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Abstract: The primary contribution of this work is to develop direct processes of explicit Runge-Kutta
type (RKT) as solutions for any fourth-order ordinary differential equation (ODEs) of the structure
u® = f(x,u,u’,u") and denoted as RKTF method. We presented the associated B-series and
quad-colored tree theory with the aim of deriving the prerequisites of the said order. Depending on
the order conditions, the method with algebraic order four with a three-stage and order five with a
four-stage denoted as RKTF4 and RKTF5 are discussed, respectively. Numerical outcomes are offered
to interpret the accuracy and efficacy of the new techniques via comparisons with various currently
available RK techniques after converting the problems into a system of first-order ODE systems.
Application of the new methods in real-life problems in ship dynamics is discussed.

Keywords: Runge-Kutta type methods; fourth-order ODEs; order conditions; B-series; quad-colored
trees

1. Introduction

Fourth-order ODEs can be found in several areas of neural network engineering and applied
sciences [1], fluid dynamics [2], ship dynamics [3-5], electric circuits [6] and beam theory [7,8]. In this
article, we are dealing with development and explanation of the numerical process to solve fourth-order
initial-value problems (IVPs) of the case:

u® (x) = f(x,u(x), (x), 0" (x)), @

with initial conditions

u(xg) =ug, u'(xo) =uj, u'(x0)=uy, u"(x0)=uy, x>x

where u, u’,u”,u" € RY, f: R x R? x RY x RY — R¥ constitute continuous vector-valued functions
without third derivatives. The general fourth order needs more function evaluations to be calculated,
which requires extra calculation effort and extended execution time. So we have presented the
explicit formulas of RKT to solve fourth-order ODEs directly of the structure u®) = f(x,u,u’,u").
The numerical solution is very significant to ODEs of order four that are used in various applications
since the exact solutions usually do not exist. Many researchers have used classical approaches
to solve higher-order ODEs through converting them to first order system of ODEs and thus
using appropriate numerical approach to this arrangement (see [9-11]). However, this strategy
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is extremely expensive because several researchers found that converting higher-order ODEs into
first-order ODE systems will increase the equation count (see [7,12,13]). Consequently, more function
evaluations need to be calculated, which requires into more computational effort and longer time.
Many researchers have suggested direct numerical approach to more accurate results with less
calculation time (see [14-19]). Furthermore, Ibrahim et al. [20] found a process by using multi-step
technique which could solve stiff differential equations of order three. Jain et al. [21] developed finite
difference approach to solve ODEs of order four, all the methods discussed above are multi-step in
nature. On the other hand, Mechee et al. [22,23], constructed a RK-based method for solving special
third-order ODEs directly. Senu et al. [24] developed embedded explicit RKT method to directly solve
special ODEs of order three. Subsequently, Hussain et al. [25] proposed RKT approach for solving the
aforementioned equations, except that the latter were of order four. The main purpose of this study
is using quad-colored trees theory to construct one step explicit RKT approach to solve fourth-order
ODE:s of the structure u(4) = f(x,u,u’,u") denoted as RKTF method.

The motivation of this study is to solve specific real-life problems such as ship dynamics which
is special fourth-order ODE. Add to that, special method, RKTF will be considered that can solved
directly special fourth-order ODEs which is more efficient than the general method because of the
complexity of the method.

We organized this paper as follows: The idea of formulation of the RKTF methods to solve
problem (1) is discussed in Section 2. B-series and associated quad-colored for RKTF methods are
presented in Section 3. Section 4 investigates the construction of three- and four-staged RKTF methods
of fourth and fifth orders, respectively. In the subsequent section, the efficiencies as well as accuracies
the techniques will be compared against those of the existing methods. The ship dynamics problem is
discussed in Section 6. Lastly conclusions and discussion are given in Section 7.

2. Formulation of the RKTF Methods

The s-stage Runge-Kutta type technique for IVP (1) of order four is given through the scheme
as follows

1,

1 S
U; = uy + cihuly + ~c2h? uj) + gc?h3 ull! + nt Zl aijf (xn + cjh, Uy, U7, U),
j=

Lo 3y -
U = uy + by + Scth* uy +h ]; aij f (xn + cjh, Uy, U, Uf'),
S
U = uy + iy + 12 Y @i f (xn + cjh, Uj, UL, UY),
j=1
’ 1 2 1 3.1 4 < / "
Uyl = Un +huy, + Eh Up + gh '+ WY bif (xon + eily, Ui, UL UY'),
i=1

1 S
W1 =ty +hu), + Ehz uy + 13 Y Vif (x4 b, U, UL UL,
i=1

S
Wy =y +hu) + 02 Y B f(xn + b, U, UL UL,
i=1

S
g =y + 1Y b f (e + i, Uy, U, UY). @
i=1
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The assumingly real new parameters b;, b/, b, b}, a;j, j, d;; and ¢; of the RKTF method and used
fori,j =1,2,..,s. The technique is explicit if ajj = djj = ﬁi]- = 0 for i < j and it is implicit otherwise.
In Kroneker’s block product, the scheme is given through as follows:

h? 3
U=e®u,+h(cu,)+ ?(cz Qull) + Z(c3 oul)+ (A1) F(U, U, Uu"),
2

h _
U =e@ul +h(cou))+=(Feu))+hB (A1) FUu’,u’),

5 (

U’ =e@ull + hco@ul) + *(A® 1) F(u,u’,u”),

Upir = Up + hity, + %hz uy + %%ﬁ ul + T @ 1,) F(u, u’,u’),
1

ey =y + B+ SHR g+ BT @ 1) FU, U, U”),

ul = +hu) + R @ 1,) F(U, U, U,

ul'y =y +h(V""T @ ;) F(u, U, u’).

where, e = [1,..,1]T, ¢ = [e1, 6], b = by, )T, 0 = (B, BT, 07 = [b, ., BT, b =
vy, 0", A = [aj]", A = [a;]", A = [a;]" denote s x s matrices while I denotes d x d identity

matrix. The definition of all block vectors within R¥*4 are as follows:

u=uf,..,uhrt,
F(U, U, u"y =(f(xn +cih, U;, U, U, ..., f(xn + csh, us,u;,u;’)T)T,i =1,2,..,5.

The RKTF methods can be presented by the Butcher tableau of scheme (2) as follows (see Table 1):

Table 1. The Butcher tableau RKTF method.

clA| A A
bT b/T b//T b///T

3. B-Series and Linked Quad-Colored for RKTF Methods

This section will provide the important definitions that linked relevant theorems used in this work.

Definition 1. The RKTF formula (2) is g-ordered if for every Equation (1) of sufficient smoothness, with respect
to a proposition that u(x,) = tn, w' (xn) = ), u”(x,) = uj, u'"" (x,) = u))’, the local truncation errors of
the analytic solutions as well as their derivatives must fulfil the following: (see Hussain et al. [25] and Chen
etal. [26])

| u(xn + 1) = trt I= O, || u'(xn+h) — 11,4 [|= O(RTH),
Il (en + 1) = w44 [|= O(HTHE), || ™ (x4 h) = uyfy [|= O(RT)

3.1. RKTF Trees and B-Series Theory

To construct the order conditions to RKTF approach Equation (2), we are required to use
autonomous formula of fourth-order IVP Equation (1)

u® (x) = f(ux), ' (x), " (x), )

subject to initial prerequisites of

u(xny) =up, u(xy)=u,, u'(xy)=u), u"(xy)=ul.
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The IVP (1) of order four can be defined as the autonomous form through expansion of initial-value
problem (1) using one-dimensioned vector z = x

z(xn) i=zn = X, 2/ (%) =2, = 1, 2" () :=2), =0, 2""(xy) : =2} =0,

u(xn) = up, u'(xy) =y, "’ (xn) = ), " (x,) = ul). (4)
We will obtain the same result when the RKTF approach (2) is applied to the autonomous

Equation (4) and also to the non-autonomous problem (1). Thus, we want only consider the

autonomous Equation (3) (see Hussain et al. [25]). Hence, to get a common method to obtain

the higher-order derivatives to the analytic solutions for Equation (3), we note that the elementary

differentials up to six derivatives for u(x) at x = x( are given as follow:

uM = W, u®@ = u”, u® — u'", u® = f, u® — 1//lu/ +fp/1’u// +fp/¢”um/

ul® = 'y + 27l ")+ ) 2 ()

uu’

sz/t/,u”(uN, ulN) +fl,l///u// (u//l, u///) +f1,/¢u// +fli/u,// +f1/,l//f (5)

Based on Hairer et al. ([9], p. 286) a better method to tackle this issue is to use graphical
exemplification indicated by quad-colored trees, in addition to some amendments to the ODEs of
order four. These trees contain four kinds of; “meagre” , “black ball”, “white bal 17, as well as “black
ball inside white ball” vertices both with brackets to link them. Fairly, in these trees we use the finish
“meagre vertex” to denote for all 1’, the finish “black-ball vertices” to denote for all u”, the finish
“white ball vertex” to denote for all " and the finish “black-ball-within-white-ball vertex” to denote
for all f, and all arc leaves of this vertex is the m-ordered f-derivative based on u, #/, u”. The sign 7y
is denoted to the first algebraic order tree, the sign 7, is denoted to the second algebraic order tree,
the sign 13 is denoted to a algebraic order three tree, while 74 is denoted to the fourth algebraic order
tree (see Figure 1).

Figure 1. The quad-colored trees.

Definition 2. The repetitively explaining for the group of quad-colored trees (RT) that gives the following: (see
Hussain et al. [25] and Chen et al. [26])

(a)  The tree Ty includes just one “meagre vertex” (called root) and 7 € RT and also trees mentioned above T, T3
and 14 are in RT.

() Ifty, .oty trg1, o tn tyg1, et € RT, thent = [t1, ..., tr, < tpg1, oy tn >, < tyi1, oy b >]a € RT s
the tree gained through connecting t1, ..., ty, tr41, ..., tn, tus1, -, tm, to “black ball inside white ball vertex”
of the tree T4 in RT and the root of the “meagre vertex” Ty is at the bottom. The subscript 4 is to remind
that the trees of the roots of t1, ..., ty, tr1, ..., tn , tyt1, ..., tm to the tree T4 include a series of four vertex.

To produce the quad-colored trees we shall use these basics:

(a)  The “meagre” vertex is permanently the root.
(b) A “meagre” vertex has just one kid and this kid have to be “black ball”.
(c) A “black-ball” vertex has just one kid and this kid have to be “white ball”.
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(d) A “white ball” vertex has just one kid and this kid have to be “black ball inside white ball vertex”.
(e)  Each kid of a “black ball inside white ball vertex” vertex has to be “meagre”.

Definition 3. We acquaint the order p(t) and similarity o (t) functions as follows: (see Hussain et al. [25])

@ p(n)=10(n)=20(1)=30(u) =4

b) o(n)=10(n)=10(n)=10(u)=1,

(o Ift = [tl, e by < byt e b >, < i1, et >]4, Vt € RT, then p(t) = 4+ Y, p(t;) +
Lisr(p(t) —1) + L n+l( (t:) —2) and o (t) = [Ty (o (t:))H (pa! pa!...), where p(t) is the number
of vertices of t,t € RT and p;! pp!... count equal trees between ty, ..., ty,.

Then we can acquaint the set S, that contain all trees RT of order p, where p;! is the multiplicity of t; for
i=1,..,m.

Definition 4. The vector-valued function F(t) : R? x R? x R? x RY — R¥ on RT is defined as the elementary
differential to every tree, t € RT recursively by (see Hussain et al. [25])

(@) F()(u, u u///) — u, F(t1)(u, u u///) — W, F(w)(u, uu, u///) _
F(w)(u,u',u”, 0"y =u", F(r)(u,u',u”, 0" = f(u,u',u"),
d
(b) F(t) = W(P(tl)(u w, u u"), o Ft) (! 0 u") fort = [t o, b, <

bty vor tn >, < tyg1, oo bt >]4.

Note: we denote by < t,41, ..., tz >, < ty41, ..., tw > the quad-colored tree whose new roots are
black ball, white ball and black ball inside white ball. (see Table 2).

By the acquaint of B-series on the tri-colored trees in [27] and the acquaint of B-series on the root
trees in ([28], p. 57), we expanded these theorems and definitions to RKTF formulas to grant the use
qualifier of B-series on the group RT from the quad-colored trees.

Definition 5. For a mapping § : RT U {@} — RY, we can define format of an official series through:

/ " hp(t) "
B(6,u,u',u") =6(Q)y+ ) W&(t)l—“(t)(u u' '’ u'", (6)
tERT

is named a B-series. (see Chen et al. [26]).
We will give the fundamental lemma that provides an important role in this construct as following.

Lemma 1. Suppose 6 be a function 6 : RT U {D} _% R with 6(@) =1, & be a

function 6 : RT — RY with §(vy) = 1 and also § be a functzon 5 : RT — RA
with 5(t) = 1. Thus, W*f(B(S,u,u',u"),B(§8,u,u’,u"),B(" p U5 u,u',u")) is also B-series
WA f(B(S,u,u',u”), B(R8,u,u',u"), B(P(P;” S,u,u', ")) =B(6W, u, v, u") where §*) (@) = 6@ (17) =
W (1) = 6@ (1) = sW(z ) 0,64 >(r4) =Tand fort = [t1, oo, tr, < tryt, ooty >, < by, oo b >
Jaith p(t) > 5,69 (1) =TTy 8(t:) TTirsq p(4:) 8(t) T 1 0(8) (o (1) = 1) (1)
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Table 2. Quad-colored trees of orders up to six, elementary differentials and associated functions.

Order t Tree a(t) Density  Elementary Elementary
p(t) weight differential
F(t)(u,u’,u”,u”’)
0 0] [0) 1 1 u
1 T1 . 1 1 u
2 T T 1 2 u”
3 13 ? 1 6 u”
4 T % 1 24 e f
5 51 % 1 120 C f'uu
5 tso % 1 120 % 02 f'eu”
5 ts3 % 1 120 1 C3 fleru”
6
6 te1 ?/ 1 360 c? £ (0,07)
13
6 te2 2 360 2 7w (u"u")
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Table 2. Cont.

Order t Tree a(t) Density Elementary Elementary
p(t) Y(t) weight differential
D(t) F(t)(u,u',u",u™)
6 te3 1 C4
1 360 4 f”u'u' (un,uu)
6 teq @5 2 360 1 "o (U,U™)
6
6 tes ? 2 360 1 05 f"u'u” (U”,U”’)
12
6 tes Eﬁ 1 360 16 e (UU™)
36
6 te7 % 1 720 1 CZ f’u u
2
13
6 t68 1 720 6 flu' um

@
6 teo E 1 720 A fof

Note: In this table, density is denoted as () and elementary weight is denoted as 7(t).

Proof. By assumption, B(d,u,u’,u") = u+O(h), B(%(_S,y,u’,u”) =u'+0O(h) and B(p(‘;lzl) o,u,u,u) =

u" + O(h). Thus, the Taylor expansion of f(B(d,u,u/, u”),B(%(_S, u,u, u”),B(% o,u,1/,u")) shows
that f(B(&,u,u’,u”),B(%&u,u’,u”),B(% S,u,u,u)) = hf(u,u',u") + O(h®) which implies that

sW(@) =W () = 6W (1) = 6W(13) =0, 6@ (1)=1.
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Depend on the proof in Hairer et al. [28], we have

WA f(B(8,u,u/, u"),B(%S,y,u’, u”),B(p(ph; L) S,uu',u'")) =

m | m
Y oY p mw o"f (u,u, 0" (B(6, u,u",u") —u)"

m>0 n=0 (Tl — ]’)'(m — n)| ou’ ou/n—r gu'm—n

=

(B(% 5,u,u" ") — u/)”*T(B(P (th_ 1) Suu, 'y — u//)infn

4 o m!
=h ZT!(TI—}’)!(TH—TI)' L, o b D

"t ERT t,€RT tiq ERT\{Tl,Tz,T3} ty 6RT\{T],T2,T3}

Z Ret)+p(t)+p(tm) — (m—n) (a1 1) . p(tn) 5(11)
beRI () weRT (o) )0
_ _ - _ amf
(k) 0(tr +1) e b(ty) 0(bn + 1) ... 6(Em) ST a9 (u,u',u") (F(tl)(u, ' u u'")

m

Ftn) o, u” ™)) =30 Y0 Y ) )

m>0 r=0t,€RT  t€RT t,,1€RT\{1, 7,73}

> B ml g pp! o Gy Gl 01 Do)
tn€RT\{11, 2,13} ty11€ERT\{T1, 2,13}  tw€ERT\{11, 22,13} o(t) ri(n =)t (m —n)!
p(tn 4+ 1) e p(t) 8(t1) o 6(t) 8ty 4+ 1) . 6(tn) 6 (tn + 1) . 8(tw) F(8) (!, ", u™")

= ) hp((;) oty +1) e 0(tm) 0(t1) o 8(t) 8ty +1) . 8(ty) (ty +1) ...

teRT, p(t)>5 ¥
5(tm) F(8) (u, 1!, u” 1"

where, one equality t = [t1, ..., t;, < tyi1, .o, tn >, < ty41, -y tm >]a, and the number of methods of
ordering the subtrees ty, ..., by int = [t1, ., by, < try1, ooy tn >, < tpi1, ooy b >]a, ie., the multiplicity
of t = [t tr, <t by >, < t tm >]g is Hg—r)n—g)!(m—n)! count equal

17 s by, r+1s --s tn ’ n+1s = tm 4 ml g gl o G ol G 1 Gl Ui, H2, --- q
trees between t4, ..., t;, §1, ¢, ... count equal trees between t, 1, t,42, ..., ty and {1, {2, ... count equal
trees between t,, 11, ty42, ..., Ly We get

5 — .ll{“fi) ﬁlpai)é(ti) ﬁlpai) (p(ts) — 1) 8(t).
i= i=r+ 1=n+

Then we have

h4f(B((5, w i, M”),B(%g,y, " u”),B(p(p -1 5=’ w i, u//)) _

Ket)

rerr o (t)
O

Theorem 1. Suppose that the analytic solution u(xo + h) of the form (3) is B-series, B(e, ug, ug, ug) ) with a
real function e defined on RT U {@}. Then

1 1 1

(@) =1, e(n)=1, e(m)=5 em)=¢, e(u)=y



Symmetry 2019, 11, 246 9 of 30

lZI’ldfOT‘ t = [i’l, v b, < b1, v b >, < tpgt, ot >]4,

1 T n

U= em - DeH -2em -3 LI L1 et
IT plt) (p(t) ~ Vet
i=n+1

Proof.

u(xo+h) = Ble, ug, uj, uy)
= e(D)ug + he(t) )up + he(o)ugy + h2e(t3)uf + hte(ty) f (o, uf, uf)

Ke(®)

+ e(t) F(uo, ug, uy, uy'),

tr1€RT\{11, 2,73, } (t)

Thus, the first fourth derivative of u(xg + &) is presented by

d
(u(xg +h)) = % [u(xo + h)] = e(t1)up 4 2he(o)ufy + 3h%e(3)ul + 4he(ty) f (o, uf, uf))
Hhe®)
¥ OO ) Flao g ) = BEE o ), )

ot
t 1€RT\{1, 2, 73,74 } ( )

2
(u(xg +h))? = ddhz [u(xo + h)] = 2e(2)uf + 6he(ts)uly’ + 12h%e(ty) f (o, uf, uf))

— 1)het)—2
+ P(t)(P(t) tl)h e t)F(Mo,MO,MO,M(/)//))
t 1 ERT\{1, 70,73, 74 } U( )
-1
- B(p(phi2)e/ uop, 1/[6, ug)/ (8)
a3 /
(o + 1)) ®) = 25 [ + )] = 6e()u’ + 24he()  u, )
_ _ (H)-3
N p(t)(p(t) —1)(p(t) —2)h° e(t) F(ug, ty, ull, ull)
ty+1€RT\{T1,T2,T3/T4} U(t)
—1 —2 oo
= B(w,uo,uo,uo),
4
(o 1)) ®) = 4 T + )] = 24e(y) (o, )
_ _ _ (t)—4
. p(O(0) = Do) ~ Do) =3I
1 €RT\{T1, 72,73, 72 } o(t)
_ B(p(p*1)(9*2)(0*3)6,%”6,”{)/), )

h4

Moreover, of Lemma 1, we have

%e, u,u, u”),B(%e, u, ', u")) = e® (1q) f(u, uf, uf))

e(4)(t) F(ug, ug, ug, uy'), (10)

teRT\{1, 75,73, 14 } U(t)
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where 6(4)(1'4) =landt = [i’l, o b, < b1, v tn >, < tpgt, ot >]4 € RT\{Tl,Tz, T3, T4},
() =]Te(ti) TT e(te(t) TT pt)(p(ts) = 1)e(ts),

i=1 i=r+1 i=n+1

Inserting (9) and (10) to Equation (3), then depending on the both sides, we compare the
coefficients of the same elementary differential to obtain

e(try) = 24’

and t = [i’l, v by < trg1, v B >, <ty o b >]4 € RT\{Tl,Tz, T3, T4},

1
O = 000 -1 (0 —2) (o) He 1111"
TT et (o(t) — De(t).
i=n+1

lastly, depending on the Taylor series expansions of u(xo + h) about h = 0,e(®) = e(ry) = 1,
e(n) = 2, e(t3) = %,e(u) = i. O

Vt € RT, we lead to write the density as follows (t) = ﬁ and also write non-negative integer as

follows a(t) = 0(’1522 ok Thus, from Theorem 1 we have two propositions that we will mention below.

Proposition 1. Vt € RT, the density y(t) is the non-negative integer valued function on RT satisfying. (see
Hussain et al. [25] and Chen et al. [26])

@) r(m)=1 r(w)=2 7(wm)=6 1vr(u)=24
(i) t=1[t1, o tr, < tra1, o tn >, < tyi1, «o tm >]a € RT,

\e

N
2
=

() =p(8) (o) ~1) (o) ~2) (o) ~3)[Tote) TT 2081 [T i,

i= r+1p i= n+1p

Proposition 2. Vt € RT , a(t) is the positive-integer satisfying. (see Chen et al. [26])

(i) a(t)=1 a(t)=1, alts) =1, a(ts) =1,
(i) t=[t", o 8, <t Lt >, < L Lt >4 € RT, with by, ..., t, distinct and t4, ..., t,
distinct, t,, 11, ..., ty distinct,

o0 =)= T (29) 1T Gat) 1T ()

i—1 Hit i=rp1 Hit iZnyq Bt

where u; is the multiplicity of t;,i = 1,...,m
Then the B-series (6) can be written as follows:
Lot
B(6,u,u',u") = 5(D)y + Z Wd(t)'y(t)oc(t)lf(t)(u u',u”,u", (11)

terT P
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and f(B(6,u,u’,u"), B(%g,y, ', u', B(p(pfl) 5,u,u',u")), can be expressed as

h2
/! " N !/ " _1 I N
F(BS, u, i, u ),B(%(S,y,u,u ),B(%a ) =
()4
B2 50 oy (6) () B8 (1, " ™), (12)

tGRT\{T],TQ,Tg} p(t>'

3.2. B-Series of the Exact Solution and Exact Derivative

Depending on the former analysis, we can present the theorem as following

Theorem 2. The analytic solution u(xo + h) of the problem (3) and the derivative u'(xo + h), u” (xo + h),
u"'(xo + h) have B-series respectively as follows,

p(t)
u(xo+h) =up+ Y, ;l(t)'uc(t)F(t)(uo,uo,uo,u(’)”) B(O‘(F)i?‘r,uo,ué,uf)')
tERT : :
1
- B (,Y(t)/u()/ u6/ ué)/)/ (13)
he(H-1 a(t)o
W (xg+h) = ——a() F(t) (ug, ub, ull, ul B(,u ,u/,u”)
(0 ) tEZR:T(P(t)_l)' () ()( 0s %0, %0 0) h(p—l)' 0, %0, %0
_ P roon
_B(l/l’)/(t),MOIuO,u()), (14)
he(h)-2 a(t)o
W (xg+h) = ——a() F(t) (ug, uh, ull, ull —B(,u,u’,u”)
(0 ) teZR:T(p(t)_z)! () ()(0 0/ %0 O) hz(p—Z)! 0- %0, M0
-1
= B(pl(szy(t)) uo,ué,u{)'), (15)
Lo(H—3 a(t)o
W (xg+h) = —— w() F(t) (ug, ub, ull, ull —B(,u,u’,u”)
( ) tEZR:T(P(t 73)' () ()(0 07 %0 O) h3(p_3)| 0,40, %0
—1 -2
= B(p(P h312((f) ),uo,u(), uf)'). (16)

The proof is given by Hussain et al. [25]

3.3. B-Series of the Numerical Solution and Numerical Derivative

So as to constitute the B-series for the numerical solution #1 and the numerical derivative ul, ”1 , u’l’ !

of the form (3) created by the RKTF approach (2), we suppose that U;, U’ and U’ "in Equation (2) can
be developed as B-series U; = B(1;, uo, g, ug ) , U] = B(%l/')i, uo, ug, ug ) and Uj" = B ( i, U, Up, U )
respectively. Then the first-three equations in the scheme (2) are as follows,

1
B(lpi/ Up, u6, ué) = Ug +¢; h ”0 + Czhz ”0 + C3h3 "

S —
Y (B o, ), B ), B o, i ),
i—1
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) 1
B(%lphuo,ué,ué) = uo+ChM6’+ C2h2 "

S
+h3;ﬁi]'f(B(lPi,uo,uf),u{)’),B(%lpi,uo,u{),ug),B( o

plp—1)
B( h

+ hz ; ﬁl]f(B(lPlr Uo, Mé, ug); B(%JJZI U, 1/[6, ug)r B( 2

P, uo, up, uy) = uy + c;hug

plp—1) -

n

plp—1) -

by (11) and (12) the former two equations can be presented as

Ke(t)
{(D)ug +
Pi(D)ug teZRTp( ol

+ %c?lﬁ ug' +n*y

Pi(8) 7 (1) a(t) () (o, !, ", ™) = g + ciluly + S22 ul

Ke(t)

X i (0 (o) PO,

j=1teRT\{t, 0,13} P

pe(t)—1
PG
s pe(t)—1

= terT\ () P

pe(h)—2

X -2

S

Wy

=1 terT\ {215} P

It follows that

$i(@) =1,

Pi(t) =1,

Pi(n) =1,

and

t) = 21 a;ip; Y (1)
=

(0 = X g 0,0 = X

I i (1) v (t) a(t) F(t) (uo, ug, ug,uy') = uy + cihuf + czh2 uf + 1

o0 aij 4 (1) a(t) F(t) (uo, up, ug, ug'),

pe(t)—2

FIO 25 9 y(8) () F(t) (o, up, g, ug)).

1
Yi(t) =ci, Yi(m) = EC%’ ¥i(3) = -

S
Z“Z] lPJ Z Gijr

j=1

_ - 1 - 13
¥i(r2) = ci, pi(13) = EC?I i() = 7 ) i,

- 1 -
IPi(T3) = Ci, llJz(T4) IR Zﬁl‘]‘,

aji -

=1F

i, o, U, 1p ),

1/11'/ uo, 1/[6, ”6/))/

Pi(t) v (£) a(t) F(t) (o, ug, ug, ug’) = ug + cihug’

12 of 30

(17)

(18)

(19)

furthermore, for trees t = [t, ..., t;, < tpri1, o tn >, < tyi1, - tm >]s € RT and p(t) > 5, Lemma 5 gives

Y t>=ﬁ¢j<ti> IT o(t)d; 11 olt)(ett) — 1

i=r+1 i=n+1

(20)
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inserting (19) into (20) we obtain:

n s m S -
B 00 =TT Lo TT | Zash) IT | Eawdie)] v
i=1 i=r+1 Lk=1 i=n+1
We denote l/)j(4)(ti) = nj(t), foralltrees t=[t1, ..., tr, < tpi1, o b >, < tyi1, ooy tm >]a € RT
and p(t) > 5.
Thus, (21) can be written as follows,

=TT L owned] TT | Lawne] TT | St

i=1 i=r+1 i=n+1

Commonly, the next significant lemma yields the values of #;(7) for each tree belonging to
RT\{1, 1, 13}

Lemma 2. We can compute the function 1;(t) on € RT\{1, 12, T3} recursively.

(i) W](T4) =1
(ii) for t= [Tl L, T < tfjff, oy >, < tﬁjfll, vy th" >4 € RT with ty, ..., t, distinct and different

from T, T, T3, zmd PR P dzstznct, tnat, -, tm distinct,

Hk

1 +2p5+3 e
T]i(t) 2 G Clm H2TOoU3 [Zal]ﬂ] te :| . H |:Zalj17] ty :|

k=r+1

Hk

H {2“11771 t ] ’

k=n+1

where, y1, Uy, p3 is the multiplicity of Ty, T, T3 respectively and py. is the multiplicity of ty for k = 4, .., n.

Here, we define the vector 77(t) = (1(t), ..., qs(t))T fort € RT\{t, ™, 13}

(i)  The initial weight linked to u,,, 1 is denoted by ¢(t) = ¥ b;n;(t) = b 5 (t)
(i) ¢ (t) is denoted to the initial weight linked with uj, 1 and written as follows:

¢ (1) = Tioy bii(t) = b (1)

(iii) (t) is denoted to the initial weight linked with u],, ; and written as follows:

(1) = i b milt) = T ().
" (t) is denoted to the initial weight linked with u,

(1) = S b i) = T (8).

n ’ , and written as follows:

(iv)

‘S‘S‘S

Theorem 3. The numerical solution uy and the numerical derivative u’, u,u’" of Equation (3) produced by
the RKTF approach (2) have the following B-series

1 1 he()
uy(xg +h) :uo+hu6—|—§h2u{)’+8h3u{)"+ ) 0 @(t) y(t) a(t) F(t)(uo, ug, ug, uy’),
tGRT\{T] ,T2, T3} p



Symmetry 2019, 11, 246 14 of 30

1
(o + ) = g o+ P T e g0 () ale) P8 o, ),
teRT\{11, 72,13} pE):

hp(t) -2,

ui (xo +h) = ug +hug' + ) o ¢ (£) v(t) a(t) F(t)(uo, ug, ug, ug'),
teRT\{1, 12,13} pLE):
we-3

///(x0+h) _ u(/)//+

o Y (t) y(t) a(t) F(t)(uo, ug, ug, ug’)-
teRT\{11, 72,13} pLE):

Proof. By assumption u; , u; and u!' in the scheme (2) are B-series B(1;, 1o, (), u ), B(%lpi, Ug, U, ug )

and B(2£ ( i, U0, (), 11) ) respectively, from Lemma 5 we have

Ke(t)
— 9 (1) a(t) F(t) (o, up, ug, ug)).

4
IF (i ) =B(pY, o, ) = a
teRT\{1,m, 73} pLb):

1
Therefore,
1 1
ul(x0+h):u0+hu6+§h2u6’—l—gh3 ’”—I—ZbB Y g, uly, ull)

=u +hu0+ h2 uy + h3 uy' + Z (D)1 @(t) y(t) al(t) F(t)(uo, ugy, uy, uy’),
tGRT\{Tl ST, T3} p

1

1 13
uy(xo +h) = uh +huy + Ehz uy + 7 Y b B(p™ , ug, uf, u)
i=1

MO +hu + h2 M/// + Z (t)l % (t> ’Y(t) Dé(t) F(t)(l/lo, uO/ MO/ug/)
teRT\{1, 12,73} piL):

uf (xo +h) = ug + hug' +a Zb” Y g, uly, ul))

we-2 -, "
@ (t) v(t) a(t) F(t)(uo, ug, ug, up'),

=ug +huy + )
tGRT\{T],Tz,T3} p(t)|
///

uy’ (xo +h) = u6”+ Zb'” (!, uo, uh, uf)
hp(t)—?) "

=uy + Y o ? (£) () a(t) F(t)(uo, ug, ug, ug')-
teRT\{1, 72,73} P

O

3.4. Algebraic Order Conditions

Through Theorem 1 and 3, we arrived at the major goal of this study.

Theorem 4. The RKTF method (2) has order q(4 < q) if and only if the following conditions are satisfied as
given in Hussain et al. [25])
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Corollary 1. (see Hussain et al. [25]). Assume that

2
T e R L T LIS L B LS )

r+17 n+17
Y S G e Hr Pr+1 Hn Hnt1 Pm
E=[n', 52 5o, bt e b, < B B> < B e e >

where ty, ..., t, are distinct and different from vy, T and 3 and t,1q, ..., ty , ty11, ..., tm are distinct. Then

1

(D) =5 g (), p(B) = pi(#), () = 21261 (t).

Based on Corollary 1 assuming that the t* and f trees grant the same order conditions, then these
trees are equivalent. Thus, we can delete some trees since they are equivalent. For example, in Table 2
trees tg; and tgg of sixth-order are equivalent.

Based on Theorem 4 and Corollary 1, the algebraic order conditions up to order six for the RKTF
formula can be presented as follows:

order 1:
b///Te — 1. (22)
order 2: 1 1
b///TC — 5, b”Te — E (23)
order 3: 1 1 1 1
b///TCZ =z, b///Tj = -, b//TC =, b'Te — 6 (24)
order 4:
pIT3 — i’ p'TA = %, b/NT(C./zle) — %, V'T Ac = %/
1 = 1 1 1
nT .2 nT /T T
b e 15 b YL b e L bie 7 (25)
order 5:
1 1 - 1 - 1 = 1
MmT 4 _ = mT A — = mT = mT _ mrT xF2 _ -
b ¢ =5 V" A 1207 b Ac 1207 b c.Ae 30’ b Ac 0’
= 1 = 1 1 - 1 = 1
b///T Z.A =, b///T Ac) = —, b//T 3 _ — b//TA = -, b//T Ae) = —,
(A) = 15 (e.Ac) = 35 “ T 120 (e.Ae) = 35
= 1 1 = 1 1
V'TAc= —, V==, bVTA=_— blc= (26)

120’ 60’ 120’ T 120
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order 6:

Ve = % b Ac = %o b7 (c.Ae) = 1411—4, V' A = 31@
BT(CAR) = 05, HT(AC) = s, BUT(EAl) = o,
b7 (c.Ac) = ﬁ, b7 (3. Ae) = 11—2, V'"TAS = %,
b (c.Ac?) = ﬁ, b (c?. Ac) = %, b (c.Ac) = 1;—0, VTt = %,
b'TA = % ' Ac = %,b"T(C.Ae) = % bt A = %
BT A) = oo, VTP = o WA= o W(ede) = o,
VTAc = %0, bTA = %0, Te2 = 31@ (27)

The following simplifying assumption is used to reduce the number of equations to be solved:
= 2
T =%

3.5. Zero-Stability of the New Method

Here, we will discuss the zero-stability of the new techniques. It is stable at zero significance to
prove the convergence of multi-step techniques and stability (see [10,11]). In [29], also discussed on the
zero-stability to obtain the upper boundedness of the multi-steps methods. Now;, the first characteristic
polynomial for the RKTF method for Equation (2) is based on the following equation:

1 0 0 0] [ upps 11 3 U ua
1
0100%12u’n+1:011§hzuf1
" " 4
0 0 1 0| |Fuy, 0 0 1 1{ |hku,
00 0 1f [FPu), 00 0 1| |Ku)
1 0 00
h I—Oloo'h'd i i ffici f hu! h2u d r3u'”
where 0010 is the identity matrix coetficient of u,, 41, nu, 1, h*u; 1 an Uyt q
0 0 01
1 1
Ll s 5
011 % : : L I 2,0 3., .
and A = 00 1 1|8 matrix coefficient of uy, hu;, h“u;, and h’u), respectively.
0 0 0 1

-1 -1 -

= NI\

p(g) = det[Ig — A] =

N
|
—_
|

0
0 0
0

o
e}
N
|
—_

thus, p({) = (£ — 1)*. By solving the characteristic polynomial, we obtain the roots, { = 1, 1,
1, 1. Therefore, the RKTF methods is zero stable since the roots of the characteristic polynomial
have modulus less than or equal to one. The RKTF is consistent because the RKTF has order p > 4.
This property, with the zero stable of the methods, implies the convergence of the RKT method.
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4. Construction of the RKTF Methods

According the order conditions stated in Section 3.4 before we proceed to construct explicit RKTF
methods. The local truncated error for the g order RKTF technique is defined as follows:

/ " " 2
ng+1 Mg41 n n

+1 +1
I Lé‘”l) o= qz (Ll(q+1))2+ qz (L;(q+1))2+ qz (L;/(q+1))2+ qz (L;//(q+1))2 (28)
i=1 i=1 i=1 i=1

where LU+D) [/(a+1) 17(+1) and [(3+1) are the local truncation error terms for u, u’, 1" and 1"
respectively, Lg(q *+1) is the global local truncation error.

4.1. A Three-Stage Fourth-Order RKTF Method

In this subsection the derivation of the three-stage RKTF technique of order four by using the

algebraic order conditions up to order four and simplifying assumption ) 4;; = % will be considered.
The resulting system consists of 15 nonlinear equations with 23 unknown variables, solving the
system simultaneously and the family of solution in terms of a1, az1, a3, 432, by , ¢3 and letting
ay =0, b3 =0, and b} = 0 are given as follows:

3 2.3 3
a3 = — a3+ ;C3 2¢3 5037
i} (=3+4c3)® . c3 (14c3 — 20032 — 3 +9¢5°)
a1 = — (5431 = — ,
8 (—2+3¢3) —3+4cs
i} (3—8c3+6¢c32) c3(—2+3c3) 1 , —4+5¢3
I3 = Jbi= o5 —by, by =
2(—3+4c3) 24 12(—3+4c3)
b —2+3c3 "_ 6c32 — 60341 by — (2—7C3+6C32) (=2+3c3)
27 12(-3+4c3)’ ' 6(-3+4c3)c3’ 2 3(3-8c3+6032)(—3+4c3)
b — —(—1+c3) w_ 6c®—6c3+1 2 (4—12c3+9¢c5%) (—2+30c3)
57 6(3-8c3+6c32)c3’ ! 6(—3+4c3)c3’ 2 3(3—8c3+6032)(—3+4c3)
i 1 _ —B3+44c

5 T 6(3-8c316030) 3’ 2 2(—2+3c3)

Next, we minimize the truncation error term by using minimize command in Maple. Thus, for
the optimized value of coefficients in fractional form we chose a1 = — %, az = %, az = %, azp = 5%,
c3 = %L and b, = & with these values || Tés) 2= 7.98593 x 10~3. Finally, all the parameters of
three-stage fourth-order RKTF approach that will be denoted as RKTF4 can be written as follows (see
Table 3):

Table 3. The RKTF4 Method.

0 0 0 0

9 2 81

x o 0 0 1352 0

21 8 8 g 29 3 644 9737 0

5 2 5 62500 50 565 31250
13 1 0 5 13 0 121 2873 1250 121 4394 15,625
600 50 108 108 1134 8667 20223 13 8667 40446

4.2. A Four-Stage RKTF Method of Order Five

For four-stage RKTF technique of order five, the algebraic conditions up to order five will be
solved. The resulting system consists of 29 nonlinear equations with 37 unknown variables, solving
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the system together will give a family of solution with 11 free parameters of a1, asp, a4, 443, d»1, 42,
dg3, b}, c2, by and by are given as follows:

1

C10(1602 —8ca+1) (5ep —4) (dey — 1)°
+ 11250 ¢2%a4 3 + 800 ¢2°a5 1 + 66250 cp*dy  — 21250 co*ds 3 — 97500 c2°dy 5 + 12500 2%dy 3
— 4041 +320 0% — 32¢y — 1134 ¢p° + 1684 co* + 1875 %y 0 — 1875 cx%d43 + 370 Codin 1),

as1

(50000 c2%74 5 — 880 ¢2° — 1040 % 1 — 18750 ¢2%ay 5

= 0% co? i} 4 (50 c* — 260 ¢5% + 321 ¢cp2 — 128 ¢, + 16)
i1 = s = o = 2 2 /
2 (4cz—1) 625 ¢; (10C2 —12C2—|—3)
a ! (12500 5 5_ 5 5
31 ag207° +12500 a4 3¢2° — 220 ¢ + 12800 a3 »¢2

C 10(1602 — 80+ 1) (5ep — 4) (dcp — 1)2
—23040a3,505* — 21250 a5 pc0* — 21250 ag 302" + 366 c* — 192 > + 15040 a3 2c° + 11250 ag 505>
+ 11250 a4 3¢0° — 1875 a45¢2> — 1875 a43¢2° + 32 cp> — 4640 a3205° + 690a32¢5 + 11045 1c; — 40435

—40ay,),
—(2c—1
iz = 2e—1e 5 (—440 0> + 622 03> — 256 ¢ + 32 + 25000 2 14 5
10 (162 — 8¢y +1) (5¢p —4) (4ca — 1)
— 36250 ¢34 5 + 15000 %45 — 1875 d49¢p + 6250 ¢2°dy 3 — 7500 c22dy 3 + 1875 codiy 3),
1
iy = — 1250 ¢34 3 — 110 ¢ + 1250 ¢34 5 — 1500 cp2a 128 c5?
ay 1250, (10022 —12¢, 1 3) ( C27l4,3 c2” + C2 4,2 C2"ay3 + 1282
— 1500 cp%dyp — 32¢ + 375 oy 3 + 3754005 +204, 1),
) (5c0—4) (3322 —34c2+8) (4¢3 —1)% (275 2% — 430 )2 + 208 ¢, — 32)
a = ,a = ’
27 62520, —1) 2 (1002 —12¢,+3) 2 625(2c; — 1) 2 (1002 — 12¢5 + 3)
- 660 co2by +20 ¢y — 768 coby — 54192 by p _  —1502+1056coby —384bs +10 4
e 300 c,2 e 1200 (2c; — 1) 2 T
y_ 20 22 +9 ¢ — 240 byc, — 504 bycp + 96 by — 1+ 480 bycr? + 480 b co? = 02
1 120¢p (4co — 1) ’ 4oy —1'
o 120 byer + 384 by — 96 b, —4cp + 1 b 20 +40 -1, c—1
2 120cy (4cp — 1) 1 48¢c,2 77 24¢52(5¢c0 —4) (2 — 1)’
b 192 cr* — 208 23 + 842 —15¢, + 1 W — 25(10¢p? — 12¢5 + 3) i — 2002 +4c—1
3 24 (23— 1) 2 (11 —4) "% 48 (11cy —4)(5cp—4)" 1 48c,2
" 1 A — 1)? (16c2> —8co+1) ,,  125(10c,2 —12¢; 4 3)

2 T 2402 (50—4)(20c2-1)"7 T 2402 (1lca—4) (2ca—1) "* T 48(1lca—4) 5oy — 4)

Minimizing the local truncation error norms and the optimized value of coefficients in fractional

form will result in ay; = %, azpy = —%, Ay = —%, ay3 = %, dy = Zlm’ g = 101W’ g3 = %, ) = %,
by =2 ,by = 1 and B, = 135 with these values || 7. [l,= 8.771395898 x 10-2.
Lastly, all the parameters of four-stage fifth-order RKTF method indicated by RKTF5 can be

written as follows :
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o= 37 o — 1 i — 1 = 1369 o= 37 w — 29,560,597 v — - 1
50 2’ 00 5000" 98’ 288,240,050" 25
T — 23,408,341 i — 20,407,091 = 1369 i O.cu = 4 ter = 0, ey = — 6
4,519,603,984’ 4,519,603,984" ' T 19,208’ ’ 5 ’ 25’
s — 13 = 77,969 T — 1 s — 3 = 3,347,324 fi 2277
25 3,737,000 1000” 1007 17,283,625’ 553,076
i = 8,449,119 o 1107 - 30,067 . _2 . 1m0 116911 . 13,529
69,134,500 14,504 21,756’ 5 10"t 2,053,500" 2 394,272’
y_ 5620741 3 w1273 . 40,625 »_ 7,176,589 . _ 2505
37 49,284,000 ¢ 100" ! ~ 10,952 2 295,704" 3~ 20,403,576" * ~ 14,904’
o 1273 78125 o 5,764,801 o 12,625
1710,952"°2 — 147,852 % ~ 10,201,788" * ~ 14,904

5. Numerical Experiments

Some of the problems involving u® = f(x,u,u’,u") are tested in this section. The numerical

results are compared with the results obtained when the same group of examples is transformed to a

system of first order and is solved using the existing RK of the same order.

RKTEF5: the explicit RKTF method of order five with four-stage derived in this paper.
RKTF4: the explicit RKTF method of order four with three-stage constructed in this paper.
RKEF5: the fifth-order RK method with six-stage given in Lambert [11].

DOPRIS: the fifth-order RK method with seven-stage derived in Dormand [10].

RK4: the classical RK method of order four with four-stage as given in Butcher [29].

Problem 1: (Linear System Inhomogeneous)

RKM4: the RK method of order four with five-stage derived in Hairer [9].

up (x) =—ug(x), w(0)=1, w(0)=1, wf(0)=1 u"(0)=1,
ug (1) = —uf(x), wa(0) = —1, wh(0) =1, W§(0) =1, w'(0)=-1,
us! (x) =~ (x) —u3(x) —cos(x), wa(0) = —1, W40)=0, W(©0)=1, uf(0)=0,
ug (1) = —uf(x) —ua(x) ~ 2cos(x), w(0) = -2, wy(0)=0, wW(0)=2, u(0)=0,
The exact solution is
up (x) = e, up(x) = —e™,  uz(x) = —cos(x), us(x) = —2cos(x),
Problem 2: (Homogeneous Linear Problem)
u® (x) = —u'(x), u(0) =1, u'(0)=0, u"(0)=-1, u"(0)=0,
The exact solution is
u(x) = cos(x).
Problem 3: (Inhomogeneous Nonlinear Problem)
u® (x) = 1?(x) 4 cos?(x) — " (x) — 1,
u(0)=0, ' (0)=1, u(0)=0 u"(0)=-1,



Symmetry 2019, 11, 246 20 of 30

The exact solution is u(x) = sin(x).
Problem 4: (Inhomogeneous Linear Problem)

u® (x) = —2u" (x) —u(x) +1,
u(0)=0, u(0)=0, u'(0)=1, u"(0)=0,

The exact solution is #(x) = 1 — cos(x).
Problem 5: Linear system homogeneous given in Hussain et al. [25]

(4)

up (x) = ( ) ur(0) =1, wy(0)=-1, u{(0)=1, ' (0)=-1,
ust) (x) = 160~ %y (), 0(0) =1, uh(0)=-2, uf(0)=4, uf'(0)=-8,
ul? (x) = 8l *up(x), uz3(0) =1, u4(0)=—3, uf(0)=9, ul(0)=—27,
ul (x) = 256 ¢~ *us(x), us(0) =1, uh(0)=—4, ul(0)=16, ul'(0)=—64,

The exact solution is given by

u(x) = e %, up(x) = e 2%, uz(x) = e 3%, uy(x) = e 4*,0< x < 3.

Table 4. Numerical results for Problem 1 for RKTF4 method.

h Methods EN MAXE TIME
RKTF4 404 1.222871(—-1) 0.017
0.1 RK4 1616 1.885232(— 1) 0.037
RKM4 2020  3.403273(—2) 0.065
RKTF4 1600 1.338047(—4) 0.018
0.025 RK4 6400 7.022302( 4) 0.060
RKM4 8000 1.194765(—4) 0.066
RKTF4 3204 5.157453( 6) 0.019
0.0125 RK4 12,816 4.496182( 5) 0.064
RKM4 16,020 7.571023(—6) 0.075
RKTF4 6404 2.224660( 7) 0.020
0.00625 RK4 25,616  2.798824(—6) 0.068
RKM4 32,020 4.633184(—6) 0.090

Table 5. Numerical results for Problem 2 for RKTF4 method.

h Methods EN MAXE TIME

RKTF4 12,000 5.534239(— 0.020
0.1 RK4 64,000 6.414194(— 0.022
RKM4 80,000 5.560571(— 0.039

(=5)

(—4)

(—5)
RKTF4 48,003  2.162515(—7) 0.025
0025  RK4 256,016  2.365790(—6) 0.029
RKM4 320,020  2.164114(—7) 0.041

(—8)

(—8)

(—8)

(—9)

(=9)

(-9)

RKTF4 96,003 1.329278(— 0.026
0.0125 RK4 512,016 8.094855(— 0.044
RKM4 640,020 1.330367(— 0.056

RKTF4 192,000 1.193586(— 0.039
0.00625 RK4 1,024,000 5.429163(— 0.057
RKM4 1,201,354 1.201354(— 0.063
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Table 6. Numerical results for Problem 3 for RKTF4 method.

h Methods EN MAXE TIME
RKTF4 303 5.505858(—5) 0.016
0.1 RK4 1616 1.231418( 4) 0.018
RKM4 2020 7.157474(—=5) 0.019
RKTF4 1200 8.246706( 7) 0.018
0.025 RK4 6400 4.384085(—7) 0.019
RKM4 8000 2.778406(—7) 0.020
RKTF4 2403 5.81 1466( 8) 0.020
0.0125 RK4 12,816  2.730099(—8)  0.022
RKM4 16,020  1.765267(— 8) 0.024
RKTF4 4803 3.800168(—9) 0.021
0.00625 RK4 25,616  1.687264(—9) 0.025
RKM4 32,020 1.102847( 9) 0.029

Table 7. Numerical results for Problem 4 for RKTF4 method.

h Methods EN MAXE TIME
RKTF4 33 2.916673( 7) 0.013
0.1 RK4 176 5.134405( ) 0.015
RKM4 220 7.799860( 8) 0.019
RKTF4 120 4.476108( 10) 0.025
0.025 RK4 640 1.870891(—9) 0.029
RKM4 800 3.044243(—10) 0.032
RKTF4 243 2.326739( 11) 0.028
0.0125 RK4 1296  1.155365(—11) 0.033
RKM4 1620 1.902623( 11) 0.057
RKTF4 483 1.281475( 12) 0.039
0.00625 RK4 2576  7.177037(—12) 0.047
RKM4 3220 1. 187606( 12) 0.065

Table 8. Numerical results for Problem 5 for RKTF4 method.

h Methods EN MAXE TIME
RKTF4 90 1.950979(0) 0.018
0.1 RK4 480 3.529526(1) 0.022
RKM4 600  8.144031(0)  0.025
RKTF4 363 1.141631(— 3) 0.019
0.025 RK4 1936 1.560395(—1) 0.026
RKM4 2420 3.606455(—2) 0.038
RKTF4 720  7.384678(—5) 0.021
0.0125 RK4 3840 8.711749(—3) 0.036
RKM4 4800 2.014647(—3) 0.056
RKTF4 1440 1.991337( 6) 0.024
0.00625 RK4 7680 5.445548(—4) 0.057
RKM4 9600 1 .259457( 4) 0.071
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Table 9. Numerical results for Problem 1 for RKTF5 method.

h Methods EN MAXE TIME
RKTF5 404 5.327998(—5) 0.021
0.1 RKF5 2424 2.064967( 3) 0.024
DOPRI5 2828 5.732670(—4) 0.027
RKTF5 1600 4.254471 ( 7) 0.022
0.025 RKF5 9600 1.917218(—6) 0.031
DOPRI5 11,200 5.706643(—7) 0.033
RKTF5 3204 1.786611 ( 8) 0.023
0.0125 RKF5 19,224  6.053233(—8) 0.040
DOPRI5 22,428 1.931767(— 8) 0.043
RKTF5 6404 6.002665(—9) 0.028
0.00625 RKF5 38,424 4.878530(—9) 0.064
DOPRI5 44,828 7.250492( 9) 0.075

Table 10. Numerical results for Problem 2 for RKTF5 method.

h Methods EN MAXE TIME
RKTF5 16,000 8.041249(—6) 0.020
0.1 RKF5 96,000 3.609465(—6) 0.023
DOPRI5 112,000 1.108071(—6) 0.026
RKTF5 64,004 7.853954( —9) 0.028
0.025 RKF5 384,024 3.523595(—9) 0.032
DOPRI5 448,028 1.085847(—9) 0.045
RKTF5 128,004 4.112761(710) 0.035
0.0125 RKF5 768,024 2.510125(—10) 0.067
DOPRI5 896,028 2.290347(—10) 0.075
RKTF5 256,000 3.651384(—10) 0.043
0.00625 RKF5 1,536,000 3.557808(—10) 0.090
DOPRI5 1,792,000 3.557941 ( 710) 0.105

Table 11. Numerical results for Problem 3 for RKTF5 method.

h Methods EN MAXE TIME
RKTF5 404 5.997978(—5) 0.020
0.1 RKF5 2424 9.761318(75) 0.029
DOPRI5 2828 2.837350(—5) 0.037
RKTF5 1600 1.024417(—8) 0.021
0.025 RKF5 9600 6.841436(—8) 0.043
DOPRI5 11,200  1.404994(-8) 0.053
RKTF5 3204 1.413103(79) 0.035
0.0125 RKF5 19,224 2.045084( -9) 0.046
DOPRI5 22,428 3.752920(—9) 0.059
RKTF5 6404 1.078057(710) 0.042
0.00625 RKF5 38,424  4.854006(—11) 0.072
DOPRI5 44,828 1.245892(—11) 0.080
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Table 12. Numerical results for Problem 4 for RKTF5 method.

h Methods EN MAXE TIME
RKTF5 404 2.812051( 7) 0.016
0.1 RKF5 2424 1.813420( 6) 0.017
DOPRI5 2828 2.251424(—8) 0.025
RKTF5 1600 2.432738( 10) 0.018
0.025 RKF5 9600 1.767513(—10)  0.019
DOPRI5 12,200 6.083276(—10) 0.021
RKTF5 3204 7.153833 ( 12) 0.021
0.0125 RKF5 19,224  5.553996(—12) 0.023
DOPRI5 22,428 1.871991( 12) 0.027
RKTF5 6404  4.845013(—13) 0.025
0.00625 RKF5 38,424 2.333522(—13) 0.030
DOPRI5 44,828 3.941292( 13) 0.038

Table 13. Numerical results for Problem 5 for RKTF5 method.

h Methods EN MAXE TIME
RKTF5 120 1.534759(—1) 0.018
0.1 RKF5 720 6.153184( 1) 0.023
DOPRI5 840 5.531381(—1) 0.028
RKTF5 484 3.920592( 5) 0.021
0.025 RKF5 2904 6.983629(—4) 0.034
DOPRI5 3388 1.877126(—5)  0.039
RKTF5 5760  1.960240(—5) 0.024
0.0125 RKF5 5760 1.960240(—5) 0.061
DOPRI5 6720 3.310441(—6) 0.074
RKTF5 1920 1.468912( 7) 0.030
0.00625 RKF5 11,520  6.140969(—7) 0.065
DOPRI5 13,440 7.817222( 8) 0.121

6. Application to Problem from Ship Dynamics

This new technique is used to solve a physical problem from ship dynamics. As declared by
Wu et al. [3], when a sinusoidal wave of hesitancy () passes along a ship or offshore structure,
the resultant fluid actions vary with time x. In a specific status for the research by Wu et al. [3],
the fourth-order problem is presented as

u® = —3u" —u(2+ecos(Qx)), x>0 (29)
which is based on several initial conditions:
u(0) =1, ' (0)=1u"(0)=u"(0)=0.

where € = 0 for the presence of the theoretical solution, y(x) = 2 cos(x) — cos(x1/2). The theoretical
solution is indeterminate when € # 0 (see Twizell [4]). Previously, somewhat numerical experiences
for solving ordinary differential equations of order four have been expanded to solve ship dynamics.
Numerical realization was offered by Twizell [4] and Cortell [5] in connection with the order four
ordinary differential Equation (29) when € = 0 and € = 1 for Q = 0.25(1/2 — 1). Instead of solving the
order four ordinary differential equations directly, Twizell [4] and Cortell [5] opined that traditional
path is alleviation way for first order ODEs. Twizell [4] constructed the global extrapolation with a
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family of numerical formulas to raise the order of the formulas. Furthermore, Cortell [5] developed
the expansion of the classical Runge-Kutta formula.

Table 14. Numerical results for Problem (29) for RKTF4 method with € = 0.

h Methods EN  MAXE TIME
RKTF4 120  4.343559(-5) 0.016
0.1 RK4 480  2.898981(-5) 0.017
RKM4 600  4.708466(—5) 0.018
RKTF4 484 4.042540(—8) 0.018
0.025 RK4 1936 1.106125(—7) 0.058
RKM4 2420 1.828451(-8) 0.061
RKTF4 960 1.560340(—9) 0.034
0.0125 RK4 3840 6.884182(—9) 0.063
RKM4 4800 1.142450(—9) 0.069
RKTF4 1920 7.905333(—11) 0.056
0.00625 RK4 7680 4.293583(—10) 0.068
RKM4 9600 7.143930(—11) 0.074

Table 15. Numerical results for Problem (29) for RKTF5 method with € = 0.

h Methods EN  MAXE TIME
RKTF5 120 8.312096(—7)  0.014
0.1 RKF5 720  5273884(—7)  0.015
DOPRI5 840 1.489234(—7)  0.018
RKTF5 484  2.413660(—10) 0.023
0.025  RKF5 2904  5.506529(—10) 0.059
DOPRI5 3388  1.660703(—10) 0.062
RKTF5 960 6.902590(—12)  0.052
0.0125  RKF5 5760  1.690381(—11) 0.063
DOPRI5 6720  5.136336(—12)  0.066
RKTF5 1920  2.069456(—13) 0.061
0.00625 RKF5 11,520 5.315748(—13)  0.069
DOPRI5 13,440 1.643130(—13) 0.077

Table 16. Numerical results for Problem (29) for RKTF4 method with € = 1.

h Methods EN MAXE TIME
RKTF4 6  4.255906(—3) 0.017
05  RK4 48 2418471(—3) 0.018
RKM4 60  6.260650(—4) 0.023
RKTF4 15  5.127330(—5) 0.023
02  RK4 96 7.798540(—5) 0.025
RKM4 120 1.423970(—5) 0.033
RKTF4 33  1.854900(—6) 0.026
01  RK4 176  5.067700(—6)  0.044
RKM4 220 8.710000(—6) 0.069
RKTF4 120 3.300000(—9) 0.056
0.025 RK4 640 2.010000(—8) 0.055
RKM4 800 3.300000(—9) 0.074
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Table 17. Numerical results for Problem (29) for RKTF5 method with € = 1.

h Methods EN MAXE TIME
RKTF5 8 2.511868(—2) 0.016
05  RKF5 72 1.646000(—3)  0.017
DOPRI5 84 8.809400(—4) 0.019
RKTF5 20 5.912040( 6) 0.018
0.2 RKF5 144 9.133000( 7) 0.021
DOPRI5 168 4.852000(—7) 0.029
RKTF5 44 7.086000(—8) 0.026
0.1 RKF5 264 1.930000(—8) 0.050
DOPRI5 308 9.400000(—8) 0.060
RKTF5 160 1.000000(—10)  0.036
0.025 RKF5 960 1.000000(—10)  0.065
DOPRI5 1120 1.000000( 10) 0.076

7. Discussion and Conclusions

In this work, we are focusing on the algebraic theory of order conditions of RKTF method in the
form of u®) = f(x,u,u’,u") to solve ODEs of order four directly. Depending on the idea and concepts
of rooted trees used to solve first and second order ordinary differential equations, many researchers
have presented the definitions and algebraic theories of order algebraic conditions that we can see
in [29-31]. Moreover, [32,33] introduced the idea and concept of B-series theory that are dependent on
algebraic order conditions.

In fact, the motivation of our new work in using the B-series to construct RKT formula based on
the algebraic order conditions developed in the form of u*) = f(x,u,u’,u") to solve directly ODEs of
order four. Furthermore, we developed three-stage of order four and four-stage of order five known as
RKTF4 and RKTF5 methods, respectively.

The numerical outcomes are tabulated in Tables 4-17 and plotted in Figures 2-8. Those figures
show the proficiency curves when compared the new methods with RKTF5, DOPRI5, RK4 and RKM4
methods by the number of function evaluations and maximum global error. Figures 2 and 3, RKTF4
and RKTF5 methods outperform over RKTF5, DOPRI5, RK4 and RKM4 methods in terms number
function evaluations. Next, Figure 4 displays the efficacy of the new methods for inhomogeneous
nonlinear problem. In Figures 5 and 6, we can see that RKTF4 and RKTF5 approaches are the more
efficient and accurate methods compared to the other existing RK methods. Figures 7 and 8 show
that the new methods require less function evaluations than RKF5, DOPRI5, RK4 and RKM4 methods.
This is because when Equation (29) is solved using RKTF5, DOPRI5, RK4 and RKM4 methods, it needs
to be reduced to a system of first-order equations which is four times the dimension. From numerical
results in all tables, we noticed that the proposed methods outperform existing RK methods in terms
of time for all step size. From numerical results in all figures, we noticed that the number of function
evaluations of RKTF4 and RKTF5 methods are less than number of function evaluations for other
existing RK methods and they have shown that the new methods are more accurate and appropriate
when solving fourth-order ODEs in the form of ud = fx,u,u,u).
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Abbreviations

The following abbreviations are used in this manuscript:

h Step size used.

IVPs Initial value problems.

RKTF5  The explicit RKTF method of order five with four-stage derived in this paper.
RKTF4 The explicit RKTF method of order four with three-stage constructed in this paper
RKF5 The fifth-order RK method with six-stage given in Lambert [11].

DOPRI5  The fifth-order RK method with seven-stage derived in Dormand [10].

RK4 The classical RK method of order four with four-stage as given in Butcher [29].
RKM4 The RK method of order four with five-stage derived in Hairer [9].
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