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Abstract: Mobile ad hoc network (MANET) can be described as a group of wireless mobile nodes that
form a temporary dynamic and independent infrastructure network or a central administration facility.
High energy consumption is one of the main problems associated with the MANET technology.
The wireless mobile nodes used in this process rely on batteries because the network does not have a
steady power supply. Thus, the rapid battery drain reduces the lifespan of the network. In this paper,
a new Bat Optimized Link State Routing (BOLSR) protocol is proposed to improve the energy usage
of the Optimized Link State Routing (OLSR) protocol in the MANET. The symmetry between OLSR of
MANET and Bat Algorithm (BA) is that both of them use the same mechanism for finding the path via
sending and receiving specific signals. This symmetry resulted in the BOLSR protocol that determines
the optimized path from a source node to a destination node according to the energy dynamics
of the nodes. The BOLSR protocol is implemented in a MANET simulation by using MATLAB
toolbox. Different scenarios are tested to compare the BOLSR protocol with the Cellular Automata
African Buffalo Optimization (CAABO), Energy-Based OLSR (EBOLSR), and the standard OLSR.
The performance metric consists of routing overhead ratios, energy consumption, and end-to-end
delay which is applied to evaluate the performance of the routing protocols. The results of the tests
reveal that the BOLSR protocol reduces the energy consumption and increases the lifespan of the
network, compared with the CAABO, EBOLSR, and OLSR.

Keywords: mobile ad-hoc network (MANET); optimized link state routing (OLSR); bat algorithm
(BA) and genetic algorithm (GA)

1. Introduction

In the world of computers, networking is defined as the electronic communication that occurs
between one or more wireless or wired devices connected to each other for data sharing, resource
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sharing, and file exchanging [1]. This electronic communication occurs over long distances through
the use of routers, switches, and Internet servers. Hardware and computer software devices, such as
cables, radio, and satellites, are combined by the network.

An ad hoc network refers to a single session connection that does not use wireless base stations
or routers [2] and is mainly developed for transitory network connections. In this kind of network,
all nodes participate in the routing activities without the use of any infrastructure. Instead of classic
routing, a flooding technique is employed by the network for data transition [3]. An ad hoc network
is mainly used for emergency situations involving natural disasters and military operations [4].
The mobile ad hoc network (MANET) is a multi-hop, dynamic topology mobile network that performs
autonomous operations offering routing services throughout the nodes [5]. The nodes have limited
computing capability and can transmit the data packets from the sources to the required destinations [6].
This kind of network is appropriate for different applications involving outdoor activities, emergency
situations, specific military operations, natural calamities, and communications in places without
wireless facilities [7].

The MANET functions under conditions that hinder the recharging of nodes. Therefore, the
energy utilization of the nodes must be equilibrated to increase the lifespan of the network [8,9].
In typical ad hoc network routing protocols, the routes that are under a minimal hop count metric
are selected, and the energy usage of the nodes is not considered [10,11]. Under such conditions, the
energy needed for transmitting and forwarding data packets can be easily exhausted by the routing
process [12,13]. As mentioned above, MANET is a collection of nodes that are connected without
infrastructure. An overview of a MANET is presented in Figure 1.
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In MANETs, direct communication between the source and the destination nodes is required by
routing protocols, such as the Optimized Link State Routing (OLSR) and the Ad-hoc On-Demand
Distance Vector (AODV) routing protocol [14,15]. Thus, routing is crucial to determine the required
optimal path for the transfer of data between the source and the destination nodes [16]. Various
routing protocols classified as reactive, AODV [15], proactive, OLSR [17,18], hybrid, and zone routing
board [19] are available in the MANET. One of the commonly used algorithms in solving routing
problems is the bat algorithm proposed by Yang [20,21]. In addition to addressing routing problems,
this algorithm can also solve numeric, engineering, and optimization problems [22–24]. This paper
presents the integration of the Bat Algorithm (BA) with the OLSR protocol to improve the path selection
mechanism by using different parameters.

The remaining of the paper is organized as follows: Section 2 explains the literature review.
Section 3 presents the related methods and materials of this work which include the OLSR, BA, and
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the quality of services parameters. Section 4 describes the main contribution of this work that is
represented by the Bat Optimized Link State Routing (BOLSR) protocol. Sections 5 and 6 explain the
simulation model and parameters, the evaluation metrics, and experimental results and discussion
respectively. Finally, Section 7 concludes the work and suggested future work.

2. Literature Review

Mobile devices consume energy and rely on networks without infrastructures, such as the MANET,
or networks with infrastructure. Different protocol problems are associated with MANETs, specifically,
the procedure of discovering optimal paths between the source and the destination nodes, which
involves high Energy Consumption (EC) from broad node communications [25]. When the source node
sends data to the destination node, the appropriate path to their destination must first be identified by
broadcasting routing requests. This activity consumes more power than data transmission, and the
risk of connection failure is increased by the flexible processes of mobility-enhanced nodes. When the
connection fails, routing requests must be re-initiated by the source nodes; this phenomenon increases
the EC related to node operations [26]. The different routing protocols available in MANETs are
classified as reactive, proactive, and hybrid [18]. The AODV is a typical example of a reactive protocol.
In this protocol, routes are formed only when the source needs to transmit data to a destination [15].
An example of a proactive protocol is table-driven protocol, in which the updated information is
maintained between the routes from every node to all other nodes present in the network [16]. Finally,
the hybrid routing protocol attempts to integrate elements of the proactive and reactive routing
protocols [18]. The central idea of hybrid routing is that proactive connections are available in areas
with low mobility, whereas reactive connections are available in areas with high mobility [19]. Network
routing problems have been recently solved through the implementation of different intelligent
algorithms, such as African Buffalo Optimization (ABO) [6], ant colony optimization (ACO) [27],
Genetic Algorithm (GA) [7,28], Artificial Bee Colony (ABC) [29], and Practical Swarm Optimization
(PSO) algorithm [30].

Hassan et al. [6] introduce a new routing scheme cellular automata African Buffalo Optimization
(CAABO) based on Cellular Automata (CA) and African Buffalo Optimization (ABO) algorithms.
The CAABO attempts to discover the paths that fulfil the delay requirements and limitations as well as
improving the energy usage of the network. Brindha et al. [31] propose a new energy-efficient routing
protocol by using different Quality of Service (QoS) parameters such as hops count, End-To-End
(E2E) delay, and bandwidth. These parameters are managed via the GA algorithm to get an optimal
solution. The new protocol is called Energy-Based OLSR (EBOLSR). Narayanan et al. proposed a new
energy-aware method called the ACO–EEOLSR that contains the ACO-enhanced approach to obtain an
energy-efficient OLSR for the MANET technology [32]. Alternatively, a clustering algorithm to be used
in the OLSR protocol for a new energy-aware method is proposed by [33]. This new method is aimed
to decrease the E2E delay while increasing the lifespan of the network. A study by Sundaram et al. [34]
proposed an invasive weed PSO, a hybrid algorithm that is combined with the OLSR protocol to reduce
the E2E delay while improving the throughput of the network. A new hybrid algorithm called PSO
sigmoid increasing inertia weight is proposed for the selection of Multipoint Relay (MPR) to improve
the performance of OLSR [35]. In addition, a new OLSR protocol mechanism that uses the willing
concept to improve EC and increase the lifespan of the network is also suggested [36].

3. Research Methods and Materials

This paper proposes an energy-aware routing protocol for the MANET. The major elements of the
research are OLSR, bat algorithm, and tested network evaluation metrics.

3.1. Optimized Link State Routing (OLSR)

The OLSR is proposed by Clausen et al. [37] as a proactive routing protocol for ad hoc networks
and is built based on the link-state (LS) protocol with reduced signaling packets and control traffic
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flooding [37]. Accordingly, the OLSR protocol broadcasts messages transmitted in the network by using
MPRs, nodes that are specifically designed to broadcast only such messages [31,38]. The mechanisms
of the OLSR protocol and MPR selection are shown in Figures 2 and 3, respectively.
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The OLSR protocol functions in a fully distributed manner and does not rely on any kind of
central entity. When transmitting control messages, this protocol does not require reliable transmission
because the messages are occasionally transmitted and are exemplified by the sequence number which
rearranges them. The OLSR is also known to support node mobility. As mentioned earlier, MPRs aim
to reduce the duplicity in the retransmission within the same area [39]. Every node existing within the
network selects a certain group of nodes in their neighborhood and marks them as the MPRs, thereby
retransmitting the broadcast packets [40]. Therefore, the neighbors of the nodes, which do not exist
in the MPR set, can read and process the data packets obtained from the specified node but cannot
retransmit them [41].

The MPR set is selected by one-hop neighbors that are characterized by bidirectional links [37].
For this process, the neighboring nodes with direct links must be identified by every node. All the
links must be examined in both directions to validate these nodes. In this regard, a period broadcast of
the hello message, which contains data about the neighbors and their link statuses, must be created in
every node. Through these messages, every node can obtain information about their neighbors until
two hops and to subsequently select the MPR set. A node starts constructing the MPR selector table, a
1-hop neighbor table, and the 2-hop neighbor table as soon as it obtains a hello message [37–39].
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A different hello message will not further be transmitted to the entire network. This phenomenon
indicates that various nodes that receive the messages do not transmit them [40]. A periodic broadcast
of specified control messages known as Topology Control (TC) is performed by every node to build
and maintain the data for a network topology that is needed for data packet routing. The TCs are
forwarded by general broadcast data packets within the entire network [39]. Data obtained by the TC
packets are then stored in an appropriate topology table. Every node maintains its routing table that
helps the former to route the data packets to other destinations in a network. The TC messages received
by the nodes are analyzed, and parts of these connected pairs are stored in a form (last hop and node),
in which the node denotes the addresses that are detected in a TC message list [36]. The routing table
is created from this database by following the linked pairs in descending order.

A group of connected pairs must be detected until the last hop node present in the source neighbor
set is reached to discover an optimal route from the source to the destination [40]. The connected pairs,
which are present on a minimal power usage route, are selected by the different forwarding nodes.
If the bidirectional link is changed in the topology table or in the neighborhood, then the routing table
must be recalculated [41].

3.2. The Bat Algorithm

In 2010, a meta-heuristic search algorithm known as the Bat Algorithm (BA) was proposed by
Yang et al. [20]. This bat-inspired algorithm relies on the echolocation behavior of the bats to determine
the location of prey and to differentiate the insects existing in extreme darkness with varying degrees
of emission pulse rates and loudness [21].

This research involves the emission of bat calls to the outer environment, followed by an analysis
of the resulting echo sounds that bounce back. The objects’ locations are detected, and the distance
between the various targets is calculated through an assessment of the sound delay. The emitting
sounds are loud pulses with different properties depending on the hunting tactics and species. These
echolocation sound pulses are then characterized according to three different characteristics, namely,
pulse frequencies, pulse emission rate, and loudness/intensity. The echolocation of the bats and the
associated parameters are then examined through numerical optimizing algorithms [22]. The resultant
bat algorithm is tested empirically, and the use of single or multi-objective standardized functions is
employed to further compare this algorithm with other algorithms [23]. Algorithm 1 shows the basic
BA according to [20]:

Algorithm 1: The basic BA

1. begin
2. while (t < Max number of iterations)
3. Generate new solutions by adjusting frequency;
4. update velocities and locations [(1) to (3)];
5. if (rand > ri)
6. Select a location among the best locations
7. Generate a local location from the selected locations;
8. end-if
9. Generate a new location by flying randomly;
10. if (rand < li & f (xi) < f ( x~))
11. Accept the new locations;
12. Increase ri and reduce ai;
13. end-if
14. Rank the bats and find the current best x~;

Bats use echolocation to determine the distance and the differences between prey, food, and other
obstacles. Assume that a random velocity of vi is used by the bats to fly to a fixed position xi with the
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frequency of fmin with different wavelengths and loudness of l0 in search of prey. The wavelengths or
frequencies of the emitted pulses can be automatically adjusted, and the bats can calibrate their pulse
emission rate r in the range (0, 1) depending on how close they are to their target. Regardless of the
variance in their loudness, the loud volume varied between a huge positive value, l0 and a minimal
constant value of lmin. Figure 4 shows the mathematical bat algorithm.
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In the initial stage, the bat population and their position, i.e., xi, velocity vi and frequency fmin ,
respectively, must be identified. The mobility of all these virtual bats can be discerned after updating
their positions and velocities for the time step t , using Equations (1)–(3) in the following manner:

fi = fmin + ( fmax + fmin)β, (1)

where;
vt

i = vt−1
i +

(
xt−1

i + x~
)

fi, (2)

where;
xt

i = xt−1
i + vt

i , (3)

where β ε (0, 1) represents the vector arbitrarily derived according to the uniform distribution.
The variable x~ denotes the current global best position (solution) that is located after the solutions
obtained from m bats are compared. An arbitrary number is employed after the solutions from the
current best bat solutions are selected. Nonetheless, the pulse emission rate ri, is less than the number,
and a different solution is accepted based on the present best solutions and is explained as follows:

xnew = xold + elt, (4)

where ε ε (−1, 1) represents a random number, and lt = <lti> refers to the average loud volume of the
bats present in the generation. Moreover, the loud volume li along with the pulse emission rate ri
would be updated. If the random number is less than the loud volume, li and f (xi)< f (x~), then a
solution will be selected. The values of li and ri are updated as follows:

lt+1
i = alti , (5)
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rt+1
i = r0

i [1− exp(γt)], (6)

where in Equations (5) and (6), α and γ have constant values. The bat algorithm can be repeated until
a maximum cycle number is reached.

3.3. Quality of Services Parameters

General network quality is described or measured by the QoS and presents the amount of data
sent from a source node and received by a destination node within a given period of time. Different
parameters, such as throughput, packet delivery ratio, E2E delay, packet loss, jitter, and energy are
used to quantitatively measure QoS and evaluate the network quality. The behavior of the MANET
routing protocol is influenced by all these parameters [6]. Energy consumption, routing overhead,
and delay are used in this study because of their comprehensive assessment to the performance of
the MANET.

• Routing overhead parameter: this value is the total number of routing packets divided by the
total number of delivered data packets. The additional bandwidth, which has been consumed by
the overhead for delivering data network, can be measured using this parameter. The robustness
of the network is influenced by the routing overhead in terms of the battery power consumption
of the nodes and the utilization of the bandwidth [6].

• EC parameter: route discovery is implemented to calculate every probable path from the source
to the destination node. The optimum path is then selected by the protocol based on its criteria,
such as the minimum number of hops and the shortest path. The selected path is used until it gets
destroyed. Thus, the node energy in this route decreases. In a situation when a node loses its
energy, the messages cannot be sent and consequently leads to the exclusion of the node from the
network. This occurrence negatively affects the lifespan of the ad hoc network. Part of the initial
energy is taken as an energy constraint [9].

• Delay parameter: it is considered as one of the most important parameters in the telecommunication
system. Delay refers to the total time that is spent to send the packets from source to destination
nodes via the network. Different aspects of the network are responsible for increasing/decreasing
the delay: (1) processing, (2) queuing, (3) transmission, and (4) propagation.

4. BOLSR Protocol

The OSLR is described as a mechanism used in the discovery of the LS and for the dissemination of
information in the entire ad hoc network. The disseminated information can be utilized by individual
nodes to detect neighbor nodes and compute the next hop logic. Despite the advantages of the OSLR,
it has limitations associated with the route remaining fixed onto a set of nodes. The fitness or quality of
the nodes that are selected for the route cannot be determined using this protocol. This phenomenon
results in the excess drain of resources, such as bandwidth and charge, along with the route. The rest
of the nodes are left untouched.

The BA, which is based on the echolocation or bio-sonar characteristics of micro-bats [20], is an
optimization algorithm that can obtain variables required for the improvement of route node selection.
The following section provides details of the integration between the bat algorithm and the OLSR
protocol. This integration aims to improve the performance of the OLSR.

4.1. Criteria Function

A Criteria Function (CF) is used to improve the effectiveness of the OSLR protocol through the
provision of the node quality logic to the algorithm. With this function, a summation of a set of
characteristics for each possible route is effectively provided. Weights are given to the functions in
terms of the priority and the sustainability of the route. This sum is considered as a measurement of
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fitness for a given route and is used to measure the appropriateness of using a node for a specific route.
Below is the CF used in the analysis:

CF(x) =

0, one hop to the destination

r, otherwise
,

where r = w(1) chargeMean + w(2) chargeVar/w(3) chargeMean + w(4)/chargeVar and w denotes the
weight ratio and it has the range of 1,2, . . . , n.

The CF aims to explain the proportional and inversely proportional correlation between the
variables and the nodes’ fitness factors. If the correlation between the route length variable and the
fitness factor is inversely proportional, then the weight w1 is set to zero but not w4. This function can
also be implemented in a system of nodes to optimize the energy variance and overhead values.

4.2. General Optimization Scheme

A feedback mechanism, in which the route given by the fitness variable is processed by the OLSR
protocol, is employed to optimize the values of the weighting ratios. The Objective Function (OF)
computes the objective value, ∂, from the overhead, energy variance, and Packet Delivery Ratio (PDR)
values using the following formula:

∂ =
Overhead ∗ EnergyVariance

PDR
. (7)

The actual effectiveness of the selected route is provided by the objective function. This value can
be employed in the optimization scheme by comparing it with the values for routes that are selected
before the current selection. This process would provide insights into the suitability of the weight
values. The most appropriate values of weight ratios are provided by continuous feedback as described
earlier. Figure 5 shows the overall optimization scheme for the BOLSR protocol.
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The weight values are presented in Table 1. These values are used to further optimize the weight
ratio selection and consequently the objective function. Optimization mainly aims to reduce the values
of the overhead and energy variance.



Symmetry 2019, 11, 1409 9 of 22

Table 1. The bat algorithm parameters.

Parameter Value Description

n 20 Number of solutions for each generation

d 6 The dimension of the bat algorithm

hB 10 Upper boundary

LB −10 Lower boundary

fmin 0 Lower frequency

fmax 10 Higher frequency

Alpha 0.9 Constants

Gama 0.04 Constants

4.3. Bat Algorithm Design

The BA uses the echolocation of bats to produce a metaheuristic algorithm used in optimization
schemes. The effectiveness of the weight ratios w1, w2, . . . , wn can be effectively identified through the
optimization algorithm in terms of alteration in the values of the objective function. As previously
described, OSLR uses the nodes that are selected based on the fitness variable. Energy variance, the
E2E delay, the PDR, and the overhead values are then measured. The OF is calculated and then used in
the BA to optimize the weight values that are utilized in calculating the fitness variable. A new set
of nodes defined by the new fitness value is then processed continuously until the desired degree of
optimization for the OF is achieved. The three major equations used in the BA are Equations (1)–(3).
The parameters utilized in the optimization are presented in Table 1.

The bat, which is a vector of four elements, represents each solution. The weighting factors of
the terms that are used in the CF represent the element of this vector in which the Bat, w, and weight
ratio are equals and have the range of (1–4) values. The ∂ that is given by Equation (7), provides an
estimated value for the overall performance of a selected route. The equation assumes that minimizing
the value of the OF will lead to a balanced node loading which will reflect positively on the node
charge variance, overhead, and E2E delay across the entire system of nodes. This ∂ thus provides an
easy optimization metric, as simply minimizing this quantity would optimize the performance of the
whole system. The value of this ∂ is a key variable used in the proposed BOLSR.

5. Simulation and Result

This section presents the experimental work for evaluating BOLSR and comparing its performance
with those of three approaches, the state-of-the-art approach CAABO, EBOLSR, and OLSR. The simulation
was implemented using the MATLAB toolbox. Figure 6 shows the implementation of the routing protocols
in the MATLAB simulation.

There are different reasons that motivated us to use MATLAB instead of other tools such as NS2
or NS3. The state-of-the-art related work such as the work of [42] used MATLAB in MANET research.
MATLAB is defined as a computer programming tool that offers to the user a suitable environment for
implementing numerous types of calculations in simple, swift, and efficient ways [43]. It is employed to
implement differential mathematical equations and algorithms such as the bat algorithm. Unlike other
tools, MATLAB facilitates the process of implementing algorithms that require iterations and specific
functions in order to investigate optimal solutions. Moreover, it includes libraries that provide a
symbolic solution, data analysis, and graphic plots of the results. The simulation model and parameters
are presented in Section 5.1. Next, the evaluation metrics are provided in Section 5.2. After that,
experimental results and discussion are presented in Section 5.3.
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5.1. Simulation Model and Parameters

The simulation of the proposed BOLSR protocol is discussed in this section. The aim of the
experimental tests of the simulation is to improve the MANET performance and prolong its lifespan [42].
The objective is to use the BOLSR to find the path with the highest levels of energy and a minimum delay.
Afterwards, three routing protocols along with the BOLSR are tested and their results are compared.
Figure 7 represents the main steps that were used to implement the simulation of the BOLSR and other
protocols. The simulation model consists of four main modules. Firstly, the MANET environment
Module A was employed to create simulation environments. This module was achieved by integrating
the main characteristics of MANET, such as network size, a number of nodes, bandwidth and so on.
The next step was implementing the routing protocols as Module B in which several optimization
algorithms were used to address the progress of the solution. Three different scenarios (node speed,
number of nodes, and simulation time) with various parameters were implemented in Module C to
assess the performance quality of the protocols. The scenarios were altered in each set of runs of a
particular protocol. In Module D, the performance metrics of PDR, E2E, Routing overhead ratio (ROR),
and EC were implemented to evaluate the protocols. Finally, a results visualization graphical user
interface module is included to view the results and related analysis.
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The setting of the simulation’s parameters was adopted from [4,6–9,25,44]. Table 2 describes all
the parameters used for the setting of the simulation.

Table 2. The simulation parameters.

Parameter Value Unit

No. of run 5 -

Queue size 50 Packet

Mobility Model Random Way Point -

Packet Size 512 Byte

Transmission Range 250 Meter

Protocol OLSR, BOLSR, EBOLSR, CAABO -

Area 1250 m2

Nodes (40–100) nodes

Simulation time (10–70) ms

Node speed (1–11) m/s

Traffic type CBR/UDP -

Packet size 512 byte

Transmit power 1.4 Joule

Reception power 1.0 Joule

Idle power 0.05 Joule

5.2. The Evaluation Metrics

Varying metrics are used to evaluate network performance in general [43–46]. The major challenges
for MANET routing include the overhead, E2E delay, energy efficiency, and PDR [9,23,46]. Different
solutions have been provided for various routing problems, such as security, EC, bandwidth, and
QoS [5–7]. The metrics discussed in the following subsections were used to measure the performance
of the BOLSR.

5.2.1. Routing Overhead Ratio (ROR)

ROR is the total routing packet (RP) divided by the total number of RP and delivered data packets
(DDP), where the RP indicates the packet that is spent to discover all the nodes in the network. On the
other hand, the DDP refers to the actual data that is transmitted from source to destination nodes.
The ROR is calculated as follows:

ROR = (
∑ RP

RP + DDP

)
∗ 100. (8)

5.2.2. Energy Consumption

EC is the energy used by the nodes within the network during specific simulation time. EC can be
calculated using the energy level of each node after simulation, and the basic energy level of each node
considered during the calculation. EC is calculated as follows:

EC =
n∑

i=1

ini(i) − ene(i). (9)

In Equation (9), the node number is referred to as n, and the counter is represented by i, ini denotes
the initial energy level for each node while ene denotes the node energy levels after the simulation.
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5.2.3. E2E Delay

E2E delay refers to the accumulative time that is spent to send all data packets across the network.
The average E2E delay is calculated as follows:

E2E delay =

∑n
i=1(Ri− Si)

n
, (10)

where n refers to the successful packets that are received by destination nodes, i refers to the unique
packet identifier, Ri refers to the receiving time of the packet with the indexing number i, and Ri
denotes the sending time of the packet with the indexing number i.

5.3. Experimental Results and Discussion

This section provides a brief discussion of the results of the proposed BOLSR protocol compared
with three other protocols. The performance metric that was used to assess the performance of the
proposed protocol includes the parameters of PDR, E2E delay, EC, and ROR. The three key network
scenarios of the tests were related to the parameters of a number of nodes, node speed, and simulation
time. These parameters were altered to observe their effects on the PDR, E2E delay, EC, and ROR of
the BOLSR, CAABO, EBOLSR, and OLSR protocols. It is worth mentioning, that the figures below
depict the effects of EC, ROR, and E2E delay parameters in different scenarios as the BOLSR protocol is
focused on reducing energy consumption, overhead, and delay.

The results obtained from implementing the three scenarios are presented in Tables 3–5. Each
scenario was implemented five times to obtain the required results. The mean was used to evaluate the
performance of the network routing protocols and the Standard Deviation (SD) was used to evaluate
the variation in the behavior of the routing protocols within the five runs.

The results obtained during the implementation of the first scenario are shown in Figure 8.
Figure 8a shows the average effect of the number of nodes in the ROR of the BOLSR, CAABO, EBOLSR,
and OLSR protocols. Figure 8b shows the ROR SD of the routing protocols. The results show that
the overhead ratio of the four routing protocols is increased with the increase of the number of nodes
(40–100). In MANET, the nodes of the network are dynamically collecting information about each
other. Furthermore, during the nodes’ movement, there might be link failures between these nodes
which results in recalculating the routing tables. These issues lead to an increase in the overhead ratio
and the energy consumption of the network. The results further show that the BOLSR maintains the
lowest overhead ratio among the rest which implies finding the optimal path in terms of overhead
ratio and energy consumption.
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Table 3. Scenario 1: The number of nodes.

Model Number of Nodes

Criterion Protocol 40 50 60 70 80 90 100

PDR

OLSR
Mean 55.3 57 60 62.8 65.1 69.3 71.2

SD 4.24 2.24 5.18 2.50 4.78 1.74 3.11

EBOLSR
Mean 63.2 66.4 69.5 70.1 72.7 74.4 80.3

SD 4.69 3.00 3.21 2.76 4.53 3.97 4.07

CAABO
Mean 68.51 71.03 74.61 74.88 79.29 84.05 84.90

SD 3.84 2.94 4.44 3.08 2.24 4.22 4.97

BOLSR
Mean 73.33 74.6 77.5 79.1 84.6 87.9 90.4

SD 2.85 2.36 3.85 3.00 3.73 2.95 4.01

E2E

OLSR
Mean 29.5 29.2 28.6 28.1 26.5 25.7 22.3

SD 5.49 7.71 2.38 8.00 3.27 6.92 4.41

EBOLSR
Mean 27.2 26.8 24.7 23.1 22.4 21.9 20.2

SD 3.13 8.04 3.45 4.87 3.29 8.53 4.57

CAABO
Mean 25.92 23.93 22.07 21 19.99 18.24 16.93

SD 4.62 6.08 4.33 6.55 3.92 7.53 6.55

BOLSR
Mean 23.7 22.5 20.1 19 18.5 16.7 15.5

SD 4.20 5.43 2.46 5.71 3.13 7.19 4.57

ROR

OLSR
Mean 20.45 21.59 24.5 26.36 28.47 29.65 31.52

SD 7.99 5.63 9.35 6.46 5.10 6.73 3.63

EBOLSR
Mean 16.35 16.96 20.14 20.23 21.02 22.44 25.18

SD 5.64 7.77 4.91 7.98 3.71 7.49 5.53

CAABO
Mean 13.65 14.96 16.09 18.33 19.23 19.11 22.11

SD 6.73 4.71 8.08 5.60 7.62 3.90 6.72

BOLSR
Mean 12.16 13.43 14.82 15.01 16.19 16.88 17.54

SD 4.20 6.24 3.92 6.88 3.68 6.28 4.73

EC

OLSR
Mean 49.76 67.23 75.84 87.74 95.81 100.34 115.21

SD 9.50 25.98 10.51 15.12 9.20 14.29 22.41

EBOLSR
Mean 45.07 50.49 55.15 67.06 75.7 86.53 100.52

SD 11.15 22.71 7.96 19.39 22.67 16.26 21.77

CAABO
Mean 43.15 46.52 49.09 61.81 66.01 77.48 96.94

SD 10.34 20.41 13.38 9.96 15.14 18.97 17.46

BOLSR
Mean 38.56 39.99 44.59 51.38 60.43 69.93 95.84

SD 12.81 19.89 11.19 18.04 10.11 20.07 11.01
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Table 4. Scenario 2: The speed of nodes.

Model Node Speed

Criterion Protocol 1 3 5 7 9 11

PDR

OLSR
Mean 96.79 90.46 82.7 72.41 67.35 65.4

SD 6.28 15.48 3.03 11.90 5.04 10.00

EBOLSR
Mean 97.7 93.02 83.44 79.25 74.7 71.1

SD 4.21 9.04 6.77 13.37 11.55 12.05

CAABO
Mean 98.16 95.31 84.89 79.98 75.23 73.35

SD 5.33 7.07 1.76 11.10 1.54 9.75

BOLSR
Mean 98.55 96.3 86.1 81.5 77.8 75.3

SD 7.49 11.34 8.34 11.53 6.91 12.22

E2E

OLSR
Mean 16.32 24.67 28.21 33.41 39.21 47.11

SD 7.97 2.71 11.01 0.90 3.23 4.14

EBOLSR
Mean 14.63 22.41 27.41 31.92 37.31 45.25

SD 3.45 7.81 3.27 1.27 8.27 5.27

CAABO
Mean 13.54 21.92 25.5 29.67 36.88 42.53

SD 5.05 5.60 1.54 8.07 2.49 6.33

BOLSR
Mean 12.81 20.21 23.04 28.42 34.67 38.21

SD 4.25 1.54 6.69 3.64 7.64 3.64

ROR

OLSR
Mean 21.79 38.46 58.18 67.29 69.92 72.32

SD 9.57 3.02 6.34 2.13 11.88 5.67

EBOLSR
Mean 19.2 32.2 44.61 54.76 63.64 67.49

SD 1.76 9.67 3.90 10.15 7.58 8.61

CAABO
Mean 18.45 30.73 41.41 51.32 59.92 64.02

SD 4.90 8.83 3.39 11.63 5.42 12.76

BOLSR
Mean 18.12 29.85 39.44 48.6 55.6 59.4

SD 2.32 5.79 2.83 6.82 4.01 7.63

EC

OLSR
Mean 72 83 94 123 157 168

SD 9.82 6.84 5.34 9.41 4.64 4.06

EBOLSR
Mean 65 74 89 111 135 145

SD 8.28 3.55 8.60 6.51 9.55 4.30

CAABO
Mean 62 71 85 104 129 137

SD 6.60 5.10 8.06 2.93 8.66 4.53

BOLSR
Mean 61 69 82 98 119 129

SD 5.95 4.33 7.02 4.52 7.18 6.67
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Table 5. Scenario 3: The simulation time.

Model Simulation Time

Criterion Protocol 10 20 30 40 50 60 70

PDR

OLSR
Mean 70.23 72.89 74.05 77.37 80.22 82.53 85.39

SD 3.61 6.85 2.84 5.02 4.06 6.02 3.44

EBOLSR
Mean 73.8 75.1 77.31 80.19 83.3 84.13 88.31

SD 4.85 6.55 3.83 5.28 2.49 5.79 6.56

CAABO
Mean 76.61 78.91 79.73 83.51 87.87 89.99 91.01

SD 2.55 6.93 5.26 7.05 5.97 6.69 5.59

BOLSR
Mean 78.36 80.63 83.71 86.3 90.91 93.2 95.25

SD 3.05 5.56 3.77 5.95 4.39 6.13 4.86

E2E

OLSR
Mean 11.61 17.55 20.22 26.56 30.68 32.12 33.11

SD 3.24 5.44 3.39 4.67 3.67 3.85 3.49

EBOLSR
Mean 10.12 16.54 18.85 22.68 27.11 29.71 30.25

SD 4.06 5.70 3.74 5.55 4.21 5.83 5.52

CAABO
Mean 9.67 13.1 16.34 20.21 25.07 27.87 28.23

SD 3.50 4.87 3.13 3.39 4.51 3.74 3.27

BOLSR
Mean 8.07 11.78 14.37 18.41 21.61 24.21 26.31

SD 3.67 4.35 3.32 4.88 3.30 4.59 3.76

ROR

OLSR
Mean 39.74 41.78 43.62 47.16 48.27 49.92 50.12

SD 0.84 4.16 2.07 1.34 3.08 1.30 3.21

EBOLSR
Mean 34.19 36.29 39.83 43.02 44.54 46.28 47.34

SD 2.88 2.55 3.29 2.95 1.73 3.11 4.02

CAABO
Mean 33.11 35.04 39.44 42.34 42.67 44.85 46.91

SD 1.13 3.21 2.21 3.58 1.81 3.85 2.83

BOLSR
Mean 31.97 33.07 38.29 40.66 41.53 43.33 45.26

SD 1.64 2.95 1.43 3.44 1.98 4.16 2.23

EC

OLSR
Mean 33 54 67 79 98 103 111

SD 15.69 25.21 14.40 22.07 16.17 30.19 18.64

EBOLSR
Mean 25 46 53 65 87 92 103

SD 16.95 23.53 10.55 18.74 9.56 24.27 10.22

CAABO
Mean 23 39 48 62 84 89 99

SD 14.40 20.53 11.72 16.55 17.38 10.59 21.31

BOLSR
Mean 20 32 45 60 79 86 97

SD 18.99 20.65 13.46 19.23 13.57 17.82 12.78

Consequently, the effect of the number of nodes on EC for the BOLSR, CAABO, EBOLSR, and
OLSR under the different number of runs is shown in Figure 9. The EC of the nodes are steadily
increased when the number of nodes is increased, and the highest EC is recorded in the OLSR. On the
other hand, the BOLSR consumes less energy than other protocols as the calculations of its optimal
paths are constrained by the dynamics of nodes energy measures.
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The effect of the number of nodes on the E2E delay for the BOLSR, CAABO, EBOLSR, and OLSR
is depicted in Figure 10. The E2E delay of the nodes is steadily decreased when the number of nodes is
increased, and the highest E2E delay is recorded in the OLSR as Figure 10a,b shows. In all the four
protocols, the increase of the number of nodes makes the connection between the nodes easier and
requires less time. The BOLSR achieves the lowest E2E delay because the increase of the number of
nodes gives it the flexibility to identify nodes with high energy capacity which stabilizes the paths.
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In the second scenario, the variation of the speed of nodes is evaluated against PDR, E2E delay,
EC, and ROR. The results of the node speed scenario are shown in Table 4.
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Based on Table 4, the effect of the node speed on the routing overhead of the four protocols is
shown in Figure 11. In general, when the node speed increases from 1 to 11 m/s, the routing overhead
ratio increases too. As the previous results, the performance of the BOLSR is better than the CAABO,
EBOLSR, and OLSR protocols with regards to the ROR. The BOLSR set’s up robust and steadier routes
as is shown in the ROR and EC measures in which there are less likelihoods of route failure, and hence,
reducing the need for the route discovery process.
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The effect of the node speed on the EC for the BOLSR, CAABO, EBOLSR, and OLSR are shown in
Figure 12. The results show that the EC of the nodes is dramatically increased when the node speed
is increased as high node speed increases the probability of the link failure between nodes. Again,
the EC of the BOLSR routing protocol is lesser than the CAABO, EBOLSR, and OLSR for the same
mentioned reasons.Symmetry 2019, 11, x FOR PEER REVIEW 15 of 20 
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The effect of the node speed on the E2E delay for the BOLSR, CAABO, EBOLSR, and OLSR are
shown in Figure 13. The node speed causes a higher probability of link failure which dramatically
increases the E2E delay of the nodes. The SD results of Figure 12b clearly show that the BOLSR
outperforms the other protocols as it optimizes routes based on various parameters.

In the third scenario, the protocols were evaluated against the simulation time. Generally, the
increase in the simulation time exhausts the energy of the nodes which increases the ROR and E2E of
the network. The results of this scenario are shown in Table 5.
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Figure 13. E2E delay vs. node speed.

Based on Table 5, the effect of the simulation time on the routing overhead of the four protocols
is shown in Figure 14. In general, when the simulation time is increased (10–70 s), the ROR is
tremendously increased. The lowest ROR is recorded in the BOLSR and the highest ROR is recorded in
the OLSR protocol while the EBOLSR and CAABO maintain adjacent ROR results.
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The effect of the simulation time is shown in Figure 15. Like the first and second scenarios, the EC
of the nodes increases when the simulation time is increased. The BOLSR routing protocol consumes
less energy compared to the CAABO, OLSR, and EBOLSR. The BOLSR protocol chooses a stable path
with the highest energy for the same reasons mentioned previously.Symmetry 2019, 11, x FOR PEER REVIEW 17 of 20 
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The effect of the simulation time of the four protocols on the E2E delay is shown in Figure 16.
Whilst, the simulation time increases the E2E delay increases too. Consequently, the BOLSR protocol
has less E2E delay when compared with CAABO, OLSR, and EBOLSR as it selects a steady path with
the maximum energy which increases the network lifetime and ultimately decreases the E2E.
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6. Discussion

This work proposes an improved BOLSR routing protocol based on the OSLR protocol. It is
compared with the performance of the CAABO, EBOLSR, and OLSR according to the number of
nodes, node speed, and simulation time scenarios in terms of energy consumption, end to end delay,
and routing overhead ratio. These comparisons are made to check and evaluate the ability and
the performance of the BOLSR in MANET. The BOLSR maintains the lowest overhead ratio, delay,
and energy among the rest which implies its ability to find the optimal path based on three quality
parameters (energy, overhead, and delay). This in return ensures producing a stable network by
decreasing the probability of the link failure and ensuring the successful transmission for the highest
amount of data to the destination nodes.

The results of energy consumption, overhead ratio, and E2E delay for all routing protocols in the
three scenarios reveal that every scenario has a different impact on the performance of the routing
protocols. In all routing protocols, the energy consumption and overhead ratio increases with the
increase of the number of nodes, node speed, and simulation time. It is because the nodes need to
exchange information through flooding mechanisms for route discovery. Subsequently, the route
discovery process consumes higher energy compared to the normal data exchange between MANET
nodes. On the other hand, the E2E delay decreases when increasing the number of nodes, as the
connections between nodes are becoming easier and require less time. Whilst, when increasing the
node speed and simulation time the delay is increased because the node speed and the simulation time
have negative effects on the link stability which, in turn, increases the delay. The results clearly show
that the node speed scenario has a greater negative impact on the performance of the four routing
protocols in which it tremendously increases the probability of link failure. The stability of the network
under the node speed scenario depends on the mobility of the node in which the best stability is
when the nodes are staying near their initial position (static network). This issue reduces the need for
reconstructing new routes. On the other hand, the change in node speed changes the topology of the
network and makes the network unstable.

The standard deviation values of the five runs state the variance in the performance of the
protocols. The protocols aim to find the optimal routes from all possible routes within the network
dynamics. The lesser variation in the SD values refers to the high stability of the network, and vice
versa. The performance metric assessed for each routing protocol under three different scenarios and
the results show that the SD of the metrics is lower in the number of nodes, and simulation time
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scenarios than the node speed scenario. As a result, node speed represents the bottleneck of the test.
As the node speed decreases, the stability of the network increases until the nodes become near to their
initial position and the network reaches the static state. The static network has stable routes and less
route reconstruction. However, one of the most advanced features of the MANET is node mobility and
hence the routing protocols should be resistant to node speed.

The research scope limited this paper to focus on energy consumption, delay, and overhead
parameters in finding the best route. Nevertheless, the BOLSR maintains the shortest route and a
maximum number of connections of the conventional OLSR. There are some other parameters studied
in the literature such as the number of hops and bandwidth that are not covered in this work.

7. Conclusions and Future Work

The technology of MANETs has evolved into a fascinating field of research because of its many
promising characteristics. The MANET is popularly employed as wireless networking technology
due to its simplicity, cost-effectiveness, and ease of use. MANET technology has been used by many
researchers to improve energy usage and bandwidth. The development of the MANET can be useful
in many applications in which traditional networks are less efficient. In this paper, a BOLSR protocol
was proposed and simulated in the MANET environment using MATLAB. Four different performance
metrics of PDR, EC, ROR, and E2E delay were estimated to evaluate the performance of the protocols.
Based on the simulation results, the BOLSR protocol outperforms three other protocols which are
CAABO, EBOLSR, and the conventional OLSR protocols for all the studied parameters. It is because
the BOLSR protocol chooses a robust path of nodes that have the highest energy. Future research
should focus on the security problems in the routing protocols such as black hole attack.
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