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Abstract: The functional Schrödinger representation of a nonlinear scalar quantum field
theory in curved space-time is shown to emerge as a singular limit from the formulation based
on precanonical quantization. The previously established relationship between the functional
Schrödinger representation and precanonical quantization is extended to arbitrary curved space-times.
In the limiting case when the inverse of the ultraviolet parameter κ introduced by precanonical
quantization is mapped to the infinitesimal invariant spatial volume element, the canonical
functional derivative Schrödinger equation is derived from the manifestly covariant partial derivative
precanonical Schrödinger equation. The Schrödinger wave functional is expressed as the trace of the
multidimensional spatial product integral of Clifford-algebra-valued precanonical wave function or
the product integral of a scalar function obtained from the precanonical wave function by a sequence
of transformations. In non-static space-times, the transformations include a nonlocal transformation
given by the time-ordered exponential of the zero-th component of spin-connection.

Keywords: quantum field theory in curved space-time; De Donder-Weyl Hamiltonian formalism;
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1. Introduction

Quantum field theory in curved space-time [1–5] is often considered as an opportunity to study an
interplay between gravitation, space-time and quantum theory in order to gain insights and intuitions
into the quantum geometry of space-time and gravitation. The study of various formulations of
quantum fields on curved backgrounds should allow us to identify the concepts and mathematical
structures of quantum field theory which are important beyond the simplifying framework of the
Poincaré-invariant Minkowski spacetime.

An approach to quantization of fields called precanonical quantization [6–9] is based on
mathematical structures of the De Donder-Weyl (DW) Hamiltonian theory known in the calculus
of variations [10–13]. In this theory, a space-time decomposition is not required and all space-time
variables are treated on equal footing. In this sense the DW Hamiltonian formulation is an intermediate
description of classical fields between the Lagrangian and the canonical Hamiltonian level (hence the
name “precanonical”). By treating all space-time variables on equal footing as a multidimensional
analogue of the evolution parameter in mechanics this formulation allows us to avoid the necessity
of treating fields as infinite-dimensional Hamiltonian systems at least on the level of formulating
an appropriate Hamilton-like form of field dynamics, its quantization, and then formulating the
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corresponding quantum theory of fields. This way, the approach may help to circumvent technical
difficulties the usual canonical quantization of fields brings in.

In the canonical Hamiltonian field theory, it is the infinite-dimensional symplectic structure on
the phase space which yields the Poisson bracket of observables represented by functionals which
underlies the canonical quantization. There are many geometrical structures in classical field theory
which have been put forward as analogues of the symplectic structure in the DW Hamiltonian
formalism: multisymplectic [14–19], n-plectic [20,21], polysymplectic [22–25], k-plectic [26] and
others [27–30]. The book [31] gives a good introductory comparison of some of the relevant geometries
underlying classical field theory. We have proposed a different polysymplectic structure [9,32–35]
represented by a certain equivalence of class of forms, which naturally emerges from the geometrical
structures of the calculus of variations (the Poincaré-Cartan form) and leads to a definition of the
analogue of Poisson brackets suitable for geometric quantization and a generalization of canonical
quantization. There are also several different proposals of a generalization of Poisson brackets to
the DW Hamiltonian formalism [23–25,27,30,36–38] (often referred to, somewhat misleadingly, as
the “covariant Hamiltonina formalism”, which is the term already reserved in theoretical physics for
the covariant version of the canonical Hamiltonian formalism) and more general multisymplectic
geometries [39–44] whose study has been inspired by the multi/poly-symplectic approaches in
classical field theory. Note that some of those “Poisson brackets” often are not actually Poisson
in any generalized sense as they do not possess either an analogue of the Leibniz property or a suitable
generalization of the Jacobi property. Both of those properties of Poisson brackets are, however,
crucial for quantization relevant for physics. That is why, this is the bracket operation on differential
forms, which is derived from the polysymplectic structure and leads to the Poisson–Gerstenhaber
algebra [9,34,35] as a generalization of Poisson algebra, which has led us to a generalization of the
canonical quantization [6–8] and geometrical quantization [9,45] in the context of the DW Hamiltonian
formulation of fields. Further discussion of this bracket or its different treatments and generalizations
can be found in [37,46–49]. A very similar bracket was put forward recently also in [50–52] using
a reasoning different from ours and that of [46,47]. Besides, the polysymplectic structure and the
Poisson–Gerstenhaber brackets which underlie precanonical quantization have been used not so long
ago in the considerations of vielbein gravity [53], classical BRST symmetry [54], topologically massive
YM field [55], MacDowell–Mansouri gravity [56] and BF gravity [57].

As a truly Hamiltonian theory, the DW Hamiltonian formulation also leads to a generalization of
the Hamilton–Jacobi (HJ) theory [11–13] (see also [58–60] for a relevant recent geometric treatment).
The corresponding DW-HJ equation is a partial derivative equation rather than a functional derivative
equation one derives within the canonical Hamiltonian formalism. This leads to the question: which
formulation of the quantum theory of fields reproduces the DW-HJ equation in the classical limit?
Although the question is not yet clarified in general case, in [7] it is shown that the DW-HJ equation
emerges in the classical limit from our scheme of precanonical quantization of scalar field theory.

Several approaches to quantization of field theories based on, or motivated by the DW Hamiltonian
formulation have been attempted in the literature using geometric quantization [24,25,61], canonical-like
quantization [62–65], path-integral quantization [66] and deformation quantization [67,68]. Some of
the proposals [62,63] bear resemblance to the results of precanonical quantization in [6–8], although
they lack the foundation of the proper generalization of Poisson brackets to the DW Hamiltonian
formulation [34,35] and their quantization according to the Dirac rule. Unfortunately, none of those
proposals has been developed so far to the extent that a comparison with the results of precanonical
quantization or standard quantum field theory would be possible.

One can also find a claim in [69,70] that their “manifestly covariant approach” to quantization of
gravity is “consistent with” the DW Hamiltonian formulation of gravity on the classical level. However,
the analogues of Hamiltonian, Hamilton–Jacobi and Schrödinger equations for gravity proposed
in [69,70] are essentially using a field theoretic generalization of the treatment of hydrodynamics in the
Lagrangian variables and the proper time parameter of the Lagrangian paths in order to accomplish the
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desired manifest covariance, and this is very different from what the DW formulation suggests, where,
instead of introducing a proper time as an additional element (parameter) of the theory, one treats
all space-time variables on equal footing as a multidimensional analogue of the time parameter in
mechanics. It still remains to be seen how the approach of [69,70] can be applied to simpler and better
understood field-theoretic systems than the Einstein gravity and if the results of such application are
compatible with the standard QFT. However, there is also a similarity between [69], the precanonical
quantization approach of this paper, and the precanonical quantum gravity [71–79]: in both approaches,
the fundamental Hamiltonian, Hamilton–Jacobi and Schrödinger equations are manifestly covariant
partial differential equations, and the wave functions live on a finite-dimensional space of field
components. One may expect, therefore, that the methods of the present paper establishing a
connection between the precanonical quantization and the functional Schrödinger representation
in QFT could be helpful also for the study of possible relations between the ideas of [69] and the
canonical quantum gravity in metric variables [80]. Moreover, the recent progress [81] in understanding
the relation between the DW Hamilton–Jacobi equation for gravity [82] and the timeless canonical HJ
equation for general relativity derived by Peres [83] may be helpful for understanding the relations
between the approach of [69,70] and/or the precanonical quantum gravity of [71–79] with the current
approaches to quantum gravity based on canonical quantization [80,84,85].

Unlike the proposals in [24,25,61–66], the precanonical quantization is based on a firm foundation
of a proper generalization of the symplectic structure and the Poisson algebra to the DW Hamiltonian
formulation [34,35] and its quantization according to the Dirac rule [6–8], a generalization of the
Dirac rule in the context of curved space-time [86] and quantum gravity [71,72,76], and geometric
prequantization [9,45]. We found that quantization of a small Heisenberg-like subalgebra of the
aforementioned Poisson–Gerstenhaber algebra leads to a hypercomplex generalization of the formalism
of quantum theory where both operators and wave functions are Clifford-algebra-valued. The
precanonical analogue of the Schrödinger equation is formulated using the Dirac operator on the
space-time which appears as a multidimensional generalization of the time derivative in the left side
of the standard Schrödinger equation [6–9,45].

It should be noted that our hypercomplex generalization of quantum theory derived from
precanonical quantization is different from other proposals of such a generalization in the
literature [87–94]. In those generalizations, typically, the time dimension still retains its distinguished
status, and the modifications concern only the mathematical nature of the Hilbert space assumed to
be different from the Hilbert space of complex-valued functions. Moreover, unlike those approaches,
within the approach of precanonical quantization the hypercomplex wave functions appear as a
consequence of quantization itself. An experiment proposed in [95] will hopefully establish the limits
of validity of all of those proposals, including ours.

One of the features of precanonical formulation of quantized fields is that it allows us to reproduce
the classical field equations in DW Hamiltonian form as the equations for expectation values of
operators defined by precanonical quantization and evolving according to the precanonical Schrödinger
equation [71,86]. By treating the space-time variables on equal footing it also leads to a formulation of
quantum theory of fields on a finite-dimensional space of field and space-time variables thus providing
a new framework for the quantum gauge theory [96–98] and the theory of quantum gravity [72,76]
which looks more promising, both conceptually and from the point of view of a possibility of a rigorous
mathematical treatment, than the canonical quantization.

In order to apply the potential of precanonical quantization it is important to understand how it
can be related to more familiar and already working concepts of standard QFT. In this paper, we extend
our previous results about the relationship between precanonical quantization and the functional
Schrödinger picture in QFT [96,98–102] to nonlinear scalar field theory in arbitrary curved space-times.

Below, we proceed as follows: in Section 2, we first recall the results of canonical quantization
in the functional Schrödinger representation and the precanonical quantization of scalar field theory
in curved space-time, and then we discuss drastic differences between them. Section 2 also serves to
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introduce the notations used throughout the paper. The connection between the functional Schrödinger
representation and the results of precanonical quantization in curved space-time is established in
Section 3 which consists of several subsections reflecting the multi-step nature of the argumentation.
Namely, we first outline a general idea which allows us to anticipate a connection between the
Schrödinger wave functional and precanonical wave function based on the respective probabilistic
interpretation of both objects. Second, in Section 3.1, we present a restriction of precanonical
Schrödinger equation to the section of the bundle of field coordinates over space-time, which represents
a field configuration that the Schrödinger wave functional is a functional of. The restriction of
precanonical Schrödinger equation is formulated in terms of the total covariant derivative introduced
in Section 3.1.1. It allows us, in Section 3.2, to write the equation for the time evolution of the
wave functional composed from precanonical wave functions. To proceed with the derivation of the
Schödinger equation for the wave functional from the restriction of the precanonical Schrödinger
equation to a field configuration, in Section 3.3, we evaluate the functional derivatives of the functional
composed from precanonical wave function with respect to the field variables. Further, in Section 3,
we analyse different terms in the equation presented in Section 3.2 and show how they can be either
expressed in terms of the functional derivatives of the composed functional or cancelled in a certain
limiting case. The result of Section 3 is the derivation of the functional derivative Schrödinger equation
from the restricted precanonical Schrödinger equation up to an additional term which involves the
commutator of the zero-th component of the spin connection matrix with the precanonical wave
function, see Equation (39). In Section 4, we consider static space-times with the vanishing zero-th
component of the spin connection and obtain the expression of the Schrödinger wave functional as the
trace of the continual product or the product integral of precanonical wave functions restricted to a field
configuration. A more general case of non-static space-times with non-vanishing zero-th component
of the spin connection is considered in Section 5 where we show that the extraneous term in (39),
which contains the commutator of the zero-th component of spin connection with precanonical wave
function, disappears if the wave functional is expressed in terms of transformed precanonical wave
functions with the transformation given by the time-ordered exponential of the zero-th component of
spin connection. This observation allows us to extend the results from static space-times to nonstatic
ones. In Section 6, we present our conclusions and highlight the main steps of the derivation of the
functional Schrödinger equation from precanonical Schödinger equation and the expression of the
Schrödinger wave functional as a product integral of precanonical wave functions or their transforms
defined in Sections 4 and 5. We also discuss the physical meaning of the ultra-violet parameter κ
whose infinite value corresponds to the limiting case in which it is shown to be possible to derive from
precanonical quantization the standard functional Schrödinger representation of QFT.

2. Quantum Scalar Field on a Curved Space-Time: The Canonical and Precanonical Descriptions

Let us recall that the conventional canonical quantization of scalar field theory in curved
space-time can be formulated in the functional Schrödinger representation of QFT [103,104]. It leads
to the description of the corresponding quantum field in terms of the Schrödinger wave functional
Ψ([φ(x)], t) satisfying the Schrödinger equation [105–111]

ih̄∂tΨ =
∫

dx
√

g

(
h̄2

2
g00

g
δ2

δφ(x)2 −
1
2

gij∂iφ(x)∂jφ(x) + V(φ)

)
Ψ, (1)

where the right hand side is the canonical Hamiltonian operator formulated in terms of functional
derivative operators, xµ = (t, x) = (t, xi) are space-time coordinates, gµν is the space-time metric
tensor whose components depend on xµ, g = |det(gµν)|. In this equation, one uses the space-time
coordinates adapted to the space-like foliation such as the induced metric on the space-like leaves of
the foliation is gij, the lapse N =

√
g00 and the shift functions Ni = g0i = 0.
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The precanonical quantization of a scalar field φ(x) on a curved space-time background given by
the metric tensor gµν(x) (cf. [71,86]) gives rise to the description in terms of a wave function Ψ(φ, xµ) on
the finite-dimensional bundle with the local coordinates (φ, xµ) which takes values in the complexified
space-time Clifford algebra, i.e., in general,

Ψ = ψ + ψµγµ +
1
2!

ψµ1µ2 γµ1µ2 + ... +
1
n!

ψµ1...µn γµ1...µn .

The precanonical wave function Ψ satisfies the partial derivative precanonical Schrödinger
equation (pSE)

ih̄γµ(x)∇µΨ =

(
−1

2
h̄2κ ∂2

∂φ2 +
1
κV(φ)

)
Ψ =:

1
κ ĤΨ , (2)

where γµ(x) are the curved space-time Dirac matrices such that

γµ(x)γν(x) + γν(x)γµ(x) = 2gµν(x), (3)

γµ1...µp are the antisymmetrized products of p Dirac matrices,

∇µ := ∂µ + ωµ(x) (4)

is the covariant derivative with the spin-connection matrices ωµ(x) = 1
4 ωµ AB(x)γAB (see, e.g., [112])

acting on Clifford-algebra-valued wave functions by the commutator product [102], and γA are the
constant Dirac matrices which factorize the Minkowski metric ηAB of the tangent space

γAγB + γBγA = 2ηAB. (5)

Throughout the paper the metric signature is + − − − ... and we mostly follow the notation and
conventions used in [71,86,100,101]. In particular, the plane capital Greek letters like Ψ and Φ denote
wave functions on a finite dimensional space of φ and xµ and the boldface capital Greek letters like Ψ

and Φ denote functionals of field configurations φ(x). From now on we also set h̄ = 1.
The operator Ĥ in (2) is the De Donder-Weyl (DW) Hamiltonian operator constructed according

to the procedure of precanonical quantization [7,8,71,86]. In the expression of Ĥ there appears an
ultraviolet parameter κ of the dimension of the inverse spatial volume. This parameter typically
appears in the representations of precanonical quantum operators [6–8,86]. For the scalar fields on
curved background the DW Hamiltonian operator Ĥ coincides with its counterpart in flat space-time
(cf. [6–8,86]). Correspondingly, the curved space-time manifests itself only through the curved
space-time Dirac matrices (3) and the spin-connection in the left-hand side of (2).

As we have seen, the description of quantum fields obtained from precanonical quantization is
very different from a familiar description of quantum fields derived from the canonical quantization.
In particular, while in the description using the functional Schrödinger picture the role of space
variables x is different from the role the time variable t, the precanonical description is entirely
space-time symmetric, manifestly covariant and independent of the assumption of global hyperbolicity
of space-time. One can also wonder how the description in terms of precanonical wave function
on a finite-dimensional space and the corresponding partial derivative precanonical Schrödinger
equation can match the description in terms of functionals on an infinite-dimensional space of field
configurations at a fixed time and the corresponding functional derivative Schrödinger equation, or
how the multiparticle states and multi-point correlation functions of standard QFT could be related to
the natural objects within the precanonical description such as the Green function of the precanonical
Schrödinger Equation (2).

However, one can reduce the perceived gap between those two descriptions by noticing that
already on the classical level the solutions of field equations can be equally well treated using both
the language of partial derivative equation on a finite dimensional space (in the Lagrangian, DW
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Hamiltonian and DWHJ descriptions) and the language of functional derivative equations (in the
canonical Hamiltonian and Hamilton–Jacobi description). Moreover, one can derive the canonical
Hamiltonian and HJ equations from the DW Hamiltonian and DWHJ equations, respectively (see,
e.g., [99,101]). In the next section, we will show how those relationships between the canonical and
precanonical are extended to the quantum level in curved space-times.

3. Relating the Precanonical Wave Function and the Schrödinger Wave Functional

Our preceding work has already established a relationship between the functional
Schrödinger representation and precanonical quantization of scalar and Yang–Mills fields in flat
space-time [98,100,101]. The familiar QFT in functional Schrödinger representation was derived
from the precanonical quantization as the limiting case when the combination γ0κ is replaced by
δ(0), a regularized value of Dirac delta-function δ(x− x′) at coinciding spatial points, which can be
understood as the cutoff of the momentum space volume introduced by a regularization. Here we
intend to extend this relationship to curved space-time using the example of a quantum scalar field.

The Schrödinger wave functional Ψ([φ(x)], t) is interpreted as the probability amplitude of
finding a field configuration φ(x) at some moment of time t. The precanonical wave function
Ψ(φ, x) is the probability amplitude of observing the field value φ at the space-time point x. Then
the time-dependent complex functional probability amplitude Ψ([φ(x)], t) can be expected to be a
composition of space-time dependent Clifford-algebra-valued probability amplitudes given by the
precanonical wave function Ψ(φ, x). It means that the Schrödinger wave functional Ψ([φ(x)], t) is a
functional of precanonical wave functions Ψ(φ, x) restricted to a specific field configuration which is
represented by a section Σ in the total space of the bundle with the local coordinates (φ, x), which is
defined by the equation Σ : φ = φ(x) at time t. Thus by denoting the restriction of precanonical wave
function Ψ(φ, x) to Σ as

ΨΣ(x, t) := Ψ(φ = φ(x), x, t)

we assume that
Ψ([φ(x)], t) = Ψ([ΨΣ(x, t), φ(x)]), (6)

so that the time dependence of the wave functional Ψ is totally controlled by the time dependence
of precanonical wave function restricted to Σ. Then the chain rule differentiation yields the time
derivative of Ψ

i∂tΨ = Tr
∫

dx

{
δΨ

δΨT
Σ(x, t)

i∂tΨΣ(x, t)

}
, (7)

where ΨT denotes the transpose of the matrix Ψ. In the following we will be avoiding unnecessarily
cumbersome notation by denoting ΨΣ(x, t) also as ΨΣ(x) or even ΨΣ.

3.1. The Restriction of Precanonical Schrödinger Equation to Σ

The time derivative of ΨΣ is determined by the restriction of pSE (2) rewritten in space+time split
form to Σ:

i∂tΨΣ = −iγ0γi
(

d
dxi − ∂iφ(x)

∂

∂φ

)
ΨΣ − iγ0γi[ωi, ΨΣ]− i[ω0, ΨΣ] +

γ0

κ ĤΣΨΣ, (8)

where d
dxi is the total derivative along Σ,

d
dxi := ∂i + ∂iφ(x)

∂

∂φ
+ ∂iφ,k(x)

∂

∂φ,k
+ ... . (9)

In (9) φ,k denote the fiber coordinates of the first-jet bundle of the bundle of field variables φ over
space-time (cf. [113,114]) and ĤΣ in (8) is the restriction of the DW Hamiltonian operator Ĥ to Σ. Since
Ĥ contains no space-time (horizontal) derivatives, ĤΣ = Ĥ and
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1
κ Ĥ = −κ

2
∂2

∂φ2 +
1
κV(φ). (10)

3.1.1. The Total Covariant Derivative

Let us introduce the notion of the total covariant derivative acting on Clifford-algebra-valued
tensors, particularly on those restricted to Σ. The derivative will be called “total” in the sense that
(i) when acting on a Clifford-valued tensor function Tµ1µ2...

ν1ν2... it includes both the spin-connection matrix
ωµ and the Christoffel symbols Γα

βγ (c.f. [115]) and (ii) when a tensor quantity with the components
depending both on x and φ is restricted to Σ, its derivative with respect to x-s is understood in the
sense of the total derivative (9):

∇tot
α Tµ1µ2...

ν1ν2... :=
d

dxα
Tµ1µ2...

ν1ν2... + [ωα, Tµ1µ2...
ν1ν2... ]

+ Γµ1
αβTβµ2...

ν1ν2... + Γµ2
αβTµ1β...

ν1ν2... + ....

− Γβ
αν1 Tµ1µ2...

βν2... − Γβ
αν2 Tµ1µ2...

ν1β... − ...

(11)

The commutator in the second term guarantees that the total covariant derivative of the Clifford
product of two Clifford-valued tensor quantities fulfils the Leibniz rule. The Christoffel symbols appear
in the covariant derivative of non-scalar Clifford quantities, e.g., in the condition of metric compatibility

∇tot
α γµ = 0, (12)

where only the first partial derivative term in (9) is non-vanishing when acting on x-dependent
γ-matrices.

Now, in terms of the total covariant derivative ∇tot acting on ΨΣ, Equation (8) takes the form

i∂tΨΣ = −iγ0γi∇tot
i ΨΣ − i[ω0, ΨΣ] + iγ0γi∂iφ(x)∂φΨΣ +

1
κγ0ĤΣΨΣ. (13)

3.2. The Time Evolution of the Schrödinger Wave Functional from pSE

From (7), (8) and (10) the equation of the time evolution of the wave functional (6) constructed
from precanonical wave functions takes the form

i∂tΨ = Tr
∫

dx
{

δΨ

δΨT
Σ(x, t)

[
−iγ0γi d

dxi ΨΣ(x)︸ ︷︷ ︸
I

+ iγ0γi∂iφ(x)∂φΨΣ(x)︸ ︷︷ ︸
I I

− i
4

γ0γi[ωi, ΨΣ(x)]︸ ︷︷ ︸
I I Ia

− i
4
[ω0, ΨΣ]︸ ︷︷ ︸
I I Ib

−κ
2

γ0∂φφΨΣ(x)︸ ︷︷ ︸
IV

+
1
κγ0V(φ(x))ΨΣ(x)︸ ︷︷ ︸

V

]}
.

(14)

In order to derive from this equation the functional derivative Schrödinger Equation (1), we need
to try to express the terms in the right hand side of (14) in terms of the functional derivatives of the
composite functional Ψ in (6) with respect to φ(x). Those are calculated in the following section.

3.3. The Functional Derivatives of Ψ

By using the chain rule of the functional differentiation and introducing the notations

Φ(x) :=
δΨ

δΨT
Σ(x)

(15)
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and
∂φΨΣ(x) := (∂Ψ/∂φ)|Σ(x), ∂φφΨΣ(x) := (∂2Ψ/∂φ2)|Σ(x), (16)

we obtain

δΨ

δφ(x)
= Tr

{
Φ(x)∂φΨΣ(x)

}
+

δ̄Ψ

δ̄φ(x)
, (17)

δ2Ψ

δφ(x)2 = Tr
{

δ(0)Φ(x)∂φφΨΣ(x) + 2
δ̄Φ(x)
δ̄φ(x)

∂φΨΣ(x)
}

+ Tr Tr

{
δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
∂φΨΣ(x)⊗ ∂φΨΣ(x)

}
+

δ̄2Ψ

δ̄φ(x)2 .

(18)

where δ̄ denotes the partial functional derivative with respect to φ(x), as opposite to the total functional
derivative δ, and δ(0) is a regularized value of δΨΣ(x)/δΨT

Σ(x
′) at x = x′, which can be defined using

a point splitting or lattice regularization to make sense of (n− 1)-dimensional delta-function δ(x− x′)
at coinciding points. This is the simplest regularization one may use to make sense of the second
functional derivative at coinciding points which appears in the functional derivative Schrödinger
Equation (1).

3.4. The Correspondence between Terms I–V in Equation (14) and the Canonical Hamiltonian Operator in (1)

3.4.1. The Potential Term V

Our starting observation will be that the term V with V(φ) in (14) has to reproduce the last term
in the functional derivative Schrödinger Equation (1). This means that there exists a mapping 7→
such that ∫

dx Tr
{

Φ(x)
1
κγ0V(φ(x))ΨΣ(x))

}
7→
∫

dx
√

g V(φ(x)) Ψ. (19)

The existence of the map in (19) implies that the following relation should be fulfilled at any spatial
point x:

Tr
{

Φ(x)
1
κγ0ΨΣ(x)

}
7→ √g Ψ. (20)

Then the functional differentiation of both sides of (20) with respect to ΨT
Σ(x) yields

Tr

{
δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
1
κγ0ΨΣ(x)

}
+ Φ(x)

1
κγ0δ(0) 7→ √g Φ(x), (21)

where again, δ(0) = δΨΣ(x)/δΨT
Σ(x). This type of relation is possible if the following two conditions

are fulfilled:
δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
7→ 0 (22)

and
1
κγ0(x)δ(0)−√g(x) 7→ 0. (23)

The latter can be understood as the condition

γ0√gκ 7→ δ(0). (24)

By taking into account that
√

g =
√

g00h, where h := |det(gij)|, and γ0√g00 = γ0 is the time-like
tangent Minkowski space Dirac matrix (usually denoted as β), the condition (24) can be rewritten as

γ0κ 7→ δ(0)/
√

h = δinv(0), (25)
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where δinv(x) is the invariant (n− 1)-dimensional delta-function defined by the property∫
dx
√

hδinv(x) = 1. (26)

This formula generalizes to curved space-times the limiting map γ0κ 7→ δ(0) already found in
flat space-time [100,101], with the (n− 1)-dimensional delta-function replaced by the invariant one.
Moreover, the definition (26) may be viewed as a statement that δinv(0) is the inverse of the invariant
volume element

√
hdx. This allows us to interpret (25) as

1
κ 7→ γ0

√
hdx. (27)

We will use this interpretation below in Sections 4 and 5 when writing the expressions of the wave
functional in terms of precanonical wave function using the product integral.

3.4.2. The Second Variational Derivative Term

Our next observation is that, in the limiting case (24), the term IV in (14) is able to reproduce the
first term in the right-hand side of (18)

IV : −κ
2

γ0∂φφΨΣ 7→ −
1
√

g
g00δ(0)∂φφΨΣ. (28)

A comparison with (18) shows that the term IV in (14) leads to the following expression in functional
derivatives of Ψ:

IV : Tr
{

1
2

Φ(x)κγ0∂φφΨΣ(x)
}
7→ 1

2
g00√

g

(
δ2Ψ

δφ(x)2 − 2 Tr
{

δ̄Φ(x)
δ̄φ(x)

∂φΨΣ(x)
}
− δ̄2Ψ

δ̄φ(x)2

)
. (29)

The first term in the right-hand side of (29) correctly reproduces the first term in the functional
derivative Schrödinger Equation (1). However, the second and the third term need further
consideration.

3.4.3. The Non-Ultralocality Term and the Wave Functional Ψ in Terms of Precanonical ΨΣ

Since the right hand side of (14) is expected to lead to a functional derivative operator acting on
the wave functional Ψ, as in the right hand side of the functional derivative Schrödinger Equation (1),
the second term in (29) with ∂φΨΣ has to be cancelled by the term I I in (14) which also contains ∂φΨΣ.
Therefore, it is required that

I I + 2nd term of (29) : iΦ(x)γ0γi∂iφ(x) +
g00√

g
δ̄Φ(x)
δ̄φ(x)

7→ 0, (30)

where the sign 7→ stresses the fact that it is sufficient that the left hand side vanishes under the
condition (24) rather than as an equality. In fact, by functionally differentiating both sides of (30) with
respect to φ(x′) we can see that (30) with 7→ replaced by the equality sign is not an integrable equation
in functional derivatives. Nevertheless, by bearing in mind that (30) has to be valid only under the
condition (24), the solution Φ(x) can be written in the form

Φ(x) = Ξ([ΨΣ]; x̌)e−iφ(x)γi∂iφ(x)/κ , (31)
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where the “integration constant” Ξ([ΨΣ]; x̌) is a functional of ΨΣ(x′) on the punctured space with the
removed point x such that x′ 6= x. By construction, this functional satisfies the identity

δ̄Ξ([ΨΣ]; x̌)
δ̄φ(x)

≡ 0.

Indeed, by differentiating (31) with respect to φ(x), replacing κ according to the limiting map (24),
and taking into account that γ0(x)γ0(x) =: g00(x) and ∂iδ(0) = 0 (that restricts the admissible class of
regularizations of delta-function δ(x)), we conclude that (31) solves (30) under the condition (24). Note
also that the functional (31) by construction fulfils

δΦ(x)
δΨT

Σ(x)
=

δ2Ψ

δΨT
Σ(x)⊗ δΨT

Σ(x)
≡ 0, (32)

which is consistent with the condition (22). Thus the required cancellation of the terms with ∂φΨΣ(x)
(under the condition (24)) fixes the form of the functional Φ(x) introduced in (15). This allows us to
express the wave functional Ψ in the form

Ψ ∼ Tr
{

Ξ([ΨΣ]; x̌) e−iφ(x)γi∂iφ(x)/κ γ0√
gκΨΣ(x)

}
|κ 7−→γ0δ(0)/

√
g

, (33)

which is valid at any point x. Here the equality up to a normalization factor which will depend on κ
and
√

g is denoted as ∼. The notation {...}|κ 7−→γ0δ(0)/
√

g
indicates that every appearance of κ in the

expression inside braces is replaced by γ0δ(0)/
√

g as prescribed by the limiting map (24).
Using (33) we can now evaluate the last term in (29) in the limit (24):

3-rd term of (29):
1
2

g00√
g

δ̄2Ψ

δ̄φ(x)2 7→ −
1
2
√

ggij∂iφ(x)∂jφ(x)Ψ. (34)

The right hand side of (34) correctly reproduces the second term in the functional derivative
Schrödinger Equation (1), thus correctly accounting for the inherent non-ultralocality of relativistic
quantum scalar field theory (cf. [116,117]) in curved space-time.

Thus, all terms in the functional derivative Schrödinger Equation (1) are now derived from pSE
restricted to Σ, Equation (8). However, there are still unaccounted for terms I, I I Ia and I I Ib in (14)

I + I I Ia + I I Ib : −i
∫

dx Tr
{

Φ(x)γ0γi∇tot
i ΨΣ + Φ(x)[ω0, ΨΣ]

}
. (35)

Let us recall that in flat space-time [98,100,101], those terms are reduced to the term I with the total
derivative dΨΣ(x)/dxi which does not contribute to the equation for the functional Ψ if ΨΣ(x) vanishes
at the spatial infinity. Let us see now if this property extends to curved space-times.
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3.4.4. The Vanishing Contribution from the Terms I and I I Ia

At first we consider the first term in (35). Using the covariant Stokes theorem we obtain

I + I I Ia : −i
∫

dx Tr
{

Φ(x)γ0γi∇tot
i ΨΣ

}
= −i

∫
dx
√

h
(

Tr
{ 1√

h
Φ(x)γ0γi∇tot

i ΨΣ

})
=− i

∫
dx
√

hTr
{
∇tot

i

( 1√
h

Φ(x)γ0γiΨΣ

)}
+ i

∫
dx
(√

hTr
{
∇tot

i

( 1√
h

Φ(x)γ0γi
)

ΨΣ

})
=− i

∮
∂Σ

dxiTr
{

Φγ0γiΨΣ

}
+ i

∫
dx Tr

{
Φ
(
∇tot

i (γ0γi)
)
ΨΣ

}
+ i

∫
dx

(
−∇i
√

h√
h

Tr
{

Φγ0γiΨΣ

}
+ Tr

{(
∇tot

i Φ(x)
)

γ0γiΨΣ

})
,

(36)

where dxi = dn−2x|∂Σni(x) is the measure of (n− 2)-dimensional integration over the boundary ∂Σ
with the normal vector ni(x) tangent to Σ. In the right hand side of (36),

(i) the first boundary term is the result of the covariant Stokes theorem and it vanishes if ΨΣ vanishes
on the boundary ∂Σ, i.e., the spatial infinity;

(ii) the following three terms follow from the Leibniz rule for the total covariant derivative∇tot
i with

respect to the Clifford products of tensor Clifford-algebra-valued functions;
(iii) in the second term, ∇tot

i (γ0γi) = 0 due to the covariant constancy of Dirac matrices (12);
(iv) in the third term, the metric compatibility yields ∇i

√
h = 0;

(v) in the fourth term, the explicit formula for Φ(x) in (31) yields

∇tot
i Φ(x) =

−i
κ Φ(x)

(
∂iφγl∂lφ + φγl∂ilφ + φ(∇tot

i γl)∂lφ
)

. (37)

By noticing that the last term in (37) vanishes due to (12) and substituting (37) into the last term
in (36), using the covariant Stokes theorem and the assumption that the field configurations φ(x)
vanish at the spatial infinity, we obtain∫

dx Tr
{

Φ(x)
1
κγ0ΨΣ(x)

(
gil∂iφ∂lφ + φgil∂ilφ

)}
= Ψ

∫
dx
√

g
(

gil∂iφ∂lφ + φgil∂ilφ
)

= −Ψ

∫
dx
√

h∇i
(√

g00gil)1
2

∂lφ
2 = 0,

(38)

where, in the first equality, we use the fact that Tr
{

Φ(x) 1
κ√g γ0ΨΣ(x)

}
= Ψ (c.f. (20)) and the

covariant Stokes theorem in the second equality. The result is that the right-hand side of (38)
vanishes because of the metricity of space-time: ∇αgµν = 0.

Therefore, it is demonstrated that in the limiting case (24) all four terms in the right-hand side
of (36) vanish, so that the terms I and I I Ia in (14) do not contribute to the equation for the functional Ψ.

By combining the above considerations we obtain from (14) the following equation for the
functional Ψ:

ih̄∂tΨ =
∫

dx
√

g

(
h̄2

2
g00

g
δ2

δφ(x)2 −
1
2

gij∂iφ(x)∂jφ(x) + V(φ)

)
Ψ− i

4
Tr
{

Φ(x)[ω0, ΨΣ]
}

. (39)

We see that the first three terms in the right hand side reproduce the canonical Hamiltonian operator
in the functional derivative Schrödinger Equation (1). However, the last term, which does not vanish
in arbitrary non-static space-times where ω0 6= 0, still cannot be expressed in terms of Ψ alone. For
this reason, we will treat static space-times with ω0 = 0 and non-static ones with ω0 6= 0 separately.
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4. Static Space-Times with ω0 = 0

In static space-times, when ω0 = 0, Equation (39) coincides with the canonical functional
derivative Schrödinger Equation (1). Thus the latter is derived from the precanonical Schrödinger
equation as the limiting case corresponding to (24). In this case, we can also specify the functional
Ξ([ΨΣ(x)], x̌) in (33) by combining the observations presented above together and noticing that the
relation (33) is valid at any given point x. This is possible only if the functional Ψ is the continual
product of identical terms at all points x, namely,

Ψ ∼ Tr
{

∏
x

e−iφ(x)γi∂iφ(x)/κγ0ΨΣ(φ(x), x, t)
}
|κ 7→γ0δ(0)/

√
g

, (40)

where ∼means an equality up to a normalization factor which includes κ and
√

h.
The formal continual product expression in (40) can be understood as the multidimensional

product integral [118,119]

Ψ ∼ Tr
{
P
x

e−iφ(x)γi(x)∂iφ(x)/κγ0ΨΣ(φ(x), x, t)
}
| 1
κ 7→γ0

√
hdx

, (41)

where the notation of the product integral of matrix-valued functions F(x) as proposed by R. Gill [120]
(and implemented in the LATEX package prodint) is used

P
x

eF(x)dx = P
x

(
1 + F(x)dx

)
. (42)

The expression in (41) generalizes a similar result obtained in flat space-time earlier [101]. The only
difference is that in curved space-time the spatial integration measure dx is replaced by the invariant
one
√

hdx and the Dirac matrices in static space-times are x-dependent.
In (1 + 1)-dimensional space-time, the product integral above is given by the well known

path-ordered exponential, or the Peano–Baker series (also known as the Dyson series in the context
of perturbative QFT and the path-ordered phase related to the Wilson loop in gauge theory),
cf. Equation (55) below. A multidimensional generalization is briefly discussed in the books [118,119]
and probably needs further refinement. However, in our case, instead of defining the product
integral of arbitrary non-commutative matrices, we need only the trace of the product integral of
Clifford-algebra valued functions. This significantly simplifies the task of defining the expression (41)
mathematically. For example, in the one-dimensional case, the taking of the trace of each of the
terms in the series expansion of the ordered exponential in (55)) implies that the matrices under the
integrals in the series expansion of the trace of product integral are multiplied in the cycling permuted
way, which can be generalized to the multidimensional case, rather than a time-ordered one, which
implies a one-parameter ordering whose multidimensional generalization is problematic. Then, if the
corresponding limit exists,

Tr P
x∈V

eF(x)dx := lim
N→∞

1
N!

Tr ∑
P(N)

eF(x1)∆x1 eF(x2)∆x2 ...eF(xN)∆xN , (43)

where P(N) denotes all permutations of (1, 2, ..., N), the volume of integration V 3 x is partitioned into
N small sub-volumes ∆x1, ..., ∆xN whose volumes are taken to zero as N → ∞, and F(xi) denotes the
matrix F at a point xi ∈ ∆xi. The existence of the limit in (43) and its independence on the partitioning
of V into N → ∞ sub-volumes ∆xi and the choice of points xi within the subvolumes ∆xi imply a
certain continuity of the dependence of the matrix elements of F of x, similarly to the definition of the
Riemann integral of functions.
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Now, by taking into account the fact that some of the terms in (36) are proven to not contribute to
the time evolution of Ψ we can write the effective equation for the time evolution of ΨΣ which contains
only the terms which do contribute to the time evolution of the wave functional Ψ:

i∂tΨΣ = γ0

(
−κ

2 ∂φφ + iγi∂iφ(x)∂φ + 1
κV(φ)

)
ΨΣ. (44)

By substituting ΨΣ in the form
ΨΣ = e+

i
κ φ(x)γi∂iφ(x)ΦΣ, (45)

we obtain
i∂tΨΣ = e+

i
κ φ(x)γi∂iφ(x)i∂tΦΣ (46)

in the left hand side of (44) and

γ0e+
i
κ φ(x)γi∂iφ(x)

(
−κ

2
∂φφ −

1
2κ gij(x)∂iφ(x)∂jφ(x) +

1
κV(φ)

)
ΦΣ (47)

in the right hand side. Hence, ΦΣ obeys

i∂tΦΣ = γ̃0(x)
(
−κ

2
∂φφ −

1
2κ gij(x)∂iφ(x)∂jφ(x) +

1
κV(φ)

)
ΦΣ, (48)

where
γ̃µ(x) := e−

i
κ φ(x)γi∂iφ(x)γµ(x)e+

i
κ φ(x)γi∂iφ(x). (49)

Obviously, { γ̃µ(x) γ̃ν(x)}+ = {γµ(x)γν(x)}+ = 2gµν(x), hence the transformation in (49) is a local
Clifford algebra automorphism.

From Equation (48) one can conclude that ΦΣ can be written in the form

ΦΣ = (1 + γ0)Φ×Σ , (50)

where Φ×Σ is a scalar function such that

i∂tΦ×Σ =
√

g00

(
−κ

2
∂φφ −

1
2κ gij(x)∂iφ(x)∂jφ(x) +

1
κV(φ)

)
Φ×Σ . (51)

In terms of the scalar function Φ×Σ Equation (41) takes the form

Ψ ∼ Tr
{
P
x

(
1 + γ0

)
Φ×Σ (φ(x), x, t)

}
| 1
κ 7→γ0

√
hdx
∼P

x
Φ×Σ (φ(x), x, t)| 1

κ 7→
√

hdx
, (52)

where we use the projector property of the matrix 1
2

(
1 + γ0

)
. Obviously, the multidimensional product

integral of the scalar function Φ×Σ is defined without any complications related to the definition of the
product integral of non-commutative matrix functions.

5. Non-Static Space-Times with ω0 6= 0

In non-static space-times, when ω0 6= 0, the last term in (39) does not allow us to obtain a close
equation for the functional Ψ. In order to find a way out, let us write the effective equation similar
to (44) which governs the time evolution of ΨΣ, with the term I and the spatial part of the term
I I Ia in (14) removed, as they are proven in (36) to have no contribution to the time evolution of the
functional Ψ:

i∂tΨΣ = γ0

(
−κ

2
∂φφ + iγi∂iφ(x)∂φ +

1
κV(φ))

)
ΨΣ − i[ω0, ΨΣ] =: Ĥ0 − i[ω0, ΨΣ]. (53)
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We first note that by transforming ΨΣ as follows:

ΨΣ := UΨ′ΣU−1, (54)

where

U(x, t) = T e−
∫ t

0 ds ω0(x,s) ⇔
tP

t=0
(1−ω0(x, s)ds)

:= 1−
∫ t

0
dt1 ω0(x, t1) +

∫ t

0
dt1

∫ t1

0
dt2 ω0(x, t1)ω0(x, t2)

−
∫ t

0
dt1

∫ t1

0
dt2

∫ t2

0
dt3 ω0(x, t1)ω0(x, t2)ω0(x, t3) + ...

(55)

is the tranformation determined by the time-ordered exponential, we obtain

i∂tΨ = −i[ω0, Ψ] + Ui∂tΨ′ΣU−1. (56)

Then
i∂tΨ′Σ = U−1Ĥ0ΨΣU = Ĥ′0Ψ′, (57)

where
Ψ′ := U−1ΨΣU, Ĥ′0 := U−1Ĥ0U. (58)

As the transformation U affects only the terms with γµ-s,

Ĥ0
′ = γ′0

(
−κ

2
∂φφ + iγ′ i∂iφ(x)∂φ +

1
κV(φ)

)
, (59)

where
γ′µ(x, t) := U−1(x, t)γµ(x)U(x, t). (60)

It is easy to check that
γ′µγ′ν + γ′νγ′µ = 2U−1gµνU = 2gµν. (61)

Hence the U-transformation is just an automorphism of the Clifford algebra of space-time given by the
nonlocal transformation defined by the time-ordered exponential (55).

Using (57) one can write

i∂tΨ = Tr
∫

dx
δΨ

δΨ′TΣ(x)
i∂tΨ′Σ (62)

= Tr
∫

dx
δΨ

δΨ′TΣ(x)
Ĥ′0Ψ′Σ. (63)

By comparing it with (7) and (8) we conclude that the results in static space-times with ω0 = 0 are
generalized to non-static space-times with ω0 6= 0 using the the U-transformed (primed) quantities:

γµ → γ′µ = U−1γµU, (64)

ΨΣ → Ψ′Σ = U−1ΨΣU, (65)

Ĥ0Σ → Ĥ′0Σ = U−1H0ΣU (66)

with U given by the time-ordered exponential in (55). Then, the wave functional (41) rewritten in terms
of the primed objects,

Ψ ∼ Tr
{
P
x

e−iφ(x)γ′ i(x,t)∂iφ(x)/κγ0Ψ′Σ(φ(x), x, t)
}
|γ0

1
κ 7→
√

hdx
, (67)
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represents, up to a normalization factor, the Schrödinger wave functional in terms of precanonical
wave functions in an arbitrary curved space-time, and it satisfies (39) without the last term, i.e.,
the functional derivative Schrödinger Equation (1). Using the same steps as in the static case, this
complicated expression can be transformed to the product integral of the scalar function Φ×Σ ,

Ψ ∼P
x

Φ×Σ (φ(x), x, t)| 1
κ 7→
√

hdx
, (68)

the only difference being the metric tensor components in Equation (51) defining Φ×Σ can now be also
time-dependent.

In summary, we have demonstrated that in curved space-times the canonical functional derivative
Schrödinger Equation (1) and the explicit product integral Formula (41) relating the Schrödinger wave
functional with the Clifford-valued precanonical wave function can be derived from the precanonical
Schrödinger Equation (2) in the singular limiting case when γ0κ is replaced by δ(0)/

√
h, a regularized

invariant delta-function at coinciding spatial points. A natural interpretation of the latter is that it
represents the UV cutoff of the total volume of the momentum space which one has to introduce
in order to make sense of the second variational derivative at coinciding points in Equation (1). As
in the previously considered case of quantum fields in flat space-time [98,100,101], the standard
unregularized formulation of QFT in curved space-time in functional Schrödinger representation thus
emerges from the precanonical description as a singular limiting case.

6. Conclusions

We explored a connection between the description of an interacting quantum scalar field in curved
space-time derived from precanonical quantization and the standard description in the functional
Schrödinger picture resulting from the canonical quantization.

We have demonstrated that the functional derivative Schrödinger Equation (1) can be derived
from the partial derivative precanonical Schrödinger Equation (2) in the limiting case (24). Namely, the
restriction of the precanonical Schrödinger equation to the subspace Σ representing a field configuration
at time t, Equation (8), governs the time evolution of the wave functional according to (7) and (14).
Then, in the limiting case (24),

(i) the potential in (1) is reproduced by the term V in (14);
(ii) The second functional derivative term in (1) is reproduced by the term IV in (14) up to two

additional terms which have no obvious counterpart in (1);
(iii) The required cancellation of one of those additional terms with a similar term I I in (14), which

also has no obvious counterpart in (1), leads to the expression of the Schrödinger wave functional
as the trace of the continuous product of restricted precanonical wave functions (40) over all
spatial points, which we later interpret as a multidimensional product integral, Equation (41);

(iv) The expression of the wave functional in terms of precanonical wave functions substituted into
the second additional term mentioned in (ii) reproduces the second term in the right-hand side
of (1), which is responsible for non-ultralocality;

(v) The expression of the wave functional in terms of precanonical wave functions obtained in (iii)
also implies that under the boundary conditions of vanishing fields φ(x) and ΨΣ(φ(x), x, t) at
the spatial infinity the terms I and I I Ia in (14) do not contribute to the canonical Schrödinger
Equation (1);

(vi) As a consequence of (i)–(v), in static space-times with ω0 = 0, the functional Schrödinger
Equation (1) is thus derived from the precanonical Schrödinger Equation (2) and the Schrödinger
wave functional is expressed as the trace of the product integral of precanonical wave functions;

(vii) In non-static space-times with ω0 6= 0, the transformation (55) absorbs the contribution of the
term I I Ib in (14) thus allowing us again to obtain the functional Schrödinger Equation (1) from
the precanonical Schrödinger Equation (2) and to express the Schrödinger wave functional in
terms of transformed precanonical wave functions;
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(viii) Both in static and non-static space-times, the Schrödinger wave functional can be represented as
the product integral of scalar transforms of the restricted precanonical wave function, which are
derived from the precanonical wave function by a series of transformations in Sections 4 and 5
and satisfy Equation (51).

The result of this paper generalizes to arbitrary space-times (with g0i = 0) the statement of our
previous papers [98,100,101] that the standard functional Schrödinger representation of QFT is a certain
singular limiting case of the theory of quantum fields obtained by precanonical quantization.

The symbolic or singular nature of the limiting transition from precanonical quantization to the
standard formulation of QFT in functional Schrödinger representation is related to the fact that the
latter, due to the presence of the second functional derivative at coinciding points, is not a well-defined
theory unless a regularization is introduced. The regularization typically introduces a UV cutoff scale
as an additional element of the theory removed by a subsequent renormalization. In precanonical
quantization, the ultraviolet scale κ appears as an inherent element quantization, which, unlike
other theories introducing an ultraviolet fundamental length or cutoff, does not alter the relativistic
space-time at smaller scales.

This rises a question: is κ a fundamental scale or an auxiliary element of precanonical quantization
of fields. On the one hand, in free scalar theory, κ disappears from the observable characteristics of
a quantum field because the spectrum of DW Hamiltonian operator is proportional to κ. However,
in interacting scalar theory, powers of κ enter in the perturbative corrections to the spectrum of DW
Hamiltonian Ĥ thus suggesting that κ can be renormalized away by absorbing the expressions with
the bare mass, bare coupling constant and κ in the “observed mass”. On the other hand, an estimation
of the mass gap in (3 + 1)-dimensional quantum pure SU(2) gauge theory derived by precanonical
quantization: ∆m & 0.86(g2κ)1/3 [97] (g is the bare gauge coupling constant) and a naive estimation
of the cosmological constant based on the precanonically quantized pure Einstein gravity [76] seem
to consistently point to the very rough estimation of the scale of κ at ∼102 MeV, i.e., well below the
Planck scale. We hope to clarify this surprising fact and the nature of κ in our future work.
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82. Hořava, P. On a covariant Hamilton-Jacobi framework for the Einstein-Maxwell theory. Class. Quant. Grav.

1991, 8, 2069–2084.
83. Peres, A. On Cauchy’s problem in general relativity—II. Nuovo Cim. 1962, 26, 53–62.
84. Rovelli, C. Quantum Gravity; Cambridge Univeraity Press: Cambridge, UK, 2004.
85. Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK,

2007.
86. Kanatchikov, I.V. Ehrenfest theorem in precanonical quantization. J. Geom. Symmetry Phys. 2015, 37, 43–66.
87. Finkelstein, D.; Jauch, J.M.; Schiminovich, S.; Speiser, D. Foundations of quaternion quantum mechanics.

J. Math. Phys. 1962, 3, 207–220.
88. Finkelstein, D.R.; Galiautdinov, A. Clifford algebra as quantum language. J. Math. Phys. 2001, 42, 1489.
89. Adler, S.L. Quaternionic Quantum Mechanics and Quantum Fields; Oxford University Press: New York, NY,

USA, 1995.
90. Horwitz, L. Hypercomplex quantum mechanics. Found. Phys. 1996, 26, 851–862.
91. Khrennikov, A. Contextual Approach to Quantum Formalism; Springer: New York, NY, USA, 2009.
92. Hassanabadi, H.; Sobhani, H.; Banerjee, A. Relativistic scattering of fermions in quaternionic quantum

mechanics. Eur. Phys. J. C 2017, 77, 581.
93. Moretti, V.; Oppio, M. Quantum theory in quaternionic Hilbert space: How Poincaré symmetry reduces the

theory to the standard complex one. Rev. Math. Phys. 2018, 31, 1950013.
94. Bolokhov, P.A. Quaternionic wave function. Int. J. Mod. Phys. A 2019, 34, 1950001.
95. Procopio, L.M.; Rozema, L.A.; Wong, Z.J.; Hamel, D.R.; O’Brien, K.; Zhang, X.; Dakić, B.; Walther, P.
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