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Abstract: The main purpose of this paper is using the combinatorial method, the properties of
the power series and characteristic roots to study the computational problem of the symmetric
sums of a certain second-order linear recurrence sequences, and obtain some new and interesting
identities. These results not only improve on some of the existing results, but are also simpler and
more beautiful. Of course, these identities profoundly reveal the regularity of the second-order
linear recursive sequence, which can greatly facilitate the calculation of the symmetric sums of the
sequences in practice.
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1. Introduction

The defined of second-order linear recurrence sequence {Sn} is

Sn+2 = C1Sn+1 + C2Sn, for all integers n ≥ 0, with S0 = a, S1 = b, (1)

where n is integers with n ≥ 0.
For convenience, we also extend the recursive property of Sn to all negative integers.
We taking C1 = x, C2 = 1, Sn = Fn+1(x) with F0(x) = 0, F1(x) = 1 in (1), then {Sn} becomes the

famous Fibonacci polynomial sequence {Fn+1(x)}. That is,

Fn+2(x) = xFn+1(x) + Fn(x) for all integers n ≥ 0.

Especially when x = 1, Fn(1) = Fn becomes known as the Fibonacci sequence.
Let α = x+

√
x2+4
2 and β = x−

√
x2+4
2 denote the two roots of the characteristic equation λ2 − xλ−

1 = 0. Then we have

Fn(x) =
αn − βn

α− β
, Ln(x) = αn + βn, n = 0, 1, 2, · · · ,

where Ln(x) denotes the Lucas polynomials, and Ln(1) denotes the Lucas sequence.
If we take C1 = 2x, C2 = −1 in (1), then Sn = Un(x) is Chebyshov polynomials of the second

kind with U0(x) = 1 and U1(x) = 2x. Chebyshov polynomials Tn(x) of the first kind is defined by
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Tn+2(x) = 2xTn+1(x) − Tn(x) for all n ≥ 0 with T0(x) = 1 and T1(x) = x. Let δ = x +
√

x2 − 1,
γ = x−

√
x2 − 1 are two characteristic roots of the polynomial λ2 − 2xλ + 1 = 0, then (see [1])

Tn(x) =
1
2
(δn + γn) , Un(x) =

δn+1 − γn+1

δ− γ
, n = 0, 1, 2, · · · .

Many scholars have studied Sn, and obtained a series of valuable research results. For example,
Yi Yuan and Zhang Wenpeng [2] proved the following conclusion: For any positive integer n and k,
one has the identity

∑
a1+a2+···+ak=n

Fa1(x) · Fa2(x) · Fa3(x) · · · Fak (x)

=
[ n

2 ]

∑
m=0

(
n + k− 1−m

m

)(
n + k− 1− 2m

k− 1

)
· xn−2m,

where ∑
a1+a2+···+ak=n

denotes the summation is taken over all k-dimension nonnegative integer

coordinates (a1, a2, · · · , ak) such that a1 + a2 + · · ·+ ak = n.
Ma Yuankui and Zhang Wenpeng [3] also studied this problem, and proved the following result:

∑
a1+a2+···+ah+1=n

Fa1(x)Fa2(x) · · · Fah+1(x) =
1
h!
·

h

∑
j=1

(−1)h−j · S(h, j)
x2h−j

×
(

n

∑
i=0

(n− i + j)!
(n− i)!

·
(

2h + i− j− 1
i

)
·
(−1)i · 2i · Fn−i+j(x)

xi

)
,

where S(h, i) is defined by S(h, 0) = 0, S(h, h) = 1, and

S(h + 1, i + 1) = 2 · (2h− 1− i) · S(h, i + 1) + S(h, i)

for all positive integers 1 ≤ i ≤ h− 1.
On the other hand, Zhang Yixue and Chen Zhuoyu [4] studied the properties of Chebyshov

polynomials, and proved the following identity:

∑
a1+a2+···+ah+1=n

Ua1(x)Ua2(x) · · ·Uah+1(x)

=
1

2h · h!
·

h

∑
j=1

C(h, j)
x2h−j

n

∑
i=0

(n− i + j)!
(n− i)!

·
(

2h + i− j− 1
i

)
·

Un−i+j(x)
xi ,

where C(h, i) is a second order non-linear recurrence sequence defined by C(h, 0) = 0, C(h, h) = 1,
C(h + 1, 1) = 1 · 3 · 5 · · · (2h− 1) = (2h− 1)!! and C(h + 1, i + 1) = (2h− 1− i) · C(h, i + 1) + C(h, i)
for all 1 ≤ i ≤ h− 1.

Many other papers related to Fibonacci numbers, Fibonacci polynomials, Chebyshov polynomials
and second-order linear recurrence sequences can also be found in references [5–18], here we will no
longer list them one by one.

After careful analysis of the research content in [1–4], we think it can be summarized as a sentence:
That is, to study the symmetry sum problem of the generalized second-order linear recursive sequence.
Of course, they are meaningful to study these problems. It not only reveals the profound properties of
the generalized second-order linear recursive polynomials and sequences, but also greatly simplifies
the calculation of the symmetry sums of these polynomials and sequences in practice.

Inspired by [1–4], in this paper, we will use a new method to study the computational problem
of the symmetry sums of a certain second-order linear recurrence sequences, and give a simple and
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beautiful generalized conclusion. That is, we will use the elementary methods and the symmetry
properties of the characteristic roots to prove the following results:

Theorem 1. Let Sn = C1 · Sn−1 + C2 · Sn−2 denotes any second-order linear recurrence sequence with S0 = 1
and S1 = C1. Then we have the identity

∑
a1+a2+···+ak=n

Sa1 · Sa2 · Sa3 · · · Sak

=
1
2

n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· (−C2)

i · (Sn−2i + C2 · Sn−2−2i) .

It is clear that if we taking C1 = x and C2 = 1, then from Theorem 1 we may immediately deduce
the following:

Corollary 1. For any positive integers n and k, we have the identity

∑
a1+a2+···+ak=n

Fa1+1(x) · Fa2+1(x) · Fa3+1(x) · · · Fak+1(x)

=
1
2

n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· (−1)i · (Fn+1−2i(x) + Fn−1−2i(x)) .

Corollary 2. For any positive integer m, n and k, we have the identity

∑
a1+a2+···+ak=n

Ua1 (Tm(x)) ·Ua2 (Tm(x)) ·Ua3 (Tm(x)) · · ·Uak (Tm(x))

=
n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· Tm(n−2i)(x)

and

∑
a1+a2+···+ak=n

Ua1 (x) ·Ua2 (x) ·Ua3 (x) · · ·Uak (x)

=
n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· (xUn−1−2i(x)−Un−2−2i(x)) .

It is clear that our Corollary 1 and Corollary 2 are much easier than the results in [1–4]. If
Sn+2 = C1 · Sn+1 + C2 · Sn with S0 = 1 and S1 = C1 and Hn+2 = D1 · Hn+1 + D2 · Hn with H0 = 1
and H1 = D1 are two different second-order linear recurrence sequences, such that the polynomials
x2 − C1x − C2 and x2 − D1x − D2 co-prime. That is,

(
x2 − C1x− C2, x2 − D1x− D2

)
= 1. Then we

define sequence {Mn} as follows:

Mn =
n

∑
i=0

Si · Hn−i n = 0, 1, 2, · · · . (2)

For the sequence {Mn} defined in (2), we have the following conclusion:

Theorem 2. The sequence {Mn} is a fourth-order linear recurrence sequence, and it satisfy the fourth-order
linear recurrence formula

Mn+4 = (C1 + D1) Mn+3 + (C2 + D2 + C1D1) Mn+2

− (C1D2 + C2D1) Mn+1 − C2D2Mn, n ≥ 0,
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where M0 = 1, M1 = C1 + D1, M2 = C2
1 + D2

1 + C2 + D2 + C1D1 and

M3 = C3
1 + D3

1 + 2C1C2 + 2D1D2 + D1

(
C2

1 + C2

)
+ C1

(
D2

1 + D2

)
.

Taking C1 = x, C2 = 1, D1 = 2x and D2 = −1, from our Theorem 2 we can deduce the following
result:

Corollary 3. For any integer n ≥ 0, we define the polynomials sequence

Mn(x) =
n

∑
i=0

Fi+1(x) ·Un−i(x).

Then Mn(x) is a fourth-order linear recurrence polynomials, and it satisfy the recurrence formula

Mn+4(x) = 3xMn+3(x) + 2x2Mn+2(x)− xMn+1(x) + Mn(x)

for all integers n ≥ 0, where M0(x) = 1, M1(x) = 3x, M2(x) = 7x2 and M3(x) = 15x3 − x, Fn(x) and
Un(x) denote the Fibonacci polynomials and Chebyshov polynomials of the second kind respectively.

2. Proof of the Theorem

In this section, we will prove our main results directly. First we prove Theorem 1.

Proof of Theorem 1. It is clear that the characteristic equation of the sequence {Sn} is λ2−C1λ−C2 =

0. Let α and β are the two characteristic roots of the equation λ2 − C1λ− C2 = 0. Then we have

Sn = Aαn + Bβn with A + B = 1 and Aα + Bβ = C1.

That is,

Sn = Aαn + Bβn =
α

α− β
· αn − β

α− β
· βn, n ≥ 0.

The generating function of the sequence {Sn} is

1
1− C1x− C2x2 =

1
(1− αx)(1− βx)

=
∞

∑
n=0

Sn · xn, (3)

where α · β = −C2 and α + β = C1.
For any positive integer k, we have the identity

1

(1− C1x− C2x2)
k =

1
(1− αx)k · (1− βx)k

=
∞

∑
n=0

(
∑

a1+a2+···+ak=n
Sa1 · Sa2 · Sa3 · · · Sak

)
· xn. (4)

On the other hand, from the properties of the power series we have

1
(1− x)k =

∞

∑
n=0

(
n + k− 1

k− 1

)
· xn, |x| < 1. (5)
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Thus, from (5) and the properties of the power series we have

1
(1− αx)k(1− βx)k =

(
∞

∑
n=0

(
n + k− 1

k− 1

)
αnxn

)(
∞

∑
n=0

(
n + k− 1

k− 1

)
βnxn

)

=
∞

∑
n=0

(
n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· αi · βn−i

)
· xn. (6)

Combining (4), (6) and note that α · β = −C2 and the symmetry of α and β we can deduce the identity

∑
a1+a2+···+ak=n

Sa1 · Sa2 · Sa3 · · · Sak

=
n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· αi · βn−i

=
n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· (−C2)

i · βn−2i

=
n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· (−C2)

i · αn−2i

=
n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· (−C2)

i · 1
2

(
αn−2i + βn−2i

)
. (7)

From the definitions A and B we have

A · (α− β) = α and B · (β− α) = β.

So for any integer r, from the definition of Sn we have

αr + βr = α · αr−1 + β · βr−1 = A · (α− β) · αr−1 + B · (β− α) · βr−1

= A · αr + B · βr − α · β
(

A · αr−2 + B · βr−2
)
= Sr + C2 · Sr−2. (8)

Now combining (7) and (8) we may immediately deduce the identity

∑
a1+a2+···+ak=n

Sa1 · Sa2 · Sa3 · · · Sak

=
n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· αi · βn−i

=
1
2

n

∑
i=0

(
i + k− 1

k− 1

)(
n− i + k− 1

k− 1

)
· (−C2)

i · (S2−2i + C2 · Sn−2−2i) .

This proves Theorem 1.

Proof of Theorem 2. Note that
(

x2 − C1x− C2, x2 − D1x− D2
)
= 1, so from the definitions of α, β, δ

and γ we have (
1− C1x− C2x2

)
·
(

1− D1x− D2x2
)
= 1− (C1 + D1) x

− (C2 + D2 − C1D1) x2 + (C1D2 + C2D1) x3 + C2D2x4

= (1− αx)(1− βx)(1− δx)(1− γx), (9)

where α, β, δ and γ are different each others.
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It is clear that from the definitions sequences Sn and Hn we have

1
(1− C1x− C2x2) · (1− D1x− D2x2)

=
∞

∑
n=0

(
n

∑
i=0

Si · Hn−i

)
· xn. (10)

On the other hand, from the definition and properties of the fourth-order linear recurrence sequence
we also have

1
(1− C1x− C2x2) · (1− D1x− D2x2)

=
1

(1− αx)(1− βx)(1− δx)(1− γx)
=

∞

∑
n=0

Mn · xn, (11)

where M0 = 1, M1 = C1 + D1, M2 = C2
1 + D2

1C2 + D2 + C1D1,

M3 = C3
1 + D3

1 + 2C1C2 + 2D1D2 + D1

(
D2

1 + D2

)
+ C1

(
D2

1 + D2

)
and

Mn+4 = (C1 + D1) Mn+3 + (C2 + D2 + C1D1) Mn+2

− (C1D2 + C2D1) Mn+1 − C2D2Mn, n ≥ 0. (12)

From (11) and (12) we know that the sequence

Mn =
n

∑
i=0

Si · Hn−i

is a fourth-order recurrence sequence, and it satisfy the recurrence Formula (12).
This completes the proof of Theorem 2.
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