

Erratum

Kim, T. et al. Degenerate Stirling Polynomials of the Second Kind and Some Applications. *Symmetry*, 2019, 11(8), 1046

Taekyun Kim¹, Dae San Kim², Han Young Kim¹ and Jongkyum Kwon^{3,*}

- Department of Mathematics, Kwangwoon University, Seoul 139-701, Korea; tkkim@kw.ac.kr (T.K.); gksdud213@kw.ac.kr (H.Y.K.)
- Department of Mathematics, Sogang University, Seoul 121-742, Korea; dskim@sogang.ac.kr
- Department of Mathematics Education and ERI, Gyeongsang National University, Jinju 52828, Korea
- * Correspondence: mathkjk26@gnu.ac.kr; Tel.: +82-055-772-2252

Received: 28 November 2019; Accepted: 13 December 2019; Published: 17 December 2019

Corrigendum

The authors wish to make the following corrections to the published paper [1]: Equations (31) and (32) must be replaced as follows:

$$P[Y = y | Y \ge 0] = p(y) = e_{\lambda}^{-1}(\alpha) \frac{\alpha^{y}(1)_{y,\alpha}}{y!}$$
(31)

by

$$P[Y = y | Y \ge 0] = p(y) = e_{\lambda}^{-1}(\alpha) \frac{\alpha^{y}(1)_{y,\lambda}}{y!}.$$

$$P[X = x | X > 0] = p(x) = \frac{1}{1 - e_{\lambda}^{-1}(\alpha)} e_{\lambda}^{-1}(\alpha) \frac{(1)_{x,\alpha} \alpha^{x}}{x!}$$
(32)

by

$$P[X = x | X > 0] = p(x) = \frac{1}{1 - e_{\lambda}^{-1}(\alpha)} e_{\lambda}^{-1}(\alpha) \frac{(1)_{x,\lambda} \alpha^{x}}{x!}.$$

In lines 8 and 10 from the top of page 7, $(1)_{x,\alpha}$ should be replaced by $(1)_{x,\lambda}$. We rewrite those equations as follows:

Note that

$$\sum_{y=0}^{\infty} p(y) = e_{\lambda}^{-1}(\alpha) \sum_{y=0}^{\infty} \frac{\alpha^{y}(1)_{y,\lambda}}{y!} = 1,$$

and

$$\sum_{x=1}^{\infty} p(x) = \frac{1}{e_{\lambda}(\alpha) - 1} \sum_{x=1}^{\infty} \frac{(1)_{x,\lambda} \alpha^x}{x!} = 1.$$

Symmetry **2019**, 11, 1530 2 of 3

In Equations (33) and (35), $(1)_{x,\alpha}$ should be replaced by $(1)_{x,\lambda}$. We rewrite those equations as follows:

$$E[t^{X_j}] = \sum_{x=1}^{\infty} P[X_j = x] t^x$$

$$= \frac{1}{e_{\lambda}(\alpha) - 1} \sum_{x=1}^{\infty} \frac{(1)_{x,\lambda} \alpha^x}{x!} t^x$$

$$= \frac{1}{e_{\lambda}(\alpha) - 1} (e_{\lambda}(\alpha t) - 1),$$
(33)

$$E[t^{Y}] = \sum_{y=0}^{\infty} P[Y = y]t^{y} = e_{\lambda}^{-1}(\alpha) \sum_{y=0}^{\infty} \frac{\alpha^{y}(1)_{y,\lambda}}{y!} t^{y}$$
$$= e_{\lambda}^{-1}(\alpha)e_{\lambda}(\alpha t).$$
(35)

In Equations (38), (40) and (41) on page 8–9, $(1)_{x,\alpha}$ should be replaced by $(1)_{x,\lambda}$. We rewrite those equations as follows:

$$P[X = x | X \ge r] = p(x) = \frac{e_{\lambda}^{-1}(\alpha)}{1 - e_{\lambda}^{-1}(\alpha) \sum_{r=0}^{r-1} \frac{\alpha^{x}(1)_{x,\lambda}}{r!} \frac{\alpha^{x}(1)_{x,\lambda}}{x!},$$
(38)

$$E[t^{X_{j}}] = \sum_{n=r}^{\infty} P[X_{j} = n]t^{n}$$

$$= \sum_{n=r}^{\infty} \left(\frac{1}{e_{\lambda}(\alpha) - \sum_{j=0}^{r-1} \frac{(1)_{j,\lambda}}{j!} \alpha^{j}}\right) \frac{\alpha^{n}(1)_{n,\lambda}}{n!} t^{n}$$

$$= \left(\frac{1}{e_{\lambda}(\alpha) - \sum_{j=0}^{r-1} \frac{(1)_{j,\lambda}}{j!} \alpha^{j}}\right) \left(e_{\lambda}(\alpha t) - \sum_{j=0}^{r-1} \frac{(1)_{j,\lambda} \alpha^{j}}{j!} t^{j}\right)$$

$$= C_{\lambda}(\lambda, r) \left(e_{\lambda}(\alpha t) - \sum_{j=0}^{r-1} \frac{(1)_{j,\lambda}}{j!} \alpha^{j} t^{j}\right),$$

$$(40)$$

where
$$C_{\lambda}(\lambda, r) = \frac{1}{e_{\lambda}(\alpha) - \sum_{j=0}^{r-1} \frac{(1)_{j,\lambda}}{j!} \alpha^{j}}$$
.
$$\prod_{j=1}^{k} E[t^{X_{j}}] = C_{\lambda}^{k}(\lambda, r) \left(e_{\lambda}(\alpha t) - \sum_{j=0}^{r-1} \frac{(1)_{j,\lambda} \alpha^{j}}{j!} t^{j} \right)^{k}. \tag{41}$$

In lines 5 and 6 from top on page 9, $(1)_{x,\alpha}$ should be replaced by $(1)_{x,\lambda}$.

$$\begin{split} E[t^{X+Y}] &= k! C_{\lambda}^{k}(\lambda, r) \frac{1}{k!} \left(e_{\lambda}(\alpha t) - \sum_{j=0}^{r-1} \frac{(1)_{j,\lambda}}{j!} \alpha^{j} t^{j} \right)^{k} e_{\lambda}^{-1}(\alpha) e_{\lambda}(\alpha t) \\ &= k! C_{\lambda}^{k}(\lambda, r) e_{\lambda}^{-1}(\alpha) \frac{1}{k!} \left(e_{\lambda}(\alpha t) - \sum_{j=0}^{r-1} \frac{(1)_{j,\lambda}}{j!} \alpha^{j} t^{j} \right)^{k} e_{\lambda}(\alpha t) \\ &= \sum_{n=kr}^{\infty} \frac{k! C_{\lambda}^{k}(\lambda, r)}{e_{\lambda}(\alpha)} S_{2,\lambda}^{(1)}(n, k \mid r) \frac{\alpha^{n}}{n!} t^{n}. \end{split}$$

In Equation (44) on page 9, $(1)_{x,\alpha}$ should be replaced by $(1)_{x,\lambda}$.

The authors apologize for any convenience caused to the readers. The changes do not affect the results.

Symmetry **2019**, 11, 1530

Reference

1. Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Degenerate Stirling polynomials of the secind kind and some applications. *Symmetry* **2019**, *11*, 1046. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).