iϕj ) = τ(µje
iθj ,νje

iϕj ). Definition 28 implies that for every

t ∈ (µj+1eiθj+1 , µje
θj ]× (νj+1eiϕj+1 , νje

iϕj ], Ht = H(µ1eiθ1 ,ν1eiϕ1 ). Thus, λ(µje
iθj ,νje

iϕj ) is a Cq-ROFT of Ht.
Since, τ is minimal Cq-ROFT and λt = τt, for all t /∈ (µj+1eiθj+1 , µje

θj ]× (νj+1eiϕj+1 , νje
iϕj ]. This implies

that λ is also a Cq-ROFT and λ ≤ τ but the minimality of τ implies that λ = τ. Hence, τ(u) = λ(u) =
(µje

iθj , νje
iϕj), which implies that for every Cq-ROFT τ ∈ tr(H) and for each u ∈ Y, τ(u) ∈ fs(H) and

so we have fs(tr(H)) ⊆ fs(H).

We now illustrate a recursive procedure to find tr(H) in Algorithm 1.

Algorithm 1: To find the family of minimal Cq-ROFTs tr(H).

LetH = (Q, η) be a Cq-ROFHG having the fundamental sequence fs(H) = {(µ1eiθ1 , ν1eiϕ1),
(µ2eiθ2 , ν2eiϕ2), · · · , (µneiθn , νneiϕn)} and core set cor(H) = {H(µ1eiθ1 ,ν1eiϕ1 ),H(µ2eiθ2 ,ν2eiϕ2 ), · · · ,
H(µneiθn ,νneiϕn )}. The minimal transversal ofH = (Q, η) is determined as follows,

1. Determine a crisp minimal transversal t1 ofH(µ1eiθ1 ,ν1eiϕ1 ).
2. Determine a crisp minimal transversal t2 ofH(µ2eiθ2 ,ν2eiϕ2 ) satisfying the condition

t1 ⊆ t2, i.e., obtain an hypergraph H2 having the hyperedges η(µ2eiθ2 ,ν2eiϕ2 ) and a loop at
every vertex u ∈ t1. Thus, we have η(H2) = η(µ2eiθ2 , ν2eiϕ2) ∪ {{u ∈ t1}}.

3. Let t2 be the minimal transversal of H2.
4. Obtain a sequence of minimal transversals t1 ⊆ t2 ⊆ · · · ⊆ tj such that tj is the minimal

transversal ofH(µje
iθj ,νje

iϕj ) satisfying the condition tj−1 ⊆ tj.
5. Define an elementary Cq-ROFS Sj having the support tj and h(Sj) = (µje

iθj ,
νje

iϕj), 1 ≤ j ≤ n.

6. Determine a minimal Cq-ROFT ofH as τ =
n⋃

j=1
{Sj|1 ≤ j ≤ n}.

Example 13. Consider a C5-ROFHG H = (Q, η) on Y = {v1, v2, v3, v4, v5, v6} as shown in
Figure 13. Let (µ1eiθ1 , ν1eiϕ1) = (0.9ei(0.9)π, 0.7ei(0.7)π), (µ2eiθ2 , ν2eiϕ2) = (0.8ei(0.8)π, 0.5ei(0.5)π),
(µ3eiθ3 , ν3eiϕ3) = (0.6ei(0.6)π, 0.4ei(0.4)π), and (µ4eiθ4 , ν4eiϕ4) = (0.3ei(0.3)π, 0.2ei(0.2)π). Clearly, the sequence
{(µ1eiθ1 , ν1eiϕ1), (µ2eiθ2 , ν2eiϕ2), (µ3eiθ3 , ν3eiϕ3), (µ4eiθ4 , ν4eiϕ4)} satisfies all the conditions of Definition 28.
Hence, it is the fundamental sequence ofH.

Note that, t1 = t2 = {v4} is the minimal transversal ofH(µ1eiθ1 ,ν1eiϕ1 ) andH(µ2eiθ2 ,ν2eiϕ2 ), t3 = {v1} is the
minimal transversal ofH(µ3eiθ3 ,ν3eiϕ3 ), and t4 = {v1, v4} is the minimal transversal ofH(µ4eiθ4 ,ν4eiϕ4 ). Consider

S1 = {(v4, 0.9ei(0.9)π , 0.7ei(0.7)π)} = S2,

S3 = {(v1, 0.8ei(0.8)π , 0.5ei(0.5)π)},
S4 = {(v1, 0.8ei(0.8)π , 0.5ei(0.5)π), (v4, 0.9ei(0.9)π , 0.7ei(0.7)π)}.
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Hence,
4⋃

j=1
= {(v1, 0.8ei(0.8)π , 0.5ei(0.5)π), (v4, 0.9ei(0.9)π , 0.7ei(0.7)π)} is a C5-ROFT ofH.

b b

b

b

b
b
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i(0.8)π , 0.5ei(0.5)π)

(v
2
, 0
.7
ei
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.7
)π
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(0
.4
)π
)

(v3, 0.6e
i(0.6)π , 0.4ei(0.4)π)

(v4, 0.9e
i(0.9)π , 0.7ei(0.7)π)

(v5, 0.3e
i(0.3)π , 0.2ei(0.2)π)

(v
6 , 0.3e i(0.3)π

, 0.2e i(0.2)π
)(0
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,0
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)

(0.8ei(0.8)π , 0.7ei(0.7)π)
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.7
e
i(
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7)
π )

(0.3e i(0.3)π
, 0.5e i(0.5)π

)

Figure 13. Complex five-rung orthopair fuzzy hypergraph.

Lemma 3. LetH = (Q, η) be a Cq-ROFHG with fs(H) = {(µ1eiθ1 , ν1eiϕ1), (µ2eiθ2 , ν2eiϕ2), · · · ,
(µneiθn , νneiϕn)}. If τ is a Cq-ROFT of H, then h(τ) ≥ h(Qj), for every Qj ∈ Q. If τ ∈ tr(H) then
h(τ) = max{h(Qj)|Qj ∈ Q} = (µ1eiθ1 , ν1eiϕ1).

Proof. Since τ is a Cq-ROFT of H, implies that τh(Qj) ∩ Q
h(Qj)

j 6= ∅. Let a ∈ supp(τ), then Tτ(a) ≥
T(h(Qj)), Fτ(a) ≤ F(h(Qj)), φτ(a) ≥ φ(h(Qj)), and ψτ(a) ≤ ψ(h(Qj)). This shows that h(τ) ≥ h(Qj).

If τ ∈ tr(H), i.e., τ is minimal Cq-ROFT then h(Qj) = (max TQj(a)e
i max φQj

(a)
, min FQj(a)e

i min ψQj
(a)
) =

(µ1eiθ1 , ν1eiϕ1). Thus, we have h(τ) = max{h(Qj)|Qj ∈ Q} = (µ1eiθ1 , ν1eiϕ1).

Lemma 4. Let β be a Cq-ROFT of a Cq-ROFHGH. Then, there exists γ ∈ tr(H) such that γ ≤ β.

Proof. Let fs(H) = {(µ1eiθ1 , ν1eiϕ1), (µ2eiθ2 , ν2eiϕ2), · · · , (µneiθn , νneiϕn)}. Suppose that λ(µkeiθk ,νkeiϕk )

is a transversal of H(µkeiθk ,νkeiϕk ) and τ(µkeiθk ,νkeiϕk ) ∈ tr(H(µkeiθk ,νkeiϕk )), for 1 ≤ k ≤ n such that
τ(µkeiθk ,νkeiϕk ) ⊆ λ(µkeiθk ,νkeiϕk ). Let βk be an elementary Cq-ROFS having support λk and γk be an

elementary Cq-ROFS having support τk, for 1 ≤ k ≤ n. Then, Algorithm 1 implies that β =
n⋃

k=1
βk is a

Cq-ROFT ofH and γ =
n⋃

k=1
γk is minimal Cq-ROFT ofH such that γ ≤ β.

Theorem 3. Let H1 = (Q1, η1) and H2 = (Q2, η2) be Cq-ROFHGs. Then, Q2 = tr(H1)⇔ H2 is simple,
Q2 ⊆ Q1, h(ηk) = h(H1), for every ρk ∈ η2, and for every Cq-ROFS ξ ∈ P(Y), exactly one of the conditions
must satisfy,

(i) ρ ≤ ξ, for some ρ ∈ Q2 or
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(ii) there is Qj ∈ Q1 and (µeiθ , νeiϕ), where (µ, ν) ∈ [0, Th(Qj)
]× [0, Fh(Qj)

], θ ∈ [0, φh(Qj)
], ϕ ∈ [0, ψh(Qj)

]

such that Q(µeiθ ,νeiϕ)
j ∩ ξ(µeiθ ,νeiϕ) = ∅, i.e., ξ is not a Cq-ROFT ofH1.

Proof. Let Q2 = tr(H1). Since, the family of all minimal Cq-ROFTs form a simple Cq-ROFHG on
Y1 ⊆ Y2. Lemma 3 implies that every edge of tr(H1) has height (µ1eiθ1 , ν1eiϕ1) = h(H1). Let ξ be an
arbitrary Cq-ROFS.

Case(i) If ξ is a Cq-ROFT ofH1), then Lemma 4 implies the existence of a minimal Cq-ROFT ρ such
that ρ ≤ ξ. Thus, the condition (i) holds and (ii) violates.

Case(ii) If ξ is not a Cq-ROFT ofH1), then there is an edge Qj ∈ Q1 such that Q(µeiθ ,νeiϕ)
j ∩ ξ(µeiθ ,νeiϕ) =

∅. If condition (i) holds, ρ ≤ ξ implies that Q(µeiθ ,νeiϕ)
j ∩ ρ(µeiθ ,νeiϕ) = ∅, which is the

contradiction against the fact that ρ is Cq-ROFT. Hence, condition (i) does not hold and (ii) is
satisfied.

Conversely, suppose that Q2 satisfies all properties as mentioned above and ρ ∈ Q2. Let ρ = ξ,
then we obtain ρ ≤ ρ and conditions (ii) is not satisfied, so ρ is Cq-ROFT ofH1. If t is minimal Cq-ROFT
of H1 and t ≤ ρ, t does not satisfy (ii), this implies the existence of ρ2 ∈ Q2 such that ρ2 ≤ t, hence
Q2 ⊆ tr(H1). Since, t is minimal Cq-ROF which implies that ρ = t, ρ and t were chosen arbitrarily
therefore, we have Q2 = tr(H1).

The construction of fundamental subsequence and subcore of Cq-ROFHGH = (Q, η) is discussed
in Algorithm 2.

Algorithm 2: Construction of fundamental subsequence and subcore.

LetH = (Q, η) be a Cq-ROFHG andH1 = (Q1, η1) be a partial Cq-ROFHG ofH. The
fundamental subsequence fss(H) is constructed as follows:
Let fs(H) = {(µ1eiθ1 , ν1eiϕ1), (µ2eiθ2 , ν2eiϕ2), · · · , (µneiθn , νneiϕn)} and

cor(H) = {H(µ1eiθ1 ,ν1eiϕ1 ),H(µ2eiθ2 ,ν2eiϕ2 ), · · · ,H(µneiθn ,νneiϕn )}.
1. Construct H̃(µ1eiθ1 ,ν1eiϕ1 ), a partial hypergraph ofH(µ1eiθ1 ,ν1eiϕ1 ), by removing all hyperedges

ofH(µ1eiθ1 ,ν1eiϕ1 ), which contain properly any other hyperedge ofH(µ1eiθ1 ,ν1eiϕ1 ).
2. In the same way, a partial hypergraph H̃(µ2eiθ2 ,ν2eiϕ2 ) ofH(µ2eiθ2 ,ν2eiϕ2 ) is constructed by

removing all hyperedges ofH(µ2eiθ2 ,ν2eiϕ2 ), which contain properly any other hyperedge of
H(µ2eiθ2 ,ν2eiϕ2 ) or any other hyperedge ofH(µ1eiθ1 ,ν1eiϕ1 ). H̃(µ2eiθ2 ,ν2eiϕ2 ) is non-trivial iff there
exists a Cq-ROFT τ ∈ tr(H) and a vertex u ∈ Q(µ2eiθ2 ,ν2eiϕ2 ) such that
(Tτ(u)eiφτ(u), Fτ(u)eiψτ(u)) = (µ2eiθ2 , ν2eiϕ2).

3. Continuing the same procedure, construct H̃(µkeiθk ,νkeiϕk ), a partial hypergraph of
H(µkeiθk ,νkeiϕk ), by removing all hyperedges ofH(µkeiθk ,νkeiϕk ), which contain properly any
other hyperedge ofH(µkeiθk ,νkeiϕk ) or contain any other hyperedge of

H(µ1eiθ1 ,ν1eiϕ1 ),H(µ2eiθ2 ,ν2eiϕ2 ), · · · ,H(µk−1eiθk−1 ,νk−1eiϕk−1 ). H̃(µkeiθk ,νkeiϕk ) is non-trivial iff
there exists a Cq-ROFT τ ∈ tr(H) and an element u ∈ Q(µkeiθk ,νkeiϕk ) such that
(Tτ(u)eiφτ(u), Fτ(u)eiψτ(u)) = (µkeiθk , νkeiϕk ).

4. Let {(µ̃1eiθ̃1 , ν̃1eiϕ̃1), (µ̃2eiθ̃2 , ν̃2eiϕ̃2), · · · , (µ̃leiθ̃l , ν̃leiϕ̃l )} be the set of complex numbers such

that the corresponding partial hypergraphs H̃(µ̃1eiθ̃1 ,ν̃1eiϕ̃1 ), H̃(µ̃2eiθ̃2 ,ν̃2eiϕ̃2 ), · · · , H̃(µ̃le
iθ̃l ,ν̃le

iϕ̃l ) are
non-empty.

5. Then, fss(H) = {(µ̃1eiθ̃1 , ν̃1eiϕ̃1), (µ̃2eiθ̃2 , ν̃2eiϕ̃2), · · · , (µ̃leiθ̃l , ν̃leiϕ̃l )} and

c̃or(H) = {H̃(µ̃1eiθ̃1 ,ν̃1eiϕ̃1 ), H̃(µ̃2eiθ̃2 ,ν̃2eiϕ̃2 ), · · · , H̃(µ̃l e
iθ̃l ,ν̃l e

iϕ̃l )} are subsequence and subcore
set ofH, respectively.
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Definition 32. LetH = (Q, η) be a Cq-ROFHG having fundamental subsequence fss(H) and subcore c̃or(H)

ofH. The Cq-ROFT core ofH is defined as an elementary Cq-ROFHG Ĥ = (Q̂, η̂) such that,

(i) fss(H) = fss(Ĥ), i.e., fss(H) is also a fundamental subsequence of Ĥ,

(ii) height of every Q̂j ∈ Q̂ is (µ̃je
iθ̃j , ν̃je

iϕ̃j) ∈ fss(H) iff supp(Q̂j) is an hyperedge of Ĥ(µ̃je
iθ̃j ,ν̃je

iϕ̃j ).

Theorem 4. For every Cq-ROFHG, we have tr(H) = tr(Ĥ).

Proof. Let t ∈ tr(H) and Q̂j ∈ Q̂. Definition 32 implies that h(Q̂j) = (µ̃je
iθ̃j , ν̃je

iϕ̃j) and Q̂
(µ̃je

iθ̃j ,ν̃je
iϕ̃j )

j

is an hyperedge of H̃(µ̃je
iθ̃j ,ν̃je

iϕ̃j ). Since H̃(µ̃je
iθ̃j ,ν̃je

iϕ̃j ) ⊆ H(µ̃je
iθ̃j ,ν̃je

iϕ̃j ) and τ(µje
iθj ,νje

iϕj ) is a transversal of

H(µ̃je
iθ̃j ,ν̃je

iϕ̃j ) therefore Q̂
(µ̃je

iθ̃j ,ν̃je
iϕ̃j )

j ∩ τ(µje
iθj ,νje

iϕj ) 6= ∅. Thus, τ is a Cq-ROFT of Ĥ.

Let τ̂ ∈ tr(Ĥ) and Qj ∈ Q. Definition 28 implies that Q
h(Qj)

j ∈ H(µje
iθj ,νje

iϕj ), for h(Qj) ≤
(µje

iθj , νje
iϕj) ∈ fs(H). Definition of subcore c̃or(H) implies the existence of an hyperedge

Q̂
(µje

iθj ,νje
iϕj )

j of H̃(µje
iθj ,νje

iϕj ) such that Q̂
(µje

iθj ,νje
iϕj )

j ⊆ Q
h(Qj)

j and (µkeiθk , νkeiϕk ) ≥ (µje
iθj , νje

iϕj)

≥ h(Qj). For τ̂ ∈ tr(Ĥ), we have u ∈ Q̂
(µje

iθj ,νje
iϕj )

j ∩ τ̂(µje
iθj ,νje

iϕj ) ⊆ Q̂
h(Qj)

j ∩ τ̂(µje
iθj ,νje

iϕj ). Hence, τ̂ is a
Cq-ROFT ofH.

Let τ ∈ tr(H) ⇒ τ is a Cq-ROFT of Ĥ. This implies that there is τ̂ such that τ̂ ⊆ τ. But τ̂ is a
Cq-ROFT of H and τ ∈ tr(H) implies that τ̂ = τ. Thus, tr(H) ⊆ tr(Ĥ). Also tr(Ĥ) ⊆ tr(H) implies
that tr(H) = tr(Ĥ).

Although τ can be taken as a minimal transversal of H, it is not necessary for τ(µeiθ ,νeiϕ) to be
the minimal transversal of H(µeiθ ,νeiϕ), for all µ, ν ∈ [0, 1], and θ, ϕ ∈ [0, 2π]. Furthermore, it is not
necessary for the family of minimal Cq-ROFTs to form a hypergraph on Y. For those Cq-ROFTs that
satisfy the above property, we have:

Definition 33. A Cq-ROFT τ having the property that τ(µeiθ ,νeiϕ) ∈ tr(H(µeiθ ,νeiϕ)), for all µ, ν ∈ [0, 1], and
θ, ϕ ∈ [0, 2π] is called the locally minimal Cq-ROFT ofH. The collection of all locally minimal Cq-ROFTs ofH
is represented by t∗r (H).

Note that, t∗r (H) ⊆ tr(H), but the converse is not generally true.

Example 14. Consider a C6-ROFHGH = (Q, η) as shown in Figure 14. The C6-ROFS

{(x1, 0.6ei(0.6)π , 0.4ei(0.4)π), (x5, 0.4ei(0.4)π , 0.7ei(0.7)π), (x6, 0.4ei(0.4)π , 0.7ei(0.7)π)}

is a locally minimal C6-ROFT ofH.

Theorem 5. LetH = (Q, η) be an ordered Cq-ROFHG with fs(H) = {(µ1eiθ1 , ν1eiϕ1), (µ2eiθ2 ,
ν2eiϕ2), · · · , (µneiθn , νneiϕn)}. If λk is a minimal transversal ofH(µkeiθk ,νkeiϕk ), then there exists α ∈ tr(H) such
that α(µkeiθk ,νkeiϕk ) = λk and α(µle

iθl ,νle
iϕl ) is a minimal transversal of H(µle

iθl ,νle
iϕl ), for all l < k. In particular,

if λj ∈ tr(H(µje
iθj ,νje

iϕj )), then there exists a locally minimal Cq-ROFT α(µje
iθj ,νje

iϕj ) = λj and t∗r (H) 6= ∅.

Proof. Let λk ∈ tr(H(µkeiθk ,νkeiϕk )). Since,H = (Q, η) is an ordered Cq-ROFHG, therefore
H(µk−1eiθk−1 ,νk−1eiϕk−1 ) ⊆ H(µkeiθk ,νkeiϕk ). Also, there exists λk−1 ∈ tr(H(µk−1eiθk−1 ,νk−1eiϕk−1 )) such
that λk−1 ⊆ λk. Following this iterative procedure, we have a nested sequence λ1 ⊆ λ2 ⊆
· · · ⊆ λk−1 ⊆ λk of minimal transversals, where every λl ∈ tr(H(µle

iθl ,νle
iϕl )). Let αl be an

elementary Cq-ROFS having height (µleiθl , νleiϕl ) and support αl . Let us define α(x) such that
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α(x) = {(max Tαl (x)ei max φαl (x), min Fαl (x)ei min ψαl (x))|1 ≤ l ≤ n}, that generates the required minimal
Cq-ROFT ofH. If k = n, α is locally minimal Cq-ROFT ofH. Hence, t∗r (H) 6= ∅.

b b b

b b b

(x
1 , 0.6e i(0.6)π
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e
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Figure 14. Complex six-rung orthopair fuzzy hypergraph.

Theorem 6. LetH = (Q, η) be a simply ordered Cq-ROFHG with fs(H) = {(µ1eiθ1 , ν1eiϕ1), (µ2eiθ2 ,
ν2eiϕ2), · · · , (µneiθn , νneiϕn)}. If λk ∈ tr(H(µkeiθk ,νkeiϕk )), then there exists α ∈ t∗r (H) such that
α(µkeiθk ,νkeiϕk ) = λk.

Proof. Let λk ∈ tr(H(µkeiθk ,νkeiϕk )) andH = (Q, η) is a simply ordered Cq-ROFHG. Theorem 5 implies
that a nested sequence λ1 ⊆ λ2 ⊆ · · · ⊆ λk−1 ⊆ λk of minimal transversals can be constructed.
Let Let αl be an elementary Cq-ROFS having height (µleiθl , νleiϕl ) and support αl such that α(x) =

{(max Tαl (x)ei max φαl (x), min Fαl (x)ei min ψαl (x))|1 ≤ l ≤ n} generates the locally minimal Cq-ROFT of

H with α(µkeiθk ,νkeiϕk ) = λk.

6. Application

Most of the previous studies use crisp hypergraphs to analyze the co-authorship relation
between two or more authors as a collaboration. In this section, we consider a Cq-ROFHG model of
co-authorship network to represent the collaboration relations between authors having uncertainty
and vagueness of periodic nature simultaneously. The next comparison law between Cq-ROFNs will
be helpful in our application:

Definition 34. Let Q = (Teiφ, Feiψ) be a Cq-ROFN. Then, the score function of Q is defined as,

s(Q) = (Tq − Fq) +
1

2qπq (φ
q − ψq).

The accuracy of Q is defined as,

a(Q) = (Tq + Fq) +
1

2qπq (φ
q + ψq).

For two Cq-ROFNs Q1 and Q2,

1. if s(Q1) > s(Q2), then Q1 � Q2,
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2. if s(Q1) = s(Q2), then

• if a(Q1) > a(Q2), then Q1 � Q2,
• if a(Q1) = a(Q2), then Q1 ∼ Q2.

6.1. A C6-ROFHG Model of Research Collaboration Network

A collaboration network is a group of independent organizations or people that interact to complete a
particular goal for achieving better collective results by means of the joint execution of a task. The entities
of a collaborative network may be geographically distributed and heterogeneous in terms of their
culture, goals, and operating environment but they collaborate to achieve compatible or common goals.
For decades, science academies have been interested in research collaboration. The most common reasons
for research collaboration are funding, more experts working on the same project imply the more chances
for effectiveness, productivity, and innovativeness. Nowadays, most of the public research is based on
the collaboration of different types of expertise from different disciples and different economic sectors.
In this section, we study a research collaboration network model through C6-ROFHG. Consider a science
academy that wants to select an author among a group of researchers that has the best collaborative skills.
For this purpose, the following characteristics can be considered:

• Cooperative spirit
• Mutual respect
• Critical thinking
• Innovations
• Creativity
• Embrace diversity

We construct a C6-ROFHG H = (Q, η) on Y = {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10}.
The universe Y represents the group of authors as the vertices of H and these authors are grouped
through hyperedges if they have worked together on some projects. The truth-membership of each
author represents the collaboration strength and falsity-membership describes the opposite behavior
of the corresponding author. Suppose that a team of experts assigns that the collaboration power
of A1 is 60% and non-collaborative behavior is 50% after carefully observing the different attributes.
The corresponding phase terms illustrate the specific period of time in which the collaborative behavior
of an author varies. We model this data as (A1, 0.6ei(0.5)π , 0.5ei(0.5)π). The C6-ROFHG H = (Q, η)

model of collaboration network is shown in Figure 15.
The membership degrees of hyperedges represent the collective degrees of collaboration and

non-collaboration of the corresponding authors combined through an hyperedge. The adjacency
matrix of this network is given in Tables 3–5.

Table 3. Adjacency matrix of collaboration network.

η A1 A2 A3 A4

A1 (0, 0) (0.6ei(0.5)π , 0.6ei(0.5)π) (0.6ei(0.5)π , 0.6ei(0.5)π) (0.6ei(0.5)π , 0.6ei(0.5)π)

A2 (0.6ei(0.5)π , 0.6ei(0.5)π) (0, 0) (0.6ei(0.5)π , 0.6ei(0.5)π) (0, 0)
A3 (0.6ei(0.5)π , 0.6ei(0.5)π) (0.6ei(0.5)π , 0.6ei(0.5)π) (0, 0) (0, 0)
A4 (0.6ei(0.5)π , 0.7ei(0.5)π) (0, 0) (0, 0) (0, 0)
A5 (0, 0) (0, 0) (0, 0) (0, 0)
A6 (0, 0) (0, 0) (0, 0) (0, 0)
A7 (0, 0) (0, 0) (0, 0) (0, 0)
A8 (0, 0) (0, 0) (0.4ei(0.5)π , 0.6ei(0.5)π) (0, 0)
A9 (0, 0) (0, 0) (0, 0) (0, 0)
A10 (0, 0) (0, 0) (0, 0) (0, 0)
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Figure 15. Complex six-rung orthopair fuzzy hypergraph model of collaboration network.

Table 4. Adjacency matrix of collaboration network.

η A5 A6 A7 A8

A1 (0, 0) (0, 0) (0, 0) (0, 0)
A2 (0, 0) (0, 0) (0, 0) (0, 0)
A3 (0, 0) (0, 0) (0, 0) (0.4ei(0.5)π , 0.6ei(0.5)π)
A4 (0, 0) (0, 0) (0, 0) (0, 0)
A5 (0, 0) (0.4ei(0.5)π , 0.7ei(0.5)π) (0.6ei(0.5)π , 0.7ei(0.5)π) (0.4ei(0.5)π , 0.7ei(0.5)π)

A6 (0.4ei(0.5)π , 0.7ei(0.5)π) (0, 0) (0, 0) (0.4ei(0.5)π , 0.7ei(0.5)π)

A7 (0.4ei(0.5)π , 0.7ei(0.5)π) (0, 0) (0, 0) (0, 0)
A8 (0.4ei(0.5)π , 0.7ei(0.5)π) (0.4ei(0.5)π , 0.7ei(0.5)π) (0, 0) (0, 0)
A9 (0, 0) (0, 0) (0, 0) (0.4ei(0.5)π , 0.7ei(0.5)π)

A10 (0.4ei(0.5)π , 0.7ei(0.5)π) (0, 0) (0.4ei(0.5)π , 0.7ei(0.5)π) (0.4ei(0.5)π , 0.7ei(0.5)π)

Table 5. Adjacency matrix of collaboration network.

η A9 A10

A1 (0, 0) (0, 0)
A2 (0, 0) (0, 0)
A3 (0, 0) (0, 0)
A4 (0, 0) (0, 0)
A5 (0, 0) (0.6ei(0.5)π , 0.7ei(0.5)π)
A6 (0, 0) (0, 0)
A7 (0, 0) (0.4ei(0.5)π , 0.7ei(0.5)π)

A8 (0.4ei(0.5)π , 0.7ei(0.5)π) (0.4ei(0.5)π , 0.7ei(0.5)π)

A9 (0, 0) (0.4ei(0.5)π , 0.7ei(0.5)π)

A10 (0.4ei(0.5)π , 0.7ei(0.5)π) (0, 0)
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The score values and choice values of a C6-ROFHGH = (Q, η) are calculated as follows,

sjk = (Tq
jk + Fq

jk) +
1

2qπq (φ
q
jk + ψ

q
jk), cj = ∑

k
sjk + (Tq

j + Fq
j ) +

1
2qπq (φ

q
j + ψ

q
j ),

respectively. These values are given in Table 6.

Table 6. Score and choice values.

sjk A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 cj

A1 0 0.1245 0.1245 0.1245 0 0 0 0 0 0 0.88690
A2 0.1245 0 0.1245 0 0 0 0 0 0 0 0.41377
A3 0.1245 0.1245 0 0 0 0 0 0.0820 0 0 0.67105
A4 0.1955 0 0 0 0 0 0 0 0 0 0.60654
A5 0 0 0 0 0 0.1529 0.1955 0.1529 0 0.1955 1.37714
A6 0 0 0 0 0.1529 0 0 0.1529 0 0 0.53480
A7 0 0 0 0 0.1955 0 0 0 0 0.1529 0.50139
A8 0 0 0.0820 0 0.1529 0.1529 0 0 0.1529 0.1529 0.74457
A9 0 0 0 0 0 0 0 0.1529 0 0.1529 0.38780
A10 0 0 0 0 0.1529 0 0.1529 0.1529 0.1529 0 0.76459

The choice values of Table 6 show that A5 is the author having maximum strength of collaboration
and good collective skills among all the authors. Similarly, the choice values of all authors represent
the strength of their respective collaboration skills in a specific period of time. The method adopted in
our model to select the author having best collaboration skills is given in Algorithm 3.

Algorithm 3: Selection of author having maximum collaboration skills.

1. Input the set of vertices (authors) A1, A2, · · · , Aj.
2. Input the Cq-ROFS Q of vertices such that Q(Ak) = (Tkeiφk , Fkeiψk ), 1 ≤ k ≤ j,

0 ≤ Tq
k + Fq

k ≤ 1, q ≥ 1. Here, k = 1, 2, · · · , j denotes the number of authors, q ≥ 1 is the
parameter, T and F characterize the truth and falsity membership degrees of
corresponding authors.

3. Input the adjacency matrix η = [(Tkleiφkl , Fkleiψkl )]j×j of vertices.
4. do k from 1→ j
5. ck = 0
6. do l from 1→ j
7. sjk = (Tq

kl + Fq
kl) +

1
2qπq (φ

q
kl + ψ

q
kl)

8. ck = ck + sjk
9. end do

10. ck = ck + (Tq
k + Fq

k ) +
1

2qπq (φ
q
k + ψ

q
k)

11. do
12. Select a vertex ofH = (Q, η) having maximum choice value as the author possessing

strong collaboration powers.

6.2. Comparative Analysis

The proposed Cq-ROF model is more flexible and compatible to the system when the given
data ranges over complex subset with unit disk instead of real subset with [0, 1]. We illustrate the
flexibility of our proposed model by taking an example. Consider an educational institute that wants
to establish its minimum branches in a particular city in order to facilitate the maximum number of
students according to some parameters such as transportation, suitable place, connectivity with the
main branch, and expenditures. Suppose a team of three decision-makers selects the different places.
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Let Y = {p1, p2, p3} be the set of places where the team is interested to establish the new branches.
After carefully observing the different attributes, the first decision-makers assign the membership
and non-membership degrees to support the place p1 as 60% and 40%, respectively. The phase
terms represent the period of time for which the place p1 can attract maximum number of students.
This information is modeled using a CIFS as (p1, 0.6ei(0.6)π , 0.4ei(0.4)π). Note that, 0 ≤ 0.6 + 0.4 ≤ 1
and 0 ≤ (0.6)π + (0.4)π ≤ π. Similarly, he models the other places as, (p2, 0.7ei(0.7)π , 0.2ei(0.2)π),
(p3, 0.5ei(0.5)π , 0.2ei(0.2)2π). We denote this CIF model as

I = {(p1, 0.6ei(0.6)π , 0.4ei(0.4)π), (p2, 0.7ei(0.7)π , 0.2ei(0.2)π), (p3, 0.5ei(0.5)π , 0.2ei(0.2)π)}.

All CIF grades are CPF as well as Cq-ROF grades. We find the score functions of the above values
using the formulas s(pj) = (T − F) + 1

2π (φ − ψ), s(pj) = (T2 − F2) + 1
22π2 (φ

2 − ψ2), and s(pj) =

(T3 − F3) + 1
23π3 (φ

3 − ψ3). The results corresponding to these three approaches are given in Table 7.

Table 7. Comparative analysis of CIF, CPF, and C3-ROF models.

Methods Score Values Ranking

CIF model 0.4 1.0 0.6 p2 > p3 > p1
CPF model 0.4 0.9 0.42 p2 > p3 > p1
C3-ROF model 0.104 0.67 0.234 p2 > p3 > p1

Suppose that the second decision-maker assigns the membership values to these places as, (p1,
0.6ei(0.6)π , 0.4ei(0.4)π), (p2, 0.7ei(0.7)π , 0.2ei(0.2)π), (p3, 0.7ei(0.7)π , 0.5ei(0.5)π). This information can not be
modeled using CIFS as 0.7 + 0.5 = 1.2 > 1. We model this information using a CPFS and the
corresponding model is given as,

P = {(p1, 0.6ei(0.6)π , 0.4ei(0.4)π), (p2, 0.7ei(0.7)π , 0.2ei(0.2)π), (p3, 0.7ei(0.7)π , 0.5ei(0.5)π)}.

All CPF grades are also Cq-ROF grades. We find the score functions of the above values using
the formulas s(pj) = (T2 − F2) + 1

22π2 (φ
2 − ψ2) and s(pj) = (T3 − F3) + 1

23π3 (φ
3 − ψ3). The results

corresponding to these two approaches are given in Table 8.

Table 8. Comparative analysis of CPF, and C3-ROF models.

Methods Score Values Ranking

CPF model 0.4 0.9 0.48 p2 > p3 > p1
C3-ROF model 0.104 0.67 0.436 p2 > p3 > p1

We now suppose that the third decision-maker assigns the membership values to these places
as, (p1, 0.6ei(0.6)π , 0.4ei(0.4)π), (p2, 0.8ei(0.8)π , 0.7ei(0.7)π), (p3, 0.7ei(0.7)π , 0.5ei(0.5)π). This information can
not be modeled using CIFS and CPFS as 0.7 + 0.8 = 1.5 > 1, 0.72 + 0.82 = 1.13 > 1. We model this
information using a C3-ROFS and the corresponding model is given as,

Q = {(p1, 0.6ei(0.6)π , 0.4ei(0.4)π), (p2, 0.8ei(0.8)π , 0.7ei(0.7)π), (p3, 0.7ei(0.7)π , 0.5ei(0.5)π)}.

We find the score functions of the above values using the formula s(pj) = (T3 − F3) + 1
23π3 (φ

3 −
ψ3). The score values of C3-ROF information are given as,

s(p1) = 0.304, s(p2) = 0.438, s(p3) = 0.436.

Note that p2 is the best optimal choice to establish a new branch according to the given parameters.
We see that every CIF grade is a CPF grade, as well as a Cq-ROF grade, however there are Cq-ROF
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grades that are not CIF nor CPF grades. This implies the generalization of Cq-ROF values. Thus the
proposed Cq-ROF model provides more flexibility due to its most prominent feature that is the
adjustment of the range of demonstration of given information by changing the value of parameter q,
q ≥ 1. The generalization of our proposed model can also be observed from the reduction of Cq-ROF
model to CIF and CPF models for q = 1 and q = 2, respectively.

7. Conclusions and Future Directions

Fuzzy sets and intuitionistic fuzzy sets cannot handle imprecise, inconsistent, and incomplete
information of periodic nature. They lack the capability to model two-dimensional phenomena.
To vercome this difficulty, the concept of complex fuzzy sets was introduced by Ramot et al. [2].
Their phase term is the critical feature of the complex fuzzy set model. The potential of a complex
fuzzy set for representing two-dimensional phenomena makes it superior when it comes to handle
ambiguous and intuitive information, especially in time-periodic phenomena.

A Cq-ROF model is a generalized form of both the complex intuitionistic fuzzy and complex
Pythagorean fuzzy models. Indeed, a Cq-ROF model reduces to a CIF model when q = 1, and it
becomes a CPF model when q = 2. The Cq-ROF model provides a sufficiently wide space of permissible
complex orthopairs.

Hypergraphs are mathematical tools for the representation and understanding of problems in a
wide variety of scientific fields. In this article, we have applied the most fruitful concept of Cq-ROFSs
to hypergraphs. We have defined the novel concepts of Cq-ROFSs, Cq-ROFGs, Cq-ROFHGs, level
hypergraphs, and Cq-ROF transversals of Cq-ROFHGs. Further, we have proved that a C1-ROFHG
is a CIFHG and a C2-ROFHG is a CPFHG. We have also designed algorithms to construct minimal
transversals, fundamental subsequence and subcore of a Cq-ROFHG. Finally, we have illustrated a
real-life application of Cq-ROFHGs in collaboration networks that enhances the motivation of this
research article.

We aim to broaden our study in the future with the analysis of (1) Complex fuzzy directed
hypergraphs, (2) Complex bipolar neutrosophic hypergraphs, (3) Fuzzy rough soft directed hypergraphs
and (4) Fuzzy rough neutrosophic hypergraphs.
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