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Abstract: In this paper, we present and study a new four-parameter lifetime distribution obtained by
the combination of the so-called type II Topp–Leone-G and transmuted-G families and the inverted
Kumaraswamy distribution. By construction, the new distribution enjoys nice flexible properties
and covers some well-known distributions which have already proven themselves in statistical
applications, including some extensions of the Bur XII distribution. We first present the main functions
related to the new distribution, with discussions on their shapes. In particular, we show that the
related probability density function is left, right skewed, near symmetrical and reverse J shaped,
with a notable difference regarding the right tailed, illustrating the flexibility of the distribution. Then,
the related model is displayed, with the estimation of the parameters by the maximum likelihood
method and the consideration of two practical data sets. We show that the proposed model is the
best one in terms of standard model selection criteria, including Akaike information and Bayesian
information criteria, and goodness of fit tests against three well-established competitors. Then, for the
new model, the theoretical background on the maximum likelihood method is given, with numerical
guaranties of the efficiency of the estimates obtained via a simulation study. Finally, the main
mathematical properties of the new distribution are discussed, including asymptotic results, quantile
function, Bowley skewness and Moors kurtosis, mixture representations for the probability density
and cumulative density functions, ordinary moments, incomplete moments, probability weighted
moments, stress-strength reliability and order statistics.

Keywords: type II Topp–Leone distribution; inverted Kumaraswamy distribution; estimation;
simulation; data analysis.

MSC: 60E05; 62E15; 62F10

1. Introduction

The detailed explanation of a lifetime phenomenon often follows from a deep data analysis
based on a well-chosen statistical model. Since the “universal best model” remains an Utopian
idea, a lot of effort has been put into the construction of models with different features, involving
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the development of new probability distributions. The mathematical techniques for creating new
probability distributions are numerous. A common technique is to introduce one or several additional
tuning parameters to a standard probability distribution, with the aim to improve it, in the theoretical
and practical sense. We refer the reader to the following families of distributions: the exponentiated-G
(or exp-G) family [1], the beta-G family [2], the Marshall-Olkin-G family [3], the gamma-G family [4],
the Kumaraswamy-G family [5], the type I half-logistic-G family [6], the transmuted-G family [7],
the odd power Cauchy family [8], the exponentiated generalised Topp–Leone-G family [9], the type II
Topp–Leone-G family [10] and the type II general inverse exponential-G family [11].

Let us now show some basics of the type II Topp–Leone-G family of distributions introduced
by [10]. The corresponding cumulative distribution function (cdf) and probability density function
(pdf) are, respectively, given by

F(x; α, ξ) = 1−
{

1− [G(x; ξ)]2
}α

, x ∈ R

and
f (x; α, ξ) = 2αg(x; ξ)G(x; ξ)

{
1− [G(x; ξ)]2

}α−1
, x ∈ R,

where α > 0, G(x; ξ) denotes a baseline cdf of a continuous distribution which may depend on
a parameter vector ξ and g(x; ξ) denotes the corresponding pdf. In addition to the special cases
presented in [10], recent studies have highlighted the qualities of this family, and its ability to fit data
sets by considering new baseline cdf G(x; ξ). See, for instance, [12,13] with the consideration of the
generalised Rayleigh and Rayleigh distributions as baselines, respectively. There was, however, an area
that needed to be explored by considering other kinds of G(x; ξ), which constituted the first piece of
the idea of this study.

On the other side of things, with the aim to analyze lifetime data sets at their best, a new
two-parameter distribution was introduced by [14]. It is called the inverted Kumaraswamy distribution.
The corresponding cdf and pdf are, respectively, given by

G∗(x; a, b) =
[
1− (1 + x)−a]b , x > 0

and
g∗(x; a, b) = ab(1 + x)−a−1 [1− (1 + x)−a]b−1 , x > 0,

where a, b > 0. This distribution, literally constructed from the inverse of a random variable following
the so-called Kumaraswamy distribution minus one (see [15]), has been proven to be very rich.
In particular, deep connexions exist with the so-called Lomax, inverted beta, log-logistic, inverted
Weibull and generalised exponential distributions. However, a slight lack of flexibility can be seen
in [14] (Figure 2): the hazard rate function seems to be limited in terms of curvatures (no J shape,
no upside-down bathtub shape. . . ). An immediate, elegant way to solve this problem is to extend it by
using the simple transmuted technique proposed by [7]. Hence, the corresponding cdf and pdf are,
respectively, given by

G(x; a, b, λ) = G∗(x; a, b) [1 + λ− λG∗(x; a, b)]

=
[
1− (1 + x)−a]b

{
1 + λ− λ

[
1− (1 + x)−a]b

}
and

g(x; a, b, λ) = g∗(x; a, b) [1 + λ− 2λG∗(x; a, b)]

= ab(1 + x)−a−1 [1− (1 + x)−a]b−1
{

1 + λ− 2λ
[
1− (1 + x)−a]b

}
,



Symmetry 2019, 11, 1459 3 of 21

with λ ∈ [−1, 1]. To the best of our knowledge, this remains a new three-parameter lifetime distribution
in the literature. This constitutes the last piece of idea of the study.

That is, we introduce the type II Topp–Leone (transmuted) inverted Kumaraswamy (TIITLIK)
distribution defined by combining the type II Topp–Leone-G family and the transmuted inverted
Kumaraswamy distribution. We aim to offer a new ultra flexible four-parameter lifetime distribution,
combining the qualities of these parents distributions, with a high potential of applicability.
New statistical models for sophisticated data sets are the perspectives.

The plan of the paper is the following. In Section 2, we introduce the TIITLIK distribution,
its main functions and some graphics illustrating the behaviour of the corresponding probability
density and hazard rate functions. In Section 3, by the means of two practical data sets and the
consideration of the maximum likelihood method, we show that the TIITLIK distribution fits better
than well-established and modern adversary models. The details on the maximum likelihood method
in the context of the TIITLIK distribution are given in Section 4, including a simulation study to show
the nice numerical performances of the estimates. Section 5 presents the mathematical properties of
the TIITLIK distribution, including asymptotes and critical points of the corresponding pdf and hrf,
the quantile function, mixture representations, ordinary and central moments, incomplete moments,
weighted probability moments, stress-strength reliability parameter and order statistics. Finally, some
concluding remarks are given in Section 6.

2. TIITLIK Distribution

By adopting the notations above, the cdf of the TIITLIK distribution is given by

F(x; α, a, b, λ) = 1−
{

1− [G(x; a, b, λ)]2
}α

= 1−
{

1−
[
1− (1 + x)−a]2b

{
1 + λ− λ

[
1− (1 + x)−a]b

}2
}α

, x > 0, (1)

with α, a, b > 0 and λ ∈ [−1, 1]. To illustrate the richness of this cdf, some special cases are described
below. When α = 1, we get the cdf of the two exponentiated, transmuted, inverted Kumaraswamy
distributions with parameters a, b and λ. When λ = 0, we get the cdf of the Kumaraswamy inverted
Kumaraswamy distribution with parameters α, a and 2b. When α = 1 and λ = 0, we get the cdf of the
inverted Kumaraswamy distribution with parameters a and 2b. All these special cases contain several
notable special cases themselves.

The survival function (sf) of the TIITLIK distribution is given by

R(x; α, a, b, λ) = 1− F(x; α, a, b, λ)

=

{
1−

[
1− (1 + x)−a]2b

{
1 + λ− λ

[
1− (1 + x)−a]b

}2
}α

, x > 0.

Upon differentiation of F(x; α, a, b, λ), the corresponding pdf is given by

f (x; α, a, b, λ) = 2αg(x; a, b, λ)G(x; a, b, λ)
{

1− [G(x; a, b, λ)]2
}α−1

= 2αab(1 + x)−a−1 [1− (1 + x)−a]2b−1
{

1 + λ− 2λ
[
1− (1 + x)−a]b

}
×{

1 + λ− λ
[
1− (1 + x)−a]b

}{
1−

[
1− (1 + x)−a]2b

{
1 + λ− λ

[
1− (1 + x)−a]b

}2
}α−1

,

x > 0. (2)
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The corresponding hazard rate function (hrf) and cumulative hazard rate function (chrf) are,
respectively, given by

h(x; α, a, b, λ) =
f (x; α, a, b, λ)

R(x; α, a, b, λ)

= 2αab(1 + x)−a−1 [1− (1 + x)−a]2b−1
{

1 + λ− 2λ
[
1− (1 + x)−a]b

}
×{

1 + λ− λ
[
1− (1 + x)−a]b

}{
1−

[
1− (1 + x)−a]2b

{
1 + λ− λ

[
1− (1 + x)−a]b

}2
}−1

,

x > 0

and

H(x; α, a, b, λ) = − log[R(x; α, a, b, λ)]

= −α log
{

1−
[
1− (1 + x)−a]2b

{
1 + λ− λ

[
1− (1 + x)−a]2b

}}
, x > 0.

Figure 1 presents plots of the pdf and hrf of the TIITLIK distribution for fixed values of α, a, b
and λ, showing a great diversity in terms of curvature. In particular, the plots of the pdf is left, right
skewed, near symmetrical and reverse J shaped, with a notable difference on the right tailed-ness.
The plots of the hrf are increasing, decreasing and upside-down bathtub (contrary to the former
inverted Kumaraswamy distribution; see [14] (Figure 2)). These facts ensure a great ability of the
related TIITLIK model to fit a wide variety of practical data sets. This aspect will be developed in
detail in Section 3.
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Figure 1. Plots of some probability density functions (pdfs) and hazard rate functions (hrfs) of the type
II Topp–Leone (transmuted) inverted Kumaraswamy (TIITLIK) distribution.

3. Applications

We claim that the TIITLIK distribution has a high potential of applicability. In order to illustrate
this claim, we analysed two practical data sets, with fair comparison to useful models in the literature,
and discussions. Thus, we compared the TIHLIK distribution with the inverted Kumaraswamy (IK)
distribution [14], generalised inverted Kumaraswamy (GIK) distribution by [16], Marshall–Olkin
extended inverted Kumaraswamy (MOEIK) distribution [17] and Topp–Leone generalised inverted
Kumaraswamy (TLGIK) distribution [18]. We refer to these papers for the exact definitions of the
corresponding pdfs.
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We estimated the parameters of the corresponding models by the maximum likelihood method.
The estimates, called maximum likelihood estimates (MLEs), were computed using R software with
the library AdequacyModel, in which the function goodness.fit was used. We refer to Section 4 for
the definitions and theoretical background of the MLEs in the context of the TIITLIK model.

The following statistical measures were calculated: log-likelihood ( ˆ̀), Akaike information
criterion (AIC), Bayesian information criterion (BIC), Anderson–Darling statistic (A*) and Cramer–von
Mises statistic (W*). The lower the values of these criteria, the better the fit. We also provide the value
for the Kolmogorov–Smirnov (KS) statistic and its p-value.

The first data set (data set 1): The first data set, given in [19], represents the annual maximum
precipitation (in inches) for one rain gauge in Fort Collins (Colorado, USA) from 1900 through 1999.
The heading of the data is as follows: 239, 232, 434, 85, 302, 174. . .

The second data set (data set 2): The second data set consists of annual maximum daily
precipitation (in unit: mm) at Busan(Korea) from 1904 through 2011 period. The data set has recently
been used by [20]. The heading of the data is as follows: 24.8, 140.9, 54.1, 153.5, 47.9, 165.5. . .

Some descriptives statistics of these two data sets are given in Table 1. The TTT plots and boxplots
for data sets 1 and 2 are shown in Figures 2 and 3, respectively. From the both TTT plots, we see
a concave curve, indicating that the hrf behind the data is possibly increasing. This specificity also
belongs to the hrf for the TIITLIK distribution for some values, justifying its consideration for these
data sets. Further detail on the TTT plots can be found in [21]. MLEs and their standard errors
(in parentheses) are presented in Tables 2 and 3 for data sets 1 and 2, respectively. The − ˆ̀, AIC ,
BIC, W*, A*, KS and p-value values are provided in Tables 4 and 5 for data sets 1 and 2, respectively.
In all cases, we see that the TIITLIK is the best. To illustrate this numerical fact with graphics,
Figures 4 and 5 present the empirical and estimated TIITLIK, hrfs and chrfs for data sets 1 and 2,
respectively. Also, Figures 6 and 7 show the estimated pdfs for data sets 1 and 2, respectively. For these
four last figures, nice fits are observed for the TIITLIK distribution, attesting its applicability for these
data sets.

Table 1. A brief statistical description of data sets 1 and 2.

n Mean Median Standard Deviation Skewness Kurtosis

Data set 1 100 175.67 158 83.17 1.32 1.71
Data set 2 105 144.6 131.6 66.18 0.93 0.73
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Figure 2. TTT plot and box plot for data set 1.
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Figure 3. TTT plot and box plot for data set 2.

Table 2. Maximum likelihoods (MLEs) with their standard errors for data set 1.

Model α a b λ β θ

TIITLIK 6.8935 0.7683 86.5351 0.9847 - -
(1.0629) (0.1939) (2.2302) (0.3637) - -

TLGIK 1.0146 - - 1.3053 89.8279 56.2739
(3.6755) - - (4.6934) (4.1124) (3.8161)

MOEIK 2.5225 - - 566.2283 576.4857 -
(0.1234) - - (25.8570) (27.8788) -

GIK 722.6636 - - - 0.5796 2.3328
(9.2161) - - - (1.3594) (5.4708)

IK - 0.7465 32.1198 - - -
- (0.0409) (6.0239) - - -

Table 3. MLEs with their standard errors for data set 2.

Model α a b λ β θ

TIITLIK 35.0662 0.6705 30.7472 −0.7928 - -
(3.0642) (0.1709) (1.1182) (0.1795) - -

TLGIK 1.8475 - - 0.5927 82.5348 6.8899
(0.5184) - - (0.1581) (7.0094) (7.3323)

MOEIK 1.8704 - - 99.9520 79.2607 -
(0.0934) - - (5.5420) (6.7107) -

GIK 351.3337 - - - 0.6904 1.8419
(6.0827) - - - (3.1515) (8.3987)

IK - 1.1921 241.3032 - - -
- (0.0554) (8.3953) - - -

Table 4. Statistical measures for data set 1.

Model − ˆ̀ AIC BIC W* A* KS p-Value (KS)

TIITLIK 565.9951 1139.9900 1150.4110 0.0377 0.2893 0.0458 0.9847
TLGIK 567.5158 1143.0320 1153.4520 0.0644 0.4290 0.0519 0.9502
MOEIK 580.6865 1167.3730 1175.1890 0.0424 0.3156 0.1544 0.0169

GIK 593.7943 1193.5890 1201.4040 0.0472 0.3960 0.2024 0.0005
IK 644.0206 1292.0410 1297.2520 0.0410 0.3652 0.3018 0.00000002
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Table 5. Statistical measures for data set 2.

Model − ˆ̀ AIC BIC W* A* KS p-Value (KS)

TIITLIK 582.0684 1172.1370 1182.7530 0.1458 0.8300 0.0821 0.5000
TLGIK 600.0486 1208.0970 1218.7130 0.5001 2.8905 0.1202 0.0958
MOEIK 610.8292 1227.6580 1235.6200 0.1624 0.9319 0.2033 0.0003

GIK 616.0245 1238.0490 1246.0110 0.5327 3.0846 0.1999 0.0004
IK 620.0272 1244.0540 1249.3620 0.4794 2.7732 0.2147 0.0001
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Figure 4. Plots of the empirical and estimated TIITLIK hrfs and the empirical and estimated TIITLIK
chrfs for data set 1.
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Figure 5. Pots of the empirical and estimated TIITLIK hrfs and the empirical and estimated TIITLIK
chrfs for data set 2.
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Figure 7. Plots of the estimated pdfs and cdfs for data set 2.

4. On the MLEs of the TIITLIK Model

Here, we discuss the definitions and the convergence properties of the MLEs of the TIITLIK model
used in Section 3.

4.1. Definition and Properties

Let x1, . . . , xn be n positive real numbers, all independent realisations of X.
Then, the log-likelihood function for Θ = (α, a, b, λ) is given by

`(Θ) =
n

∑
i=1

log [ f (xi; α, a, b, λ)] = n log(2) + n log(α) + n log(a) + n log(b)− (a + 1)
n

∑
i=1

log(1 + xi)

+ (2b− 1)
n

∑
i=1

log
[
1− (1 + xi)

−a]+ n

∑
i=1

log
{

1 + λ− 2λ
[
1− (1 + xi)

−a]b}
+

n

∑
i=1

log
{

1 + λ− λ
[
1− (1 + xi)

−a]b}
+ (α− 1)

n

∑
i=1

log
{

1−
[
1− (1 + xi)

−a]2b
{

1 + λ− λ
[
1− (1 + xi)

−a]b}2
}

.

The vector of the MLEs of Θ, say Θ̂ = (α̂, â, b̂, λ̂), are defined as the arguments of the maxima of
`(Θ) according to Θ. Thus, for the TIITLIK model, α̂, â, b̂ and λ̂ can be determined as the simultaneous
solutions of the following non-linear equations: ∂`(Θ)/∂α = 0, ∂`(Θ)/∂a = 0, ∂`(Θ)/∂b = 0 and
∂`(Θ)/∂λ = 0, according to the parameters. Here, these partial derivatives can be expressed as follows:

∂`(Θ)

∂α
=

n
α
+

n

∑
i=1

log
{

1−
[
1− (1 + xi)

−a]2b
{

1 + λ− λ
[
1− (1 + xi)

−a]b}2
}

, (3)

∂`(Θ)

∂a
=

n
a
−

n

∑
i=1

log(1 + xi)

+ (2b− 1)
n

∑
i=1

(1 + xi)
−a log(1 + xi)

1− (1 + xi)−a − 2bλ
n

∑
i=1

(1 + xi)
−a log(1 + xi)[1− (1 + xi)

−a]b−1

1 + λ− 2λ [1− (1 + xi)−a]b

− bλ
n

∑
i=1

(1 + xi)
−a log(1 + xi)[1− (1 + xi)

−a]b−1

1 + λ− λ [1− (1 + xi)−a]b

+ 2b(α− 1)
n

∑
i=1

(1 + xi)
−a log(1 + xi)

[
1− (1 + xi)

−a]2b−1
{

1 + λ− λ
[
1− (1 + xi)

−a]b}
1− [1− (1 + xi)−a]2b

{
1 + λ− λ [1− (1 + xi)−a]b

}2 ×

[
λ
[
1− (1 + xi)

−a]b − {1 + λ− λ
[
1− (1 + xi)

−a]b}] ,
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∂`(Θ)

∂b
=

n
b
+ 2

n

∑
i=1

log
[
1− (1 + xi)

−a]− 2λ
n

∑
i=1

[1− (1 + xi)
−a]

b log[1− (1 + xi)
−a]

1 + λ− 2λ [1− (1 + xi)−a]b

− λ
n

∑
i=1

[1− (1 + xi)
−a]

b log[1− (1 + xi)
−a]

1 + λ− λ [1− (1 + xi)−a]b

+ 2(α− 1)
n

∑
i=1

[1− (1 + xi)
−a]

2b log[1− (1 + xi)
−a]
{

1 + λ− λ [1− (1 + xi)
−a]

b
}

1− [1− (1 + xi)−a]2b
{

1 + λ− λ [1− (1 + xi)−a]b
}2 ×

[
λ
[
1− (1 + xi)

−a]b −
{

1 + λ− λ
[
1− (1 + xi)

−a]b
}]

and

∂`(Θ)

∂λ
=

n

∑
i=1

1− 2 [1− (1 + xi)
−a]

b

1 + λ− 2λ [1− (1 + xi)−a]b
+

n

∑
i=1

1− [1− (1 + xi)
−a]

b

1 + λ− λ [1− (1 + xi)−a]b

− 2(α− 1)
n

∑
i=1

[1− (1 + xi)
−a]

2b
{

1− [1− (1 + xi)
−a]

b
}{

1 + λ− λ [1− (1 + xi)
−a]

b
}

1− [1− (1 + xi)−a]2b
{

1 + λ− λ [1− (1 + xi)−a]b
}2 .

One might notice that, thanks to (3), we have the following relation between the MLEs:

α̂ =

[
− 1

n

n

∑
i=1

log

{
1−

[
1− (1 + xi)

−â
]2b̂
{

1 + λ̂− λ̂
[
1− (1 + xi)

−â
]b̂
}2}]−1

.

Clearly, we have no analytical expression for the MLEs. However, nonlinear optimisation methods,
such as the quasi-Newton algorithm, can be used to have a precise numerical evaluation. Under some
regularity assumptions, when n is large, the sub adjacent distribution of Θ̂ is close to a multivariate
normal distribution N4(04, J(Θ̂)−1), where J(Θ̂) =

{
−∂2`(Θ)/∂r∂s

}
(r,s)∈{α,a,b,λ}2 |Θ=Θ̂, (the 4× 4

observed information matrix evaluated at Θ̂). Here, for the sake of space, we omit its expression.

4.2. Simulation

Next, in the context of the TIITLIK model, we came up with a numerical study to study the
behaviour of the MLEs and the behaviour of estimated survival and hazard rate functions defined
with these estimates. We generated N = 1000 random samples of size n = 30, 50 and 100 from X. Five
sets of the parameters were assigned. The MLEs and root mean square errors (RMSEs) of a, b, α and
λ were determined. Then, the estimates of sf and hrf at points x0 were also evaluated. We adopted
the notations: R̂(x0) = R(x0, α̂, â, b̂, λ̂) and ĥ(x0) = h(x0, α̂, â, b̂, λ̂) (we remind you that α̂, â, b̂ and λ̂

denote the MLEs of α, a, b and λ, respectively). The numerical results are documented in Tables 6–10.
Table 6 considers the set of parameters: (a = 0.5, b = 2, α = 2 and λ = 0.5); Table 7 considers: (a = 0.5,
b = 2, α = 2 and λ = 0.2); Table 8 considers: (a = 0.5, b = 2, α = 3 and λ = 0.5); Table 9 considers:
(a = 0.5, b = 2, α = 3 and λ = 0.2); and finally, Table 9 considers: (a = 1.2, b = 3, α = 2 and λ = 0.5).
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Table 6. MLEs, RMSEs and estimated sf and hrf of the TIITLIK distribution (a = 0.5, b = 2, α = 2 and
λ = 0.5).

Parameters ML RMSE R̂(x0) ĥ(x0)

n x0 = 3 x0 = 5 x0 = 7 x0 = 3 x0 = 5 x0 = 7

30

a 0.800 0.550
b 2.831 1.928
α 2.518 2.037 0.736 0.515 0.371 0.301 0.264 0.221
λ 0.078 0.616

50

a 0.770 0.460
b 2.610 1.586
α 2.172 1.590 0.743 0.540 0.406 0.285 0.240 0.197
λ 0.113 0.570

100

a 0.763 0.358
b 2.451 0.910
α 1.716 1.007 0.750 0.565 0.442 0.253 0.205 0.165
λ 0.184 0.469

Table 7. MLEs, RMSEs, and estimated sf and hrf of the TIITLIK distribution (a = 0.5, b = 2, α = 2 and
λ = 0.2).

Parameters ML RMSE R̂(x0) ĥ(x0)

n x0 = 3 x0 = 5 x0 = 7 x0 = 3 x0 = 5 x0 = 7

30

a 0.765 0.494
b 3.058 2.314
α 2.436 2.519 0.816 0.622 0.478 0.262 0.240 0.204
λ 0.053 0.466

50

a 0.641 0.283
b 2.374 1.232
α 2.088 1.538 0.823 0.665 0.546 0.253 0.218 0.176
λ 0.072 0.435

100

a 0.652 0.265
b 2.325 0.872
α 1.867 1.165 0.824 0.671 0.558 0.240 0.196 0.158
λ 0.071 0.390

Table 8. MLEs, RMSEs and estimated sf and hrf of the TIITLIK distribution (a = 0.5, b = 2, α = 3 and
λ = 0.5).

Parameters ML RMSE R̂(x0) ĥ(x0)

n x0 = 3 x0 = 5 x0 = 7 x0 = 3 x0 = 5 x0 = 7

30

a 0.879 0.644
b 3.113 2.796
α 3.104 2.303 0.591 0.324 0.190 0.423 0.372 0.309
λ 0.266 0.930

50

a 0.855 0.519
b 2.523 1.207
α 2.584 1.668 0.615 0.382 0.253 0.338 0.285 0.235
λ 0.065 0.595

100

a 0.836 0.443
b 2.507 1.081
α 2.404 1.495 0.651 0.426 0.294 0.314 0.265 0.218
λ 0.064 0.581



Symmetry 2019, 11, 1459 11 of 21

Table 9. MLEs, RMSEs and estimated sf and hrf of the TIITLIK distribution (a = 0.5, b = 2, α = 3 and
λ = 0.2).

Parameters ML RMSE R̂(x0) ĥ(x0)

n x0 = 3 x0 = 5 x0 = 7 x0 = 3 x0 = 5 x0 = 7

30

a 0.800 0.493
b 2.808 1.775
α 2.737 1.983 0.723 0.495 0.349 0.316 0.280 0.234
λ 0.044 0.482

50

a 0.767 0.446
b 2.623 1.453
α 2.521 1.85 0.728 0.513 0.374 0.313 0.268 0.221
λ 0.068 0.466

100

a 0.740 0.354
b 2.353 0.966
α 2.320 1.496 0.738 0.541 0.410 0.283 0.236 0.194
λ −0.00542 0.449

Table 10. MLEs, RMSEs and estimated sf and hrf of the TIITLIK distribution (a = 1.2, b = 3, α = 2 and
λ = 0.5).

Parameters ML RMSE R̂(x0) ĥ(x0)

n x0 = 3 x0 = 5 x0 = 7 x0 = 3 x0 = 5 x0 = 7

30

a 1.530 0.898
b 4.257 2.831
α 2.261 1.682 0.151 0.032 0.010 0.269 0.278 0.252
λ 0.705 0.958

50

a 1.504 0.778
b 3.945 2.433
α 2.068 1.486 0.191 0.052 0.020 0.265 0.257 0.229
λ 0.620 0.917

100

a 1.464 0.721
b 3.633 1.794
α 2.057 1.204 0.229 0.073 0.031 0.262 0.252 0.223
λ 0.481 0.439

From these numerical results, we observe that the RMSEs decrease as n increases in all situations.
The estimated sfs decrease when x0 increases in all situations. The estimated hrfs decrease when x0

increases in all situations. The estimated sfs increase as n increases in all situations. The estimated hrfs
decrease as n increases in all situations.

5. Mathematical Properties

After the practical aspect, this section is devoted to the main mathematical properties of the
TIITLIK distribution. Hereafter, we consider a random variable X following the TIITLIK distribution;
i.e., having the cdf given by (1) and the pdf given by (2).

5.1. Asymptotic Results and Critical Points

Some asymptotic results and critical points of the main functions of the TIITLIK distribution are
presented below. When x → 0, by using standard equivalence formulas, we get

F(x; α, a, b, λ) ∼ α(1 + λ)2a2bx2b, f (x; α, a, b, λ) ∼ 2bα(1 + λ)2a2bx2b−1
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and
h(x; α, a, b, λ) ∼ 2bα(1 + λ)2a2bx2b−1.

Hence, the limits of these functions mainly depend on b. When b ∈ (0, 1/2), we get f (x; α, a, b, λ)→
+∞; when b = 1/2, we obtain f (x; α, a, b, λ)→ α(1 + λ)2a; and when b > 1/2, we get f (x; α, a, b, λ)→
0. Similarly, when b ∈ (0, 1/2), we get h(x; α, a, b, λ)→ +∞; when b = 1/2, we obtain h(x; α, a, b, λ)→
α(1 + λ)2a; and when b > 1/2, we get h(x; α, a, b, λ)→ 0.

Now, when x → +∞, we get

F(x; α, a, b, λ) ∼ 1− 2αbαx−aα, f (x; α, a, b, λ) ∼ 2αbαaαx−aα−1

and
h(x; α, a, b, λ) ∼ aαx−1.

Hence, in all cases, we have f (x; α, a, b, λ)→ 0 and h(x; α, a, b, λ)→ 0. We would like to mention
that λ plays no role for these asymptotes.

Let us now study the critical points of f (x; α, a, b, λ) and h(x; α, a, b, λ). The critical point(s) of
f (x; α, a, b, λ) is(are) given by the solution(s) of the following equation: {log[ f (x; α, a, b, λ)]}′ = 0
(the derivative is according to x), where

log [ f (x; α, a, b, λ)] = log(2) + log(α) + log(a) + log(b)− (a + 1) log(1 + x)

+ (2b− 1) log
[
1− (1 + x)−a]+ log

{
1 + λ− 2λ

[
1− (1 + x)−a]b

}
+ log

{
1 + λ− λ

[
1− (1 + x)−a]b

}
+ (α− 1) log

{
1−

[
1− (1 + x)−a]2b

{
1 + λ− λ

[
1− (1 + x)−a]b

}2
}

.

Then, a critical point x0 of f (x; α, a, b, λ) satisfies the following equation:

− (a + 1)
1

1 + x0
+ a(2b− 1)

(1 + x0)
−a−1

1− (1 + x0)−a − 2abλ
(1 + x0)

−a−1 [1− (1 + x0)
−a]

b−1

1 + λ− 2λ [1− (1 + x0)−a]b
+

− abλ
(1 + x0)

−a−1 [1− (1 + x0)
−a]

b−1

1 + λ− λ [1− (1 + x0)−a]b

+ 2(α− 1)ab
(1 + x0)

−a−1 [1− (1 + x0)
−a]

2b−1
{

1 + λ− λ [1− (1 + x0)
−a]

b
}

1− [1− (1 + x0)−a]2b
{

1 + λ− λ [1− (1 + x0)−a]b
}2 ×

[
λ
[
1− (1 + x0)

−a]b −
{

1 + λ− λ
[
1− (1 + x0)

−a]b
}]

= 0.

The nature of x0 can be determined by investigating the sign of {log[ f (x; α, a, b, λ)]}′′ |x=x0 .
Due to the complexity of these equations, for given values of α, a, b and λ, one can make use of
mathematical software to determine x0: R, Mathematica, Matlab, etc.

Similarly, the critical point(s) of h(x; α, a, b, λ) is(are) given by the solution(s) of the following
equation: {log[h(x; α, a, b, λ)]}′ = 0. If such a critical point is denoted by x∗, it satisfies the
following equation:
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− (a + 1)
1

1 + x∗
+ a(2b− 1)

(1 + x∗)−a−1

1− (1 + x∗)−a − 2abλ
(1 + x∗)−a−1 [1− (1 + x∗)−a]

b−1

1 + λ− 2λ [1− (1 + x∗)−a]b
+

− abλ
(1 + x∗)−a−1 [1− (1 + x∗)−a]

b−1

1 + λ− λ [1− (1 + x∗)−a]b

− 2ab
(1 + x∗)−a−1 [1− (1 + x∗)−a]

2b−1
{

1 + λ− λ [1− (1 + x∗)−a]
b
}

1− [1− (1 + x∗)−a]2b
{

1 + λ− λ [1− (1 + x∗)−a]b
}2 ×

[
λ
[
1− (1 + x∗)−a]b −

{
1 + λ− λ

[
1− (1 + x∗)−a]b

}]
= 0.

Again, the nature of x∗ can be determined by investigating the sign of {log[h(x; α, a, b, λ)]}′′ |x=x∗ .

5.2. Quantile Function

The quantile function (qf) of X, say Q(y; α, a, b, λ), is characterised by the following equation:
Q(F(y; α, a, b, λ); α, a, b, λ) = F(Q(y; α, a, b, λ); α, a, b, λ) = y, y ∈ (0, 1). After some algebra, we obtain

Q(y; α, a, b, λ) =


1−


1 + λ−

√
1 + 2

[
1− 2

√
1− (1− y)1/α

]
λ + λ2

2λ


1/b

−1/a

− 1, y ∈ (0, 1).

Several quantities can be defined via the quantile function. For instance, the second quartile
(median) is given by M = Q(1/2; α, a, b, λ) and the inter-quantile range can be expressed as IQR =

Q(3/4; α, a, b, λ)−Q(1/4; α, a, b, λ).
Also, one can generate values from X by using the following result. Let xU = Q(U; α, a, b, λ),

where U denotes a random variable following the uniform distribution U (0, 1). Then, xU follows the
TIITLIK distribution. This result was used in Section 4.2.

5.3. Bowley Skewness and Moors Kurtosis

The Bowley skewness and Moors kurtosis of X are defined by, respectively,

S =
Q(6/8; α, a, b, λ) + Q(2/8; α, a, b, λ)− 2Q(4/8; α, a, b, λ)

IQR

and

K =
Q(7/8; α, a, b, λ)−Q(5/8; α, a, b, λ) + Q(3/8; α, a, b, λ)−Q(1/8; α, a, b, λ)

IQR
.

Here, S is a measure of the asymmetry of the TIITLIK distribution and K is a measure of
whether the TIITLIK distributions are heavy-tailed or light-tailed (relatively to a normal distribution).
These measures have the advantage of always being well-defined from the mathematical point of view,
contrary to other skewness and kurtosis measures (based on moments, for instance). More detail can
be found in [22] for the Bowley skewness and [23] for the Moors kurtosis.

The plots of S and K are presented in Figures 8–11 for α, a ∈ (1, 5), b = 5 and varying values for λ;
i.e., λ ∈ {−0.3,−0.8, 0.3, 0.8}. The impacts of the values of the parameters on S and K are significant;
we can see that S can be both positive and negative, with complex variations. Similarly, K either
increases or decreases, depending on the values of the parameters.
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Figure 8. Plots for Bowley skewness and Moors kurtosis for α, a ∈ (1, 5), b = 5 and λ = −0.3.
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5.4. Mixture Representations

The three following results present a mixture of representations of some functions of the TIITLIK
distribution in terms of Lomax distribution functions. In the proofs, for the sake of simplicity,
we adopted the notation introduced in Section 1.

Proposition 1. The following is a mixture representation for F(x; α, a, b, λ):

F(x; α, a, b, λ) = 1−
+∞

∑
k=0

2k

∑
`=0

+∞

∑
m=0

ϕk,`,mSm(x; a),

where ϕk,`,m = (α
k)(

2k
` )(

b(`+2k)
m )(−1)k+`+m(1 + λ)2k−`λ`, (with (v

u) = v(v − 1) . . . (v − u + 1)/u!) and
Sm(x; a) denote the sf of the Lomax distribution with parameters am and 1; i.e., Sm(x) = (1 + x)−am.

Proof. Since G(x; a, b, λ) ∈ (0, 1) (excluding the limit points), the generalised binomial formula gives

F(x; α, a, b, λ) = 1−
+∞

∑
k=0

(
α

k

)
(−1)k[G(x; a, b, λ)]2k.

Furthermore, it follows from the standard binomial formula that

[G(x; a, b, λ)]2k = [G∗(x; a, b)]2k [1 + λ− λG∗(x; a, b)]2k

=
2k

∑
`=0

(
2k
`

)
(1 + λ)2k−`(−λ)`[G∗(x; a, b)]`+2k.

Since (1 + x)−a ∈ (0, 1), by applying again the generalised binomial formula, we have

[G∗(x; a, b)]`+2k =
[
1− (1 + x)−a]b(`+2k)

=
+∞

∑
m=0

(
b(`+ 2k)

m

)
(−1)mSm(x; a).

We end the proof by combining the above equalities together.

Proposition 2. We have the following mixture representation for f (x; α, a, b, λ):

f (x; α, a, b, λ) =
+∞

∑
k=0

2k

∑
`=0

+∞

∑
m=1

ϕk,`,m fm(x; a),

where ϕk,`,m is defined as in Proposition 1 and fm(x; a) denotes the pdf of the Lomax distribution with parameters
am and 1, i.e., fm(x; a) = am(1 + x)−am−1.

Proof. The result follows from differentiation of the mixture expansion of F(x; α, a, b, λ) established in
Proposition 1.

Owing to Proposition 2, we can exploit the properties of the Lomax distribution to derive new
properties for the TIITLIK distribution. This methodology will be used in the next subsections.

Proposition 3. Let ξ be a positive integer. Then, we have the following mixture representation:

f (x; α, a, b, λ)F(x; α, a, b, λ)ξ =
ξ+1

∑
k=0

+∞

∑
`=0

2`

∑
m=0

+∞

∑
q=1

φ
(ξ)
k,`,m,q fq(x; a),
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where φ
(ξ)
k,`,m,q = (ξ+1

k )(αk
` )(

2`
m)(

b(m+2k)
q )(−1)k+`+m+q+1(ξ + 1)−1(1 + λ)2`−mλm and fq(x; a) denotes the

pdf of the Lomax distribution with parameters aq and 1.

Proof. We will investigate a mixture representation for F(x; α, a, b, λ)ξ+1 first, then consider the relation:
[F(x; α, a, b, λ)ξ+1]′ = (ξ + 1) f (x; α, a, b, λ)F(x; α, a, b, λ)ξ . Thus, it follows from the standard binomial
formula that

F(x; α, a, b, λ)ξ+1 =
{

1−
{

1− [G(x; a, b, λ)]2
}α}ξ+1

=
ξ+1

∑
k=0

(
ξ + 1

k

)
(−1)k

{
1− [G(x; a, b, λ)]2

}αk
.

Since G(x; a, b, λ) ∈ (0, 1), the generalised binomial formula gives

{
1− [G(x; a, b, λ)]2

}αk
=

+∞

∑
`=0

(
αk
`

)
(−1)`[G(x; a, b, λ)]2`.

Then, we should proceed as in the proof of Proposition 1. The standard binomial formula gives

[G(x; a, b, λ)]2` =
2`

∑
m=0

(
2`
m

)
(1 + λ)2`−m(−λ)m[G∗(x; a, b)]m+2`

and, by the generalised binomial formula using (1 + x)−a ∈ (0, 1), we get

[G∗(x; a, b)]m+2k =
+∞

∑
q=0

(
b(m + 2k)

q

)
(−1)qSq(x; a).

By putting the above equalities together, we get

F(x; α, a, b, λ)ξ+1 =
ξ+1

∑
k=0

+∞

∑
`=0

2`

∑
m=0

+∞

∑
q=0

ψ
(ξ)
k,`,m,qSq(x; a),

where ψ
(ξ)
k,`,m,q = (ξ+1

k )(αk
` )(

2`
m)(

b(m+2k)
q )(−1)k+`+m+q(1 + λ)2`−mλm. Upon differentiation of this series

expansion, we get

f (x; α, a, b, λ)F(x; α, a, b, λ)ξ =
ξ+1

∑
k=0

+∞

∑
`=0

2`

∑
m=0

+∞

∑
q=1

φ
(ξ)
k,`,m,q fq(x; a),

where φ
(ξ)
k,`,m,q = −(ξ + 1)−1ψ

(ξ)
k,`,m,q, which is the desired result.

5.5. The Ordinary and Central Moments

Let r be a positive integer. Then, the r-th moment of X, i.e., µ′r = E(Xr), exists if, and only if,
aα > r. Under this assumption, we have

µ′r =
∫ +∞

0
xr f (x; α, a, b, λ)dx.

For given values of α, a, b and λ, this integral can be evaluated by any mathematical software.
Additionally, one can use Proposition 2 for a series expression, which is performed below. Let us
introduce the gamma function defined by Γ(s) =

∫ +∞
0 tse−tdt, s > 0. Then, by assuming that

a min(α, 1) > r and noticing that

∫ +∞

0
xr fm(x; a)dx = am

Γ(r + 1)Γ(am− r)
Γ(am + 1)

=
r!

∏r
u=1(am− u)

,
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we obtain

µ′r =
+∞

∑
k=0

2k

∑
`=0

+∞

∑
m=1

ϕk,`,m

∫ +∞

0
xr fm(x; a)dx =

+∞

∑
k=0

2k

∑
`=0

+∞

∑
m=1

ϕk,`,m
r!

∏r
u=1(am− u)

.

For practical purposes, one can consider a large integer K, says K = 50, and the approximation:

µ′r ≈
K

∑
k=0

2k

∑
`=0

K

∑
m=1

ϕk,`,m
r!

∏r
u=1(am− u)

;

therefore, assuming that a min(α, 1) > 2, the mean and the variance of X are given by, respectively,
µ = µ′1 and σ2 = µ′2 − µ2.

Always under the assumption aα > r, the r-th central moment of X, i.e., µr = E[(X− µ)r], exists.
It is given by

µr =
∫ +∞

0
(x− µ)r f (x; α, a, b, λ)dx.

The standard binomial formula gives

µr =
r

∑
k=0

(
r
k

)
(−1)kµkµ′r−k.

One can notice that σ2 = µ2. Additionally, important quantities can be derived, such as the r-th
cumulant of X defined by

κr = µ′r −
r−1

∑
k=1

(
r− 1
k− 1

)
κkµ′r−k,

with κ1 = µ′1, and the Pearson measures of skewness and kurtosis of X defined by γ1 = µ3/µ3/2
2 and

β2 = µ4/µ2
2, respectively.

5.6. Incomplete Moments

Let t ≥ 0 and r be positive integers. Then, the r-th incomplete moment of X, i.e., µ′r(t) =

E(Xr1{X≤t}) exists and is given by

µ′r(t) =
∫ t

0
xr f (x; α, a, b, λ)dx =

+∞

∑
k=0

2k

∑
`=0

+∞

∑
m=1

ϕk,`,m

∫ t

0
xr fm(x; a)dx.

For given values for t, α, a, b and λ, a numerical evaluation of the integral term is possible.
Incomplete moments appear naturally in several useful quantities. For instance, the mean deviations
of X about the mean and the median use µ′1(t); i.e.,

δµ = E(|X− µ|) = 2µF(µ; α, a, b, λ)− 2µ′1(µ), δM = E(|X−M|) = µ− 2µ′1(M).

One can also construct Lorenz and Bonferroni curves, which find applications in economics,
insurance and medicine, among others.

5.7. Weighted Probability Moments

Let r and s be two positive integers. Then, the r, s-th weighted probability moment for X, i.e.,
µ′r,s = E(XrF(X; α, a, b, λ)s) exists if, and only if, aα > r. It is defined by

µ′r,s =
∫ +∞

0
xr f (x; α, a, b, λ)F(x; α, a, b, λ)sdx.
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It follows from Proposition 3 applied with ξ = s that

µ′r,s =
s+1

∑
k=0

+∞

∑
`=0

2`

∑
m=0

+∞

∑
q=1

φ
(s)
k,`,m,q

∫ +∞

0
xr fq(x; a)dx =

s+1

∑
k=0

+∞

∑
`=0

2`

∑
m=0

+∞

∑
q=1

φ
(s)
k,`,m,q

r!
∏r

u=1(aq− u)
.

The probability weighted moments naturally appear when we deal with some natural statistics,
as order statistics. Further details will be presented in Section 5.9.

5.8. Stress–Strength Reliability Parameter

Let X and Y be independent random variables having the TIITLIK distribution with the sets of
parameters (α1, a1, b1, λ1) and (α2, a2, b2, λ2), respectively. Then, the corresponding stress-strength
reliability parameter is defined by R = P(X2 < X1). We should then determine it with several sets of
assumptions on the parameter. We begin with a tractable result in that regard.

Proposition 4. Under the above setting, assume that a1 = a2, b1 = b2 and λ1 = λ2. Then, we have

R =
α2

α1 + α2
.

Proof. By using the definitions of F(x; α2, a, b, λ) and f (x; α1, a, b, λ), we get

R =
∫ +∞

0
F(x; α2, a, b, λ) f (x; α1, a, b, λ)dx

= 1−
∫ +∞

0

{
1−

[
1− (1 + x)−a]2b

{
1 + λ− λ

[
1− (1 + x)−a]b

}2
}α2

f (x; α1, a, b, λ)dx

= 1−
∫ +∞

0
2α1ab(1 + x)−a−1 [1− (1 + x)−a]2b−1

{
1 + λ− 2λ

[
1− (1 + x)−a]b

}
×{

1 + λ− λ
[
1− (1 + x)−a]b

}{
1−

[
1− (1 + x)−a]2b

{
1 + λ− λ

[
1− (1 + x)−a]b

}2
}α1+α2−1

dx

= 1− α1

α1 + α2

∫ +∞

0
f (x; α1 + α2, a, b, λ)dx =

α2

α1 + α2
.

The proof of Proposition 4 is ended.

The result below proposes a more general alternative result.

Proposition 5. Without special assumptions on the parameters, we have

R = 1−
+∞

∑
k=0

2k

∑
`=0

+∞

∑
m=0

+∞

∑
u=0

2u

∑
v=0

+∞

∑
w=0

ϕ
(2)
k,`,m ϕ

(1)
u,v,w

a1w
a1w + a2m

,

where, for j ∈ {1, 2}, ϕ
(j)
k,`,m = (

αj
k )(

2k
` )(

bj(`+2k)
m )(−1)k+`+m(1 + λj)

2k−`λ`
j .

Proof. Owing to Propositions 1 and 2, we have

R =
∫ +∞

0
F(x; α2, a2, b2, λ2) f (x; α1, a1, b1, λ1)dx

= 1−
+∞

∑
k=0

2k

∑
`=0

+∞

∑
m=0

ϕ
(2)
k,`,m

∫ +∞

0
Sm(x; a2) f (x; α1, a1, b1, λ1)dx

= 1−
+∞

∑
k=0

2k

∑
`=0

+∞

∑
m=0

+∞

∑
u=0

2u

∑
v=0

+∞

∑
w=0

ϕ
(2)
k,`,m ϕ

(1)
u,v,w

∫ +∞

0
Sm(x; a2) fw(x; a1)dx.
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Then, by introducing the pdf f∗(x; a1w + a2m, 1) of the Lomax distribution with parameters
a1w + a2m and 1, we get

∫ +∞

0
Sm(x; a2) fw(x; a1)dx =

a1w
a1w + a2m

∫ +∞

0
f∗(x; a1w + a2m, 1)dx =

a1w
a1w + a2m

.

This ends the proof of Proposition 5.

5.9. Order Statistics

Since the former study of [24], order statistics found a place as the model of choice for various
phenomena dealing with the infima or suprema of random variables. Here, we present some basics on
the order statistics in the context of the TIITLIK distribution. Let X1, . . . , Xn be n independent random
having the TIITLIK distribution as the common distribution and Xi:n be the i-th order statistic defined
by the i-th random variable; i.e., X1:n ≤ X2:n ≤ . . . ≤ Xn:n after rearranging X1, . . . , Xn in an increasing
order. Then, the pdf of Xi:n is given by

fi:n(x; α, a, b, λ) =
n!

(i− 1)!(n− i)!

n−i

∑
j=0

(
n− i

j

)
(−1)j f (x; α, a, b, λ)F(x; α, a, b, λ)j+i−1, x > 0.

Owing to Proposition 3 applied with ξ = j+ i− 1, we obtain the following mixture representation:

fi:n(x; α, a, b, λ) =
n−i

∑
j=0

j+i−1

∑
k=0

+∞

∑
`=0

2`

∑
m=0

+∞

∑
q=1

ρi,j,k,`,m,n,q fq(x; a), (4)

where ρi,j,k,`,m,n,q = n!/[(i− 1)!(n− i)!](n−i
j )(j+i

k )(αk
` )(

2`
m)(

b(m+2k)
q )(−1)j+k+`+m+q+1(j + i)−1(1 +

λ)2`−mλm and fq(x; a) denotes the pdf of the Lomax distribution with parameters aq and 1.
Let r be a positive integer. Then, the r-th moment of Xi:n is given by

µ′r,i:n =
n−i

∑
j=0

j+i−1

∑
k=0

+∞

∑
`=0

2`

∑
m=0

+∞

∑
q=1

ρi,j,k,`,m,n,q
r!

∏r
u=1(aq− u)

.

Among others, these moments can be used to define the L moments of X. Thus, for any s ∈
{1, . . . , n}, the s-th L moment of X is given by

Λs =
1
s

s−1

∑
d=0

(−1)d
(

s− 1
d

)
µ′1,s−d:s.

We refer the reader to [25,26] for further details on L moments.

6. Conclusions

In this paper, we introduced a new, four-parameter lifetime distribution called the type II
Topp–Leone (transmuted) inverted Kumaraswamy (TIITLIK) distribution. Two applications on
practical data sets showed that the TIITLIK distribution provides better fits than several serious
competitors, validating its potential in terms of applicability. In order to complete the practical aspect,
we provided the main mathematical properties of the new distribution, including asymptotic results,
quantile function, Bowley skewness and Moors kurtosis, mixture representations for the probability
density and cumulative density functions, ordinary moments, incomplete moments, probability
weighted moments, stress-strength reliability and order statistics.
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