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Abstract: The Data Encryption Standard Lightweight extension (DESL) is a lightweight block cipher
which is very similar to DES, but unlike DES uses only a single S-box. This work demonstrates that
this block cipher satisfies comparable algebraic properties to DES—namely, the round functions of
DESL generate the alternating group and both ciphers resist multiple right-hand sides attacks.
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1. Introduction

Lightweight cryptography provides solutions tailored for devices with energy or computational
constraints, which are increasingly present with the rapid increase of sensors and IoT devices. These
requirements should not be met at the cost of losing security properties. Therefore, lightweight ciphers
should ensure they offer similar security guarantees to their counterparts.

One of the protocols designed following these principles is DESL, a lightweight cipher very
similar to the Data Encryption Standard (DES) [1], proposed by Leander et al. [2]. The proposed
cipher introduces one radical change: all substitution boxes in the DES are replaced with a single new
S-box. As detailed by Leander et al., this DES Lightweight extension (DESL) has very attractive features
in terms of implementability on low-cost platforms. The obvious cryptanalytic question is whether
these features might have been paid for with a loss of security. In other words, is the security of DESL
comparable to that of the original DES? Leander et al.’s original paper [2] shows that DESL offers
resistance against several common attack techniques, including certain types of linear and differential
cryptanalyses. Finding structural weaknesses in DESL’s design remains a challenge, so despite its
short key length, DESL continues to attract interest and keeps getting cited [3–5]. Just a few days
before submitting this manuscript, Ji et al. used DESL as a testing ground for proposed improvements
of Matsui’s algorithm [6]. In this contribution, we compare two algebraic properties of DESL with
those of DES.

First we show that the round functions of DESL generate the same permutation group as the
round functions of DES, namely the alternating group on 264 points. Our proof strategy is the same
as taken by Wernsdorf for DES [7], the core part being to establish 3-transitivity for the group in
question. It is not surprising that the replacement of DES’s S-boxes in DESL necessitates modifications
of Wernsdorf’s proof, and one might be tempted to hope that facing only one S-box (instead of several
as in DES) simplifies the analysis—this did not seem to be the case for the S-box in question.

In the second part of the paper, we compare the resistance of full and reduced round versions of
DES and DESL against an algebraic attack technique known as multiple right-hand sides (MRHS) [8].
This type of attack seems particularly interesting for Feistel ciphers like DES and DESL MRHS
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equations allow a fairly compact encoding of non-linear equations for the secret key, obtained from a
known plaintext–ciphertext pair. The operations for solving such equations are in principle suitable
for being accelerated through hardware [9], but establishing run-time estimates for such an attack
against genuine ciphers is (perhaps unsurprisingly) challenging. While being devised as a tool for
cryptanalysis, Raddum and Zajac recently demonstrated that a cipher representation derived from
MRHS equations may yield a faster encryption than a reference implementation of a cipher [10]. In [11],
Zajac leveraged MRHS equations as a tool to study the connection between the cost of algebraic attacks
and the multiplicative complexity of lightweight ciphers. Here we consider the original cryptanalytic
application of MRHS equations. The experimental results we found indicate that DESL offers resistance
to this type of algebraic attack that is comparable to DES. As an aside, our results falsify a conjecture
by Schoonen [12] (Hypothesis 5.1).

To keep our presentation reasonably self-contained, the next section presents the relevant details
on the block cipher in question as well as the main ideas underlying an MRHS-based algebraic attack.

2. Preliminaries

With the exception of two modifications, DESL is identical to the Data Encryption Standard;
in particular, plaintexts and ciphertexts are elements of {0, 1}64 and the key can be taken for an element
of {0, 1}56. The first difference between DES and DESL is not relevant for the group-theoretic property
and the algebraic attack we explore: unlike for DES, there is no initial permutation and no final
permutation of the data processed in the cipher. The implications of the second modification is less
obvious: DESL replaces all eight S-boxes in DES with a single new S-box.

2.1. Description of DESL

Figure 1 illustrates the basic data flow in DESL, and we refer to the DES specification [1] and
Leander et al.’s paper [2] for a detailed specification. For our purposes it is enough to be aware of
the following:

• There are 16 rounds, each round i implementing a permutation πi ∈ S264 which depends on a
round key Ki ∈ {0, 1}48. The latter is derived from the secret key K ∈ {0, 1}56 through a suitable
key schedule.

• Each of the 16 rounds involves a round-key-dependent function F′Ki
(Ri) = P ◦⊕ ◦S ◦⊕ ◦E where

– E : {0, 1}32 −→ {0, 1}48 is an injective map specified in [1].
–

⊕
: {0, 1}48 −→ {0, 1}48, x 7−→ x⊕ Ki adds (xor) the round key Ki to the input.

– S : {0, 1}48 −→ {0, 1}32 splits the input (a1, . . . , a48) ∈ {0, 1}48 into 6-bit blocks and for each
j = 1, . . . , 8 substitutes (a6j−5, . . . , a6j) ∈ {0, 1}6 with the corresponding 4-bit value obtained
from Table 1.

– P ∈ S232 is a permutation on 32-bit strings as specified in [1].

• In each round, the 64-bit input is split into a left half Li ∈ {0, 1}32 and a right half Ri ∈ {0, 1}32.
Then the value L′i := F′Ki

(Ri)⊕ Li is computed, where ⊕ is addition in {0, 1}48. The output of
round i for i ∈ {1, . . . , 15} is (Ri, L′i). In the last round there is no swap, that is, the value (L′16, R16)

is output.

Table 1. The substitution function S : {0, 1}6 −→ {0, 1}4 of DESL is given by this S-box from [2];
(a1, . . . , a6) ∈ {0, 1}6 is mapped to the 4-bit binary representation of the table entry in row no.
a1a6 and column no. a2a3a4a5 (both interpreted as binary representation of a number in {0, . . . , 3}
resp. {0, . . . , 15}).

14 5 7 2 11 8 1 15 0 10 9 4 6 13 12 3
5 0 8 15 14 3 2 12 11 7 6 9 13 4 1 10
4 9 2 14 8 7 13 0 10 12 15 1 5 11 3 6
9 6 15 5 3 8 4 11 7 1 12 2 0 14 10 13
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Figure 1. Data Encryption Standard Lightweight extension (DESL) overview.

For the group-theoretic part of our discussion of DESL, we make use of an observation about DES
by Davio et al. [13] which has also been exploited in [7]. Namely, we rewrite DESL as shown in Figure 2,
that is, by applying P−1 respectively P before the first round and after the last round, we combine E
and P into a single function EP such that P no longer has to be applied after the application of the
S-box. The composition of and E and P is given in Table 2.
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Figure 2. Equivalent description of DESL with the permutation P being applied before the expansion
function E.
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Table 2. The function EP : {0, 1}32 −→ {0, 1}48, mapping (a1, . . . , a32) to aEP(1), . . . , aEP(32) where
EP(j) is the j-th entry in the table, reading from left to right, top to bottom (e.g., EP(7) = 21).

25 16 7 20 21 29
21 29 12 28 17 1
17 1 15 23 26 5
26 5 18 31 10 2
10 2 8 24 14 32
14 32 27 3 9 19
9 19 13 30 6 22
6 22 11 4 25 16

2.2. Multiple Right-Hand Sides (MRHS)

DESL, DES, and many other block ciphers can be modeled as series of polynomial equations over
the binary field F2, therewith suggesting algebraic attacks as a possible attack vector. MRHS offers an
alternative to algebraic attacks using SAT solvers or Gröbner bases. Instead of working with ordinary
polynomials, equations are represented in a different way, which for several block ciphers, including
DESL and DES, can be derived conveniently. For a detailed discussion of MRHS, we refer to Raddum
and Semaev’s work [8]. Here we restrict ourselves to an informal review of those aspects needed for
our application. In particular, we do not discuss specifics of the implementation of the algorithm and
refer to [8] (Section 6) for more details (cf. also [12,14]).

2.2.1. Basic Terminology

For a column vector x = (x1 x2 . . . xy)T ∈ Fy
2, a k× y binary matrix A of rank k, and column

vectors b1, b2, . . . , bs ∈ Fk consider the following type of equation:

Ax = b1, b2, . . . , bs. (1)

We refer to such an equation as an MRHS system of linear equations with right hand sides b1, b2, . . . , bs.
By a solution to (1) we mean a vector in Fy

2 satisfying at least one particular linear system of equations
Ax = bi. The set of all solutions to (1) is obtained by forming the union of the solutions to the individual
systems Ax = bi (1 ≤ i ≤ s). To work with MRHS systems of linear equations, we juxtapose the above
column vectors bi to form a matrix L and rewrite Equation (1) as Ax = [L]. The pair (A, L) is called a
symbol, and when writing equations, the brackets around L emphasize that we are not working with
an ordinary equation of matrices.

For example, the following is an MRHS system of linear equations:

 1 1 0 0 0
1 0 1 0 0
1 0 0 1 0




x1
x2
x3
x4
x5

 =

 1 0 0 1
0 1 0 0
0 0 1 1


and algebraically, it corresponds to the nonlinear equation

x1x4 + x1x2 + x2x4 + x2 + x3 + x4 + 1 = 0.

Given a system of symbols
S1 : A1x = [L1]

...
Sn : Anx = [Ln]

, (2)
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a solution to such a system is defined in the obvious way: it is a vector x ∈ Fy
2 satisfying all of the

underlying n MRHS systems of linear equations, and the goal of the procedure discussed next is to
identify all solutions of (2).

2.2.2. Solving a System of Symbols

There are three main components to MRHS: agreeing, gluing, and extracting equations. Since memory
is finite in any actual implementation of the algorithm, it may also happen that we have to guess
variables, and sometimes an equation symbol is made use of. Each of these parts is discussed below,
and we start with a description of the main components.

Agreeing

The basic idea of an agreeing phase is to remove columns b in a right hand side Li if no solution of
Aix = b can be a solution to the system (2). To achieve this, pairwise agreeing of symbols is employed.
Namely, let Si : Aix = [Li] and Sj : Ajx = [Lj] be two symbols; we say that Si and Sj agree if for every
b ∈ Li, there exists a b′ ∈ Lj such that the linear system(

Ai
Aj

)
x =

(
b
b′

)
(3)

is consistent, and, vice versa, for each b′ ∈ Lj there exists a b ∈ Li such that (3) is consistent.
In a situation where Si and Sj do not agree, we remove those columns b from Li for which the

linear system Aix = b is inconsistent with Ajx = [Lj]. Dually, those columns b′ from Lj are removed,
for which Ajx = b′ is inconsistent with Aix = [Li]. Different strategies can be used to realize this basic
idea, but for our purposes it is not necessary to go into further detail on this.

However, it is important to note that if two symbols Sh and Si agree but Si and Sj disagree,
columns may be deleted in one or both of Li and Lj. After this happens, it may well happen that Sh
does not agree with either of the modified symbols, and it becomes necessary to re-agree Sh with them.
During the latter agreement, columns from Lh may have to be deleted, and so on, possibly resulting in
a chain reaction of column deletions. To ensure that a system of symbols reaches a pairwise-agreed
state, we perform the Agreeing1 algorithm in Figure 3 (see [8] (Section 3.1)).

While the symbols in a System (2) do not pairwise agree,

1. Find Si and Sj which do not agree.
2. Agree Si and Sj.

Figure 3. Agreeing1 algorithm.

Gluing

When a system of symbols is in a pairwise-agreed state, we may choose to apply a different
operation: The gluing of two symbols Si = (Ai, Li) and Sj = (Aj, Lj) results in a new symbol Bx = [L]
whose set of solutions is the set of common solutions to Aix = [Li] and Ajx = [Lj]. After having
formed this new symbol, it is inserted into the system at hand and the two symbols Si and Sj which
formed (B, L) are no longer necessary and are removed from the system.

Gluing a matrix Li of width si with a matrix Lj of width sj may yield a matrix L with as many as
si · sj columns. In an implementation, computing certain glues might therefore turn out to be infeasible,
and one restricts to gluing only pairs of symbols where the number of columns in the resulting symbol
does not exceed a certain threshold.
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Once several glues have been performed, the symbols in the resulting system will usually no
longer be pairwise-agreed, so the algorithm in Figure 3 can be run again, initiating another round of
agreeing and gluing. The eventual goal of iterated agreeing and gluing steps is to obtain a system of
symbols which consists of a single symbol.

Extracting Equations

From a given symbol S : Ax = [L] we can try to extract unique right-hand side (URHS) equations,
and if this is done, the resulting linear equations are placed in a dedicated symbol S0 to which we
refer as an equation symbol. The equation symbol is checked for consistency and size. The A-part of
S0 has the same number of columns as the A-parts of the other symbols, but its L-part has only one
column. The equation symbol is not considered a proper part of the system (2) and does not take part
in the Agreeing1 algorithm, nor is it removed after being glued to a symbol in the system. However,
various implementations will involve S0 in an agreement or gluing step. Furthermore, information
from guessing variables may also be reflected by S0.

Guessing Variables

It may happen that all symbols in a system are pairwise-agreed, no new URHS equations can
be extracted, and no pair of symbols can be glued without exceeding the threshold. Lacking a better
alternative, in such a situation one can guess the (one-bit) value of a variable. Before performing a
guess, the system of symbols—to which we will refer as the state—is stored. After the guess has been
made, pairwise agreeing, gluing, and equation extraction are performed as normal. If after some steps
the state, again, does not allow for any new URHS equation to be computed or pair of symbols to be
glued, the state is saved again, and we guess the value of another variable.

Obviously a guess for a variable can be incorrect, and this discovery manifests as follows: during
the agreement of two symbols, all right-hand sides of at least one of the symbols get removed, indicating
that the system has no solution. When this happens, the state can be rolled back to a previously saved
state, so that a different guess can be made.

3. The Group Generated by DESL’s Round Functions

In this section we show that the round functions of DESL generate the same group as the round
functions of DES. The main part of the argument is to establish 3-transitivity of the group generated by
DESL’s round functions. To present the (somewhat technical) proof it will be convenient to introduce
some notation.

3.1. Notation

The inputs for the S-box of DESL are bitstrings of length 6, outputting bit strings of length 4,
as detailed in Table 1. The bitstring inputs are obtained by dividing a 48 bit string into eight blocks
of equal length. To refer to the latter, given a ∈ {0, 1}48, we set [a]j := (ai)

6j
i=6j−5 (j = 1, . . . , 8).

Analogously, for a ∈ {0, 1}32, we write [a]j := (ai)
4j
i=4j−3 (j = 1, . . . , 8) for the selection of 4-bit blocks.

It will be clear from the context when we are dealing with 48-bit, respectively 32-bit values. Finally,
as manifested in the balanced Feistel structure, splitting a bitstring of even length into two halves is
a common operation in DESL, and for (a1, . . . , a2m) ∈ {0, 1}2m we define aL := (ai)

m
i=1 ∈ {0, 1}m and

aR := (ai)
2m
i=m+1 ∈ {0, 1}m.

Furthermore, for ease of readability, we will often represent bitstrings by the decimal number
they represent in binary (again, the length of the bitstring will always be clear from the context).
Accordingly, we write A264 and S264 for the alternating and symmetric group respectively on {0, 1}64.
Given a set of permutations Π, we denote by 〈Π〉 the group generated by them. Specifically we are
interested in the group G generated by the round functions FK of DESL, where K ranges over all
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possible values in {0, 1}48. As in Wernsdorf’s analysis of DES in [7], we ignore any restrictions imposed
by the key schedule and allow the round keys to be chosen freely.

Using the description and notation from Section 2.1, for a given round key K ∈ {0, 1}48 we can
represent FK ∈ S264 as

FK : {0, 1}32 × {0, 1}32 −→ {0, 1}32 × {0, 1}32

(a, b) 7−→
(
b, ([a]i ⊕ S([K]i ⊕ [EP(b)]i))8

i=1
) .

We can therefore state our result in terms of these functions, proving that

G =
〈
{FK ∈ S264 |K ∈ {0, 1}48}

〉
= A264 .

3.2. Establishing 3-Transitivity of G

Before proving the main result, we will prove some previous lemmas.

Lemma 1. The round functions of DESL generate a subgroup of A264 that acts transitively on {0, 1}64.

Proof. Verifying the transitivity of G is straightforward, and the work of Even and Goldreich [15]
ensures that G is contained in the alternating group.

As an intermediate step, we will show the transitivity of G0 := {g ∈ G| g(0) = 0} on {0, 1}64 \
{(0, . . . , 0)} and transitivity of G0,d := {g ∈ G|g(0) = 0 and g(d) = d} on {0, 1}64 \ {(0, . . . , 0), d},
where d := (δ31,i)

64
i=1 has a single non-zero entry at the 31st position.

Before doing so, let us have a closer look at G0 and G0,d:
In view of the Feistel structure of DESL, it is perhaps not very surprising that we deal with pairs

of round functions when exploring the transitivity of G0 and G0,d. We define four sets of key pairs,
where the last two depend on the auxiliary value d′ := (0, 0, 0, 1, 0, 0) ∈ {0, 1}6:

M := {(k, k′) ∈ {0, 1}6 × {0, 1}6|S(k) = S(k′)}
M := {(K, K′) ∈ {0, 1}48 × {0, 1}48|∀ j ∈ {1, . . . , 8} : ([K]j, [K′]j) ∈ M}

Md′ := {(k, k′) ∈ M|S(k⊕ d′) = S(k′ ⊕ d′)}
Md′ := {(K, K′) ∈M|([K]4, [K′]4) ∈ Md′ .}

The elements in G we are mainly interested in are of the form FL
K,K′ := F−1

K′ FK or FR
K,K′ := FK′F

−1
K

with the key pair (K, K′) being chosen from M. For input pairs (a, b) ∈ {0, 1}32 × {0, 1}32 we have

FL
K,K′(a, b) = ([a]1 ⊕ S([K]1 ⊕ [EP(b)]1)⊕ S([K′]1 ⊕ [EP(b)]1), . . . ,

[a]8 ⊕ S([K]8 ⊕ [EP(b)]8)⊕ S([K′]8 ⊕ [EP(b)]8), b) and

FR
K,K′(a, b) = (a, [b]1 ⊕ S([K]1 ⊕ [EP(a)]1)⊕ S([K′]1 ⊕ [EP(a)]1), . . . ,

[b]8 ⊕ S([K]8 ⊕ [EP(a)]8)⊕ S([K′]8 ⊕ [EP(a)]8)).

In other words, when evaluating FL
(K,K′)(a, b), the right half of the input does not vary and its left half

is XORed with the value (S([K]i ⊕ [EP(b)]i)⊕ S([K′]i ⊕ [EP(b)]i))8
i=1 to the left half of the input.

For FR
(K,K′) the situation is similar, with the left half of the input being stabilized.

The following proposition helps in understanding the effect of repeatedly applying a map of the
form FR

K,K′ , respectively FL
K,K′ .
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Proposition 1. The functions FL
K,K′ and FR

K,K′ defined above satisfy the following:

(a) ∀(K, K′) ∈M : FL
K,K′ ∈ G0,d and FR

K,K′ ∈ G0.

(b) ∀(K, K′) ∈Md′ : FL
K,K′ ∈ G0,d and FR

K,K′ ∈ G0,d.

(c) Let n ∈ N. Then, for all (K1, K′1), . . . , (Kn, K′n) ∈ M and for all (a, b) ∈ {0, 1}32 × {0, 1}32,
the following hold:

FR
K1,K′1

◦ · · · ◦ FR
Kn ,K′n

(a, b) =

(
a, [b]1⊕

n⊕
i=1

(S([Ki]1 ⊕ [EP(a)]1)⊕ S([K′i ]1 ⊕ [EP(a)]1)), . . . ,

[b]8⊕
n⊕

i=1

(S([Ki]8 ⊕ [EP(a)]8)⊕ S([K′i ]8 ⊕ [EP(a)]8))
)

and, analogously,

FL
K1,K′1

◦ · · · ◦ FL
Kn ,K′n

(a, b) =

(
[a]1 ⊕

n⊕
i=1

(S([Ki]1 ⊕ [EP(b)]1)⊕ S([K′i ]1 ⊕ [EP(b)]1)), . . . ,

[a]8 ⊕
n⊕

i=1

(S([Ki]8 ⊕ [EP(b)]8)⊕ S([K′i ]8 ⊕ [EP(b)]8)), b
)

.

Proof. The proof is immediate from the definition of FL
K,K′ and FR

K,K′ .

To understand better which values can be obtained in the left and right 32-bit halves of the output
through repeated application of a map of the form FR

K,K′ (respectively FL
K,K′ ), given some 64-bit input,

it is helpful to take a look at some F2-vector subspaces of F4
2:

Lemma 2. For y ∈ {0, 1}6 \ {(0, 0, 0, 0, 0, 0)} let

U(y) := 〈S (k⊕ y)⊕ S
(
k′ ⊕ y

)
|(k, k′) ∈ M〉 ⊆ F4

2

be the F2-vector space spanned by {S (k⊕ y)⊕ S (k′ ⊕ y) |(k, k′) ∈ M}.
Similarly, denote by Ud′(y) the F2-vector space

Ud′(y) := 〈S (k⊕ y)⊕ S
(
k′ ⊕ y

)
|(k, k′) ∈ Md′〉.

Then, the following statements hold:

(a) ∀ y ∈ {0, 1}6 \ {(0, 0, 0, 0, 0, 0), (0, 0, 0, 0, 0, 1)} : U(y) = {0, 1}4.

(b) U(0, 0, 0, 0, 0, 1) = {0, 2, 4, 6, 8, 10, 12, 14}.

(c) ∀ y ∈ {2, 6, 17, 18, 21, 22, 41, 45, 49, 53, 58, 62} : Ud′(y) = {0, 1}4.

(d) ∀ y ∈ {0, 1}6 \ {(0, 0, 0, 1, 0, 0)} : Ud′(y) 6= {0}.

Proof. The proof is by direct computation, e.g., using a programming language like Python [16].

Remark 1. Bringing the notation in Lemma 2 to use, from Proposition 1 we obtain the following statements
which for the case U([EP(a)]i) = {0, 1}4 (respectively U([EP(b)]k) = {0, 1}4) may be regarded as “hinting
at transitivity”:
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• For i = 1, . . . , 8 let ui ∈ U([EP(a)]i) be a bitstring. Then, there exist (K1, K′1), . . . , (Kn, K′n) ∈M such
that FR

K1,K′1
◦ · · · ◦ FR

Kn ,K′n
(a, b) = (a, [b]1 ⊕ u1, . . . , [b]8 ⊕ u8) for all (a, b) ∈ {0, 1}32 × {0, 1}32.

• For i = 1, . . . , 8 let ui ∈ U([EP(b)]i) be a bitstring. Then, there exist (K1, K′1), . . . , (Kn, K′n) ∈M such
that FL

K1,K′1
◦ · · · ◦ FL

Kn ,K′n
(a, b) = ([a]1 ⊕ u1, . . . , [a]8 ⊕ u8, b) for all (a, b) ∈ {0, 1}32 × {0, 1}32.

• For i ∈ {1, . . . , 8} \ {4} let ui ∈ U([EP(a)]i) be a bitstring and let u4 ∈ Ud′([EP(a)]4). Then, there
exist (K1, K′1), . . . , (Kn, K′n) ∈Md′ such that FR

K1,K′1
◦ · · · ◦ FR

Kn ,K′n
(a, b) = (a, b1 ⊕ u1, . . . , b8 ⊕ u8) for

all (a, b) ∈ {0, 1}32 × {0, 1}32.

• For i ∈ {1, . . . , 8} \ {4} let ui ∈ U([EP(b)]i) be a bitstring and let u4 ∈ Ud′([EP(b)]4). Then there
exist (K1, K′1), . . . , (Kn, K′n) ∈Md′ such that FL

K1,K′1
◦ · · · ◦ FL

Kn ,K′n
(a, b) = (a1 ⊕ u1, . . . , a8 ⊕ u8, b) for

all (a, b) ∈ {0, 1}32 × {0, 1}32.

Therefore, if we know that the equality U([EP(a)]k) = {0, 1}4 holds for some 1 ≤ k ≤ 8, then for each
bitstring c ∈ {0, 1}4 we can find a sequence of key pairs (K1, K′1), . . . , (Kn, K′n) ∈M with[[

FR
K1,K′1

◦ · · · ◦ FR
Kn ,K′n

(a, b)
]

R

]
k
= c.

For instance, we can choose pairs (K1, K′1), . . . , (Kn, K′n) with ([Kj]k, [K′j]k) ∈ M corresponding to the
linear combination of c⊕ [b]k, and the rest of the positions being 0. This ensures that all (Kj, K′j) are contained
in M, and if Ud′([EP(a)]k) = {0, 1}4 or k 6= 4, we can also ensure (K1, K′1), . . . , (Kn, K′n) ∈Md′ .

Similarly, in case U([EP(b)]k) contains all bitstrings of length 4, we can obtain a sequence of key pairs with[[
FL

K1,K′1
◦ · · · ◦ FL

Kn ,K′n
(a, b)

]
L

]
k
= c.

The subsequent lemmata enable us to argue that G0,d acts transitively on {0, 1}64 \ {0, d}. In other
words, we prove that for all x, y ∈ {0, 1}64 \ {0, d} the equivalence x ∼ y holds, where x ∼ y ⇐⇒
∃g ∈ G0,d : g(x) = y. The proofs exploit in particular the transitivity of ∼.

Lemma 3. Let e := (1, 0, 1, . . . , 1) ∈ {0, 1}32 be the 32-bit vector which has a single 0-entry at the second
position and 1-entries everywhere else, and let (z, z′) ∈ {0, 1}32 × {0, 1}32 be arbitrary. Then (e, z) ∼ (e, z′).

Proof. Let (z, z′) ∈ {0, 1}32 × {0, 1}32 be arbitrary, but fixed. From Table 2 we see that

[EP(e)]i =


(1, 1, 1, 1, 1, 1) , if i ∈ {1, 2, 3, 6, 7, 8}
(1, 1, 1, 1, 1, 0) , if i = 4
(0, 1, 1, 1, 1, 1) , if i = 5

Hence, by properties (a) and (c) of Lemma 2 we obtain U((EP(e))i) = {0, 1}4 for all i = 1, . . . , 8
as well as Ud′((EP(e))4) = {0, 1}4.

Therefore, because of Remark 1 for c = (z′1, z′2, z′3, z′4) we get:

(e, z) ∼ (e, (z′1, z′2, z′3, z′4, z5, . . . , z32)), since (e, (z′1, z′2, z′3, z′4, z5, . . . , z32)) = FR
K1,K1′ ◦ · · · ◦

FR
Kn ,Kn′ (e, z), for the corresponding (Ki, Ki′), i ∈ {1, . . . , n}.

Analogously, since U((EPe)2) = {0, 1}4, we can obtain:

(e, (z′1, z′2, z′3, z′4, z5, . . . , z32)) ∼ (e, (z′1, . . . , z′8, z9, . . . , z32)).

If we continue carrying out the same procedure, since all the subspaces considered are {0, 1}4,
we can finally see that (e, z) ∼ (e, z′).
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Lemma 4. ∀ a ∈ {0, 1}64 \ {0, d} , ∃ a′ ∈ {0, 1}64 \ {0, d} : a′ ∼ a and ∃ i ∈ {1, . . . , 32} \
{2, 5, 10, 18, 26, 31} : a′i = 1.

Proof. If ∃ i ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : ai = 1, then we obtain the lemma with a′ := a.

Otherwise, we distinguish two cases:

• If ∃ i ∈ {33, . . . , 64} : ai = 1:

Then ∃ l ∈ {1, . . . , 8} such that [EP(a)64
i=33]l 6= 0:

– If [EP(a)64
i=33]l 6= 1, then U([EP(a)64

i=33)]l) = {0, 1}4. Therefore, because of Remark 1, we can
show a′ = FL

K1,K1′ ◦ · · · ◦ FL
Kn ,Kn′ (a) such that ([a′]L)j = 1 for j ∈ {4l − 3, . . . , 4l}. Thus,

∃ i ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : a′i = 1.

– If [EP(a)64
i=33]l = 1, then U([EP(a)64

i=33]l) = {0, 2, 4, 6, 8, 10, 12, 14}. With an argument similar
to the previous one, we can get an element a′ = FL

K1,K1′ ◦ · · · ◦ FL
Kn ,Kn′ (a), such that (a′L)i = 1

for i ∈ {4l − 3, . . . , 4l − 1}. Therefore, ∃ i ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : a′i = 1.

• If ∀ i ∈ {33, . . . , 64} : ai = 0.

Since a 6= 0, then ∃ i ∈ {1, . . . , 32} : ai = 1. Therefore, ∃ l ∈ {1, . . . , 8} such that [EP(a)32
i=1]l 6= 0

and, like before (but using “right-functions”) we prove that we can get an element a′ = FR
K1,K1′ ◦

· · · ◦ FR
Kn ,Kn′ (a), where (Ki, Ki′) ∈ Md′ , such that ∃ i ∈ {33, . . . , 64} : a′i = 1. Notice that in this

case the pairs (Ki, Ki′) must be not only in M, but in Md′ , so that a ∼ a′ (Proposition 1(b)).

– If l 6= 4

∗ If (EP(a)32
i=1)l 6= 1, then U([EP(a)32

i=1)]l) = {0, 1}4.
Therefore, because of Remark 1, we can have a′ = FR

K1,K1′ ◦ · · · ◦ FR
Kn ,Kn′ (a), where

(Ki, Ki′) ∈Md′ , with a′i = 1 for some i ∈ {33, . . . , 64}.
∗ If [EP(a)32

i=1]l = 1, then U([EP(a)32
i=1)]l) = {0, 2, 4, 6, 8, 10, 12, 14}. With the same

argument as before, we can get an element a′ = FR
K1,K1′ ◦ · · · ◦ FR

Kn ,Kn′ (a), such that

a′i = 1 for i = 32 + j, where j ∈ {4l − 3, . . . , 4l − 1}.
– If l = 4: Since a 6= d, according to Table 2, (EPa)4 6= (0, 0, 0, 1, 0, 0). Therefore, we have

Ud′((EPa)4) 6= 0 (Lemma 2(d)) and we can obtain, as in the previous cases, an element
a′ := FL

K1,K1′ ◦ · · · ◦ FR
Kn ,Kn′ (a) ∼ a, with a′i = 1 for some i ∈ {33, . . . , 64}.

Hence, this case is traced back to the case ∃ i ∈ {33, . . . , 64} : ai = 1 and the proof is complete.

Lemma 5. ∀ a′ ∈ {0, 1}64 \ {0, d} : a′ ∼ a and ∃ i ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : a′i = 1, ∃ a′′ ∈
{0, 1}64 \ {0, d} : a′′ ∼ a′ and ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16} : a′′i = ei.

Proof. If ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16} : a′′i = ei, then we immediately obtain the Lemma with
a′′ := a′.

Otherwise, we choose an index j ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31} : a′j = 1 and we will prove that

∃ a0 ∈ {0, 1}64 \ {0, d} : a0 ∼ a′ , [a0]L = [a′]L and ∀ i ∈ I(j) : (a0)32+i = 1, where the sets I(j)
are defined in Figure 4.
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j I(j)
1 {5, . . . , 12} \ {8}

3 or 27 {21,. . . , 24}
4 or 11 {29,. . . , 32}

6 {25,. . . , 32}
7 or 20 {1,. . . , 4}
8 or 24 {17,. . . , 20}

9 {21,. . . , 29}
12 or 28 {5,. . . , 8}
13 or 30 {25,. . . , 28}

14 {17,. . . , 24}
15 or 23 {9,. . . ,12}

16 {1, . . . , 4} ∪ {29, . . . , 31}
17 {5,. . . , 12}
19 {21, . . . , 28} \ {24}
21 {1,. . . , 8}
22 {25, . . . , 32} \ {28}
25 {1, . . . , 4} ∪ {29, . . . , 32}
29 {1, . . . , 8} \ {4}
32 {17, . . . , 24} \ {20}

Figure 4. Definition of I(j).

We define a0 := FR
K1,K1′ ◦ FR

K2,K2′ ◦ · · · ◦FR
Kn ,Kn′ (a′), with (Ki, Ki′) ∈ Md′ . Therefore, [a0]L = [a′]L,

and we will see that if (Ki, Ki′), i ∈ {1, . . . , n} have been chosen appropriately, we can have (a0)32+i =

1,∀ i ∈ I(j).
For j = 1:
According to Table 2, [EP(a′)L]2 6= 0 and [EP(a′)L]3 /∈ {0, 1}, since the corresponding positions

for a′1 are 12 and 14, which are in blocks 2 and 3. Therefore, we have:

• If [EP(a′)L]2 6= 1, then U([EP(a′)L]2) = {0, 1}4. Hence, because of Remark 1, ∃ (Ki, Ki′) ∈ Md′

such that [[a0]R]2 = [FL
K1,K1′ ◦ FL

K2,K2′ ◦ · · · ◦FL
Kn ,Kn′ (a′)]2 = (1, 1, 1, 1). Therefore, (a0)32+i = 1 for

all i ∈ {5, . . . , 8}.

• If [EP(a′)L]2 = 1, then U([EP(a′)L]2) = {0, 2, 4, 6, 8, 10, 12, 14}. With a similar argument,
∃ (Ki, Ki′) ∈ Md′ such that [[a0]R]2 = [FL

K1,K1′ ◦ FL
K2,K2′ ◦ · · · ◦FL

Kn ,Kn′ (a′)]2 = (1, 1, 1, 0). Therefore,

(a0)32+i = 1 for all i ∈ {5, . . . , 7}.

Since [EP(a′)L]3 /∈ {0, 1}, then U([EP(a′)L]3) = {0, 1}4 and therefore ∃(Ki, Ki′) ∈ Md′ such
that [[a0]R]3 = [FL

K1,K1′ ◦ FL
K2,K2′ ◦ · · · ◦FL

Kn ,Kn′ (a′)]3 = (1, 1, 1, 1). Therefore, (a0)32+i = 1 for all i ∈
{9, . . . , 12}.

Thus, considering the composition of the functions involved, we obtain a0 such that (a0)32+i =

1 , ∀ i ∈ {5, . . . , 12} \ {8}.
A similar argument applies to the other values of j ∈ {1, . . . , 32} \ {13, . . . , 16}.
Now, we will see that ∃ a1 ∈ {0, 1}64 \ {0, d} : a1 ∼ a0 , [a1]R = [a0]R and ∀ i ∈ J(j) : (a1)i = ei,

where the sets J(j) are defined in Figure 5.
We define a1 := FL

K1,K1′ ◦ · · · ◦ FL
Kn ,Kn′ (a′), with (Ki, Ki′) ∈ M. Therefore, [a0]R = [a′]R, and we

will see that choosing adequate elements (Ki, Ki′), we can have (a1)i = ei, ∀ i ∈ J(j).
For j = 1, I(1) = {5, . . . , 12} \ {8}:
According to Table 2, let us see which positions EP(([a0]R)i) are in for the different values of

i ∈ I(1). We can see EP(([a0]R)5) is in position 18 (block 3) and 20 (block 4), EP(([a0]R)6) is in position
41 (block 7) and 43 (block 8), EP(([a0]R)7) is in position 3 (block 1), EP(([a0]R)9) is in position 35 and
37 (blocks 6 and 7), EP(([a0]R)10) is in position 23 and 25 (block 4 and 5), EP(([a0]R)11) is in position
45 (block 8), and EP(([a0]R)12) is in position 9 (block 2).
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j ({1, . . . , 32} \ {13, . . . , 16}) \ J(j)
1 or 17 {12}
3 or 27 {21, . . . , 24} ∪ {28}
4 or 11 {4} ∪ {9, . . . , 12} ∪ {20} ∪ {29, . . . , 32}
6 or 22 {20}
7 or 20 {1, . . . , 4} ∪ {8} ∪ {25, . . . , 28}
8 or 24 {17, . . . , 20} ∪ {24} ∪ {29, . . . , 32}

9 {28}
12 or 28 {5, . . . , 8} ∪ {12} ∪ {21, . . . , 24}
13 or 30 {17, . . . , 20} ∪ {25, . . . , 28}
14 or 32 {24}
15 or 23 {1, . . . , 4} ∪ {9, . . . , 12}
16 or 25 {4}

19 {17, . . . , 20} ∪ {28}
21 or 29 {8}

Figure 5. Definition of J(j).

In all blocks j, for j ∈ {1, . . . , 8} \ {3}, we have [EP[a0]R]j /∈ {0, 1} and then U([EP[a0]R]j) =

{0, 1}4. Therefore, as discussed in the previous proofs, ∃(Ki, Ki′) ∈ M such that [[a1]L]j := [FL
K1,K1′ ◦

FL
K2,K2′ ◦ · · · ◦FL

Kn ,Kn′ (a′)]j = [e]j ∀ j ∈ {1, . . . , 8} \ {3}. For block 3, we have [EP[a0]R]3 = 1, therefore

∃ (Ki, Ki′) ∈M such that (a1)i := (FL
K1,K1′ ◦ FL

K2,K2′ ◦ · · · ◦FL
Kn ,Kn′ (a′))i = ei ∀ i ∈ {9, . . . , 11}.

Therefore, the only position we cannot assure is equal to e is i = 12, therefore J(1)c = {12}.
For the rest of the indices j, we use similar arguments to compute sets J(j).

• If j ∈ {1, 6, 9, 14, 16, 17, 21, 22, 25, 29, 32}, the set ({1, . . . , 32} \ {13, . . . , 16}) \ J(j) has only one
element. Therefore, as ((a1)L)i = ei ∀ i ∈J(j), [EP(a1

L)]i /∈ {0, 1} ∀ i ∈ {1, . . . , 8} \ {4}, so
U([EP(a1

L)]i) = {0, 1}4. Therefore, choosing appropriate (Ki, Ki′) ∈ Md′ we get a2 := FR
K1,K1′ ◦

· · · ◦ FR
Kn ,Kn′ (a1), such that ([a2]R)i = ei ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16} (Remark 1).

Therefore, we have [EP(a2
R)]i /∈ {0, 1} ∀ i ∈ {1, . . . , 8} \ {4}, so U([EP(a2

L)]i) = {0, 1}4. Now,
choosing adequate (Ki, Ki′) ∈ Md′ , we can have a3 := FL

K1,K1′ ◦ · · · ◦ FL
Kn ,Kn′ (a2), such that

(a3)i = ei ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16}. Therefore, for a′′ := a3 we have the desired result.

Hence, we have seen that the lemma holds if a′j = 1 for j ∈ {1, 6, 9, 14, 16, 17, 21, 22, 25, 29, 32}.
• For indices j ∈ {1, . . . , 32} \ {2, 5, 10, 18, 26, 31}, we have J(j) ∩

{1, 6, 9, 14, 16, 17, 21, 22, 25, 29, 32} 6= ∅. Therefore, we are in the case where
∃ j ∈ {1, 6, 9, 14, 16, 17, 21, 22, 25, 29, 32} such that (a1)i = 1, and carrying out the same procedure
as the one to get a3 from a′, we get a′′ satisfying (a′′)i = ei ∀i ∈ {1, . . . , 32} \ {13, . . . , 16}.

Lemma 6. ∀ a′′ ∈ {0, 1}64 \ {0, d} : a′′i = ei ∀ i ∈ {1, . . . , 32} \ {13, . . . , 16} , ∃ z ∈ {0, 1}32 : a′′ ∼ (e, z).

Proof. According to Table 2, [(EP(a)L)]4 corresponds to positions 26, 5, 18, 31, and 2.
Since {2, 5, 10, 18, 26, 31} ∩ {13, . . . , 16} = ∅, we know (a′′L)i = ei, ∀ i ∈ {2, 5, 10, 18, 26, 31}. Therefore,
[(EP(a)L)]4 = (1, 1, 1, 1, 1, 0) = 62 and because of Lemma 2 (c), U([EP((a′′)L)]j) = {0, 1}4. Thus,
considering appropriate (Ki, Ki′), we get (e, z) = FL

K1,K1′ ◦ · · · FL
Kn ,Kn′ (a′′), for some z ∈ {0, 1}32.

Corollary 1. ∀a ∈ {0, 1}64 \ {0, d} ∃ z ∈ {0, 1}32 : a ∼ (e, z).

Proof. Considering the chain a ∼ a′ ∼ a′′ ∼ (e, z), where these elements are as described in the
previous lemmata, the result follows.

Corollary 2. G0,d is transitive on {0, 1}64 \ {0, d}.
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Proof. Let a, a′ ∈ {0, 1}64 \ {0, d}, by Lemma 6 and Corollary 1, ∃ z, z′ ∈ {0, 1}32 : a ∼ (e, z) ∼
(e, z′) ∼ a′.

Corollary 3. G0 is transitive on {0, 1}64 \ {0}.

Proof. Because of Corollary 1, it is enough to show that ∃g ∈ G0 such that g(d) 6= d.
Note that since g ∈ G0, then g(d) 6= 0.
Let (K, K′) ∈ M \Md′ , then S(K) = S(K′) and S(K ⊕ d′) 6= S(K′ ⊕ d′). Therefore, FR

K,K′(d) =

(dL, dR⊕)S(K⊕ d′)⊕ S(K′ ⊕ d′) 6= d, and FR
K,K′ ∈ G0.

Lemma 7. If G0 is transitive on {0, 1}64 \ {(0, . . . , 0)} and G0,d is transitive on {0, 1}64 \ {(0, . . . , 0), d},
then G is 3-transitive on {0, 1}64.

Proof. It follows immediately from [17] (Theorem 9.1).

Once we have shown that G is a 3-transitive subgroup of A264 , it is not particularly difficult to
verify that G is actually equal to the alternating group on 264 points.

Theorem 1. The round functions of DESL generate the alternating group, i.e., G = A264 .

Proof. We refer to the proof of Theorem 1 in [7], since the same proof applies here.

4. Applying MRHS to DESL and DES

The previous section focuses on a structural group-theoretic property which does not take the
actual number of DESL rounds into account. Subsequently, we studied an algebraic attack against
reduced and full round versions of DESL and compared the behavior of the attack with the situation
for DES. The underlying question is, to what extent does the modified S-box change the complexity of
an algebraic attack?

4.1. Symbol Creation for DESL

Since the structure of DES and DESL is the same, the process for creating the A-parts of MRHS
symbols for DESL is the same as that for DES, which is described nicely in [12] (pp. 50–53). The only
difference is that the L-part of each symbol will not correspond to a DES S-box, but instead to the DESL
S-box. This L-part is given as

0 0 0 0 0 0 0 0 F F F F F F F F
0 0 0 0 F F F F 0 0 0 0 F F F F
0 0 F F 0 0 F F 0 0 F F 0 0 F F
0 F 0 F 0 F 0 F 0 F 0 F 0 F 0 F
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
8 5 E 3 6 9 6 9 6 6 9 9 A C 3 5
E 9 4 3 1 6 F 8 9 7 2 C 6 C 9 3
8 B D 6 7 4 8 3 1 E 6 1 C 9 3 E
6 9 9 A 5 9 6 6 6 5 6 9 5 A A 9


,

where each entry is written as standard hex notation to save space. Note that the top six rows
correspond to each of the possible inputs to an S-box, and the bottom four rows correspond to the
output of the S-box. For example, if the input to the S-box is 000000, then the output is 1110, both being
readable from the first column of this matrix. If the input is 000001, then the output is 0101, both being
readable from the second column. Further, if the input is 000010, the output is 0101, and if the input is
000011, the output is 0000.
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4.2. Results

For serious ciphers, very often the first MRHS action cycle of agreeing, gluing, and equation
extracting (that is, until a guess is called for) will not be sufficient to discover the key, so guesses of
the key variables must be committed. Naturally, the fewer guesses required, the better an attack is
deemed to be. We give the name δ to the number of key bits we must guess before we discover the
whole key through an MRHS attack.

For our attacks, we use a machine called Blue with the following specifications: two quad-core
Xeon E5520 2.26 GHz processors (though only one core was used), 24 GB of RAM, using Windows 7
Server (Standard Edition). The ciphertext was 0123456789ABCDEF, and the key was the first 56 bits of
the SHA-1 hash of “Katalina” (without quotes).

Under these conditions, DESL was attacked on Blue, varying both the number of rounds of the
cipher and the threshold of MRHS. The results are summarized in Table 3, with the note that the
threshold listed is actually the base 2 logarithm of the actual threshold, so we always choose a power
of 2 for the number of columns each L-part is allowed to grow to.

Table 3. DESL δ on Blue, for varying rounds and thresholds.

Rounds of DESL

Threshold 4 6 8 10 12 14 16

20 0 34 36 36 40 38 40

21 0 34 39 37 39 39 42

22 0 33 39 37 38 43 38

23 0 33 38 45 46 48 46

We can see from this data that four rounds of DESL could be handled in the initial turn of an
MRHS attack, but things became more complicated with more rounds. For more than six rounds it
was not at all guaranteed that an increased threshold would actually help with the computation. Only
for twelve rounds did we see an improvement with increased threshold, but once we moved to a
threshold of 23, δ increased dramatically.

By way of contrast, DES was attacked on Blue varying the number of rounds and threshold.
The results are summarized in Table 4.

Table 4. DES δ on Blue, varying rounds and thresholds.

Rounds of DES

Threshold 4 6 8 10 12 14 16

20 1 (+1) 35 (+1) 36 (+0) 36 (+0) 41 (+1) 41 (+3) 40 (+0)

21 0 (+0) 35 (+1) 39 (+0) 37 (+0) 39 (+0) 40 (+1) 39 (−3)

22 0 (+0) 32 (−1) 39 (+0) 37 (+0) 38 (+0) 40 (−3) 38 (+0)

23 0 (+0) 33 (+0) 39 (+1) 43 (−2) 46 (+0) 48 (+0) 46 (+0)

Overall, DESL was about as secure as DES from an MRHS perspective, though there were two
occasions where DESL required three more bits to guess before recovering the entire key.

We remark in passing that it was conjectured by Schoonen in [12] (Hypothesis 5.1) that for
7–16 rounds of DES, δ would always be 56 minus the (base 2 logarithm of the) threshold, but Table 4
makes it plain that this was not the case.

5. Conclusions

Unlike DES, the DES Lightweight extension (DESL) uses a single S-box. The security of DESL
against a number of common types of attacks has already been argued in the literature. In this work
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we establish that the round functions of DESL generate the same permutation group as the round
functions of DES, namely, the alternating group on 264 points. Moreover, based on our work, DESL
appeared to offer comparable resistance to MRHS-based algebraic attacks as DES. Therefore, from these
algebraic points of view, DESL has no disadvantage compared to DES, and the structural properties of
DESL remain an interesting cryptanalytic topic of study.
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