Erratum

Kim, T. et al. Degenerate Stirling Polynomials of the Second Kind and Some Applications. Symmetry, 2019, 11(8), 1046

Taekyun Kim ${ }^{1}$, Dae San Kim ${ }^{2}$ © , Han Young Kim ${ }^{1}$ and Jongkyum Kwon ${ }^{\text {3,* }}$
1 Department of Mathematics, Kwangwoon University, Seoul 139-701, Korea; tkkim@kw.ac.kr (T.K.); gksdud213@kw.ac.kr (H.Y.K.)
2 Department of Mathematics, Sogang University, Seoul 121-742, Korea; dskim@sogang.ac.kr
3 Department of Mathematics Education and ERI, Gyeongsang National University, Jinju 52828, Korea
* Correspondence: mathkjk26@gnu.ac.kr; Tel.: +82-055-772-2252

Received: 28 November 2019; Accepted: 13 December 2019; Published: 17 December 2019

Corrigendum

The authors wish to make the following corrections to the published paper [1]:
Equations (31) and (32) must be replaced as follows:

$$
\begin{equation*}
P[Y=y \mid Y \geq 0]=p(y)=e_{\lambda}^{-1}(\alpha) \frac{\alpha^{y}(1)_{y, \alpha}}{y!} \tag{31}
\end{equation*}
$$

by

$$
\begin{gather*}
P[Y=y \mid Y \geq 0]=p(y)=e_{\lambda}^{-1}(\alpha) \frac{\alpha^{y}(1)_{y, \lambda}}{y!} . \\
P[X=x \mid X>0]=p(x)=\frac{1}{1-e_{\lambda}^{-1}(\alpha)} e_{\lambda}^{-1}(\alpha) \frac{(1)_{x, \alpha} \alpha^{x}}{x!} \tag{32}
\end{gather*}
$$

by

$$
P[X=x \mid X>0]=p(x)=\frac{1}{1-e_{\lambda}^{-1}(\alpha)} e_{\lambda}^{-1}(\alpha) \frac{(1)_{x, \lambda} \alpha^{x}}{x!}
$$

In lines 8 and 10 from the top of page $7,(1)_{x, \alpha}$ should be replaced by $(1)_{x, \lambda}$. We rewrite those equations as follows:

Note that

$$
\sum_{y=0}^{\infty} p(y)=e_{\lambda}^{-1}(\alpha) \sum_{y=0}^{\infty} \frac{\alpha^{y}(1)_{y, \lambda}}{y!}=1,
$$

and

$$
\sum_{x=1}^{\infty} p(x)=\frac{1}{e_{\lambda}(\alpha)-1} \sum_{x=1}^{\infty} \frac{(1)_{x, \lambda} \alpha^{x}}{x!}=1
$$

In Equations (33) and (35), (1 $)_{x, \alpha}$ should be replaced by $(1)_{x, \lambda}$. We rewrite those equations as follows:

$$
\begin{align*}
E\left[t^{X_{j}}\right] & =\sum_{x=1}^{\infty} P\left[X_{j}=x\right] t^{x} \\
& =\frac{1}{e_{\lambda}(\alpha)-1} \sum_{x=1}^{\infty} \frac{(1)_{x, \lambda} \alpha^{x}}{x!} t^{x} \tag{33}\\
& =\frac{1}{e_{\lambda}(\alpha)-1}\left(e_{\lambda}(\alpha t)-1\right), \\
E\left[t^{Y}\right]= & \sum_{y=0}^{\infty} P[Y=y] t^{y}=e_{\lambda}^{-1}(\alpha) \sum_{y=0}^{\infty} \frac{\alpha^{y}(1)_{y, \lambda}}{y!} t^{y} \tag{35}\\
= & e_{\lambda}^{-1}(\alpha) e_{\lambda}(\alpha t) .
\end{align*}
$$

In Equations (38), (40) and (41) on page 8-9, (1) $)_{x, \alpha}$ should be replaced by $(1)_{x, \lambda}$. We rewrite those equations as follows:

$$
\begin{align*}
& P[X=x \mid X \geq r]=p(x)=\frac{e_{\lambda}^{-1}(\alpha)}{1-e_{\lambda}^{-1}(\alpha) \sum_{x=0}^{r-1} \frac{\alpha^{x}(1)_{x, \lambda}}{x!}} \frac{\alpha^{x}(1)_{x, \lambda}}{x!} \tag{38}\\
& \begin{aligned}
E\left[t^{X_{j}}\right] & =\sum_{n=r}^{\infty} P\left[X_{j}=n\right] t^{n} \\
& =\sum_{n=r}^{\infty}\left(\frac{1}{e_{\lambda}(\alpha)-\sum_{j=0}^{r-1} \frac{(1)_{j, \lambda}}{j!} \alpha^{j}}\right) \frac{\alpha^{n}(1)_{n, \lambda}}{n!} t^{n} \\
& =\left(\frac{1}{e_{\lambda}(\alpha)-\sum_{j=0}^{r-1} \frac{(1)_{j, \lambda}}{j!} \alpha^{j}}\right)\left(e_{\lambda}(\alpha t)-\sum_{j=0}^{r-1} \frac{(1)_{j, \lambda} \alpha^{j}}{j!} t^{j}\right) \\
& =C_{\lambda}(\lambda, r)\left(e_{\lambda}(\alpha t)-\sum_{j=0}^{r-1} \frac{(1)_{j, \lambda}}{j!} \alpha^{j} t^{j}\right)
\end{aligned}
\end{align*}
$$

where $C_{\lambda}(\lambda, r)=\frac{1}{e_{\lambda}(\alpha)-\sum_{j=0}^{r-1} \frac{(1) j, \lambda}{j!} \alpha^{j}}$.

$$
\begin{equation*}
\prod_{j=1}^{k} E\left[t^{X_{j}}\right]=C_{\lambda}^{k}(\lambda, r)\left(e_{\lambda}(\alpha t)-\sum_{j=0}^{r-1} \frac{(1)_{j, \lambda} \alpha^{j}}{j!} t^{j}\right)^{k} \tag{41}
\end{equation*}
$$

In lines 5 and 6 from top on page $9,(1)_{x, \alpha}$ should be replaced by $(1)_{x, \lambda}$.

$$
\begin{aligned}
E\left[t^{X+Y}\right] & =k!C_{\lambda}^{k}(\lambda, r) \frac{1}{k!}\left(e_{\lambda}(\alpha t)-\sum_{j=0}^{r-1} \frac{(1)_{j, \lambda}}{j!} \alpha^{j} t^{j}\right)^{k} e_{\lambda}^{-1}(\alpha) e_{\lambda}(\alpha t) \\
& =k!C_{\lambda}^{k}(\lambda, r) e_{\lambda}^{-1}(\alpha) \frac{1}{k!}\left(e_{\lambda}(\alpha t)-\sum_{j=0}^{r-1} \frac{(1)_{j, \lambda}}{j!} \alpha^{j} t^{j}\right)^{k} e_{\lambda}(\alpha t) \\
& =\sum_{n=k r}^{\infty} \frac{k!C_{\lambda}^{k}(\lambda, r)}{e_{\lambda}(\alpha)} S_{2, \lambda}^{(1)}(n, k \mid r) \frac{\alpha^{n}}{n!} t^{n} .
\end{aligned}
$$

In Equation (44) on page 9, (1) $)_{x, \alpha}$ should be replaced by $(1)_{x, \lambda}$.
The authors apologize for any convenience caused to the readers. The changes do not affect the results.

Reference

1. Kim, T.; Kim, D.S.; Kim, H.Y.; Kwon, J. Degenerate Stirling polynomials of the secind kind and some applications. Symmetry 2019, 11, 1046. [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
