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Abstract: Control charts are considered as powerful tools in detecting any shift in a process.
Usually, the Shewhart control chart is used when data follows the symmetrical property of a normal
distribution. In practice, the data from the industry may follow a non-symmetrical distribution
or an unknown distribution. The average run length (ARL) is a significant measure to assess the
performance of the control chart. The ARL may mislead when the statistic is computed from an
asymmetric distribution. To handle this issue, in this paper, an ARL-unbiased hybrid exponentially
weighted moving average proportion (HEWMA-p) chart is proposed for monitoring the process
variance for a non-normal distribution or an unknown distribution. The efficiency of the proposed
chart is compared with the existing chart in terms of ARLs. The proposed chart is more efficient than
the existing chart in terms of ARLs. A real example is given for the illustration of the proposed chart
in the industry.

Keywords: Binomial distribution; hybrid exponentially weighted moving average statistic; unknown
distribution; variance; average run length

1. Introduction

The aim of quality refers to the quality of those product characteristics that will appeal to potential
customers. It takes into account what it would cost to produce the product and what the customers are
willing to pay for the product. It can be thought of as the perspective for accomplishing manufactured
quality. Once the manufacturing process has started, the process does not always produce a unit in
conformity with what was proposed. This may be due to causes of defects arising in materials, parts,
subassemblies, assemblies, and in the final product. Due to defective or nonconforming resources, parts,
assemblies, and finished products that are discarded or reworked during the manufacturing process
result in increased cost and customer dissatisfaction. The waste of time and effort in manufacturing
the defective or nonconforming product, the delays in delivery, and other associated costs attributable
to a poorly manufactured product are the consequence of manufactured quality. If a company wishes
to produce higher quality products, it usually needs higher costs for manufactured products. However,
the aim should always be to offer customers good quality at a low cost. Therefore, quality is also
part of the corporate approach. Understanding quality concepts leads to correct implementation and
management of product quality, which adds benefits to the entire production endeavor. If an industry
understands and applies quality control principles in their manufactured products, it will produce
well finished products, and reduction of the costs of the products may be possible.
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The control charts are effectively used for the monitoring of the process. The Shewhart control
chart is designed under the assumption that the data coming from the industry follows a normal
distribution. This chart is more effective in detecting a relatively large shift in a process. The
Shewhart control chart cannot be applied for a monitoring process when the industrial data follow the
non-normal distribution or unknown distribution. Several authors focused on designing control charts
for monitoring process mean, including for example [1–3]. Some authors designed control charts for
monitoring the process variance; see for example [4,5]. More details on control charts can be seen
in [6–13].

As mentioned by [14] practitioners are often not statisticians and may have problems in
implementing control charts based on non-parametric approaches. Keeping in mind this issue,
several authors, including for example, references [15–41] focused on designing control charts for
monitoring the process mean that were easier to apply as compared to existing charts. Later on,
Yang et al. [42] worked on the extension of the chart designed in [43] to monitor the process variance
using a simple arcsin transformed symmetric exponentially weighted moving average (EWMA)
statistic. Yang et al. [42] further extended the work of [5] by mixing the arcsin transformed EWMA and
simple EWMA statistic. Yang et al. [5] designed the arcsin transformed EWMA to monitor process
variance. The average run length (ARL) is used to assess the performance of a control chart. Smaller
ARL means more efficient and faster detection of a shift in the process. According to [5] “For a
monitoring statistic with an asymmetrical distribution, the control chart leads to a biased ARL. That is,
the in-control ARL may be smaller than any out-of-control ARL, thus taking longer to detect shifts in
the parameter than to trigger a false alarm”. Lowry et al. [44] proposed a chart to tackle this issue.

Haq [45] proposed a control chart using two EWMA statistics and called it a hybrid EWMA
(HEWMA) chart. He claimed that their proposed chart performed better than the usual EWMA
chart. The HEWMA statistic consists of two EWMA statistics and two smoothing constants. The
control chart based on HEWMA statistic has the ability to detect the shift in the process earlier than
the EWMA-based control chart. The operational process of the HEWMA based control chart is the
same as the EWMA control chart. Several authors worked on these statistics in the literature. There
are various variable charts for joint monitoring; see for example, Nyau et al. [11], who designed
the multivariate EWMA chart for the median run-length. Riaz et al. [12] proposed a mixed Tukey
EWMA–CUSUM (cumulative sum) control chart and Osei-Aning et al. [13] worked on the mixed
EWMA–CUSUM and mixed CUSUM–EWMA. Haq [46] presented a discussion on the HEWMA control
chart. Noor-ul-Amin et al. [47] worked on the HEWMA chart for the regression estimator. Several
authors proposed the attribute control chart using EWMA and HEWMA statistics. Aslam et al. [48]
designed the mixed EWMA control chart. Haq [49] worked on the nonparametric EWMA chart.
Riaz et al. [50] designed the nonparametric double EWMA control chart. Aslam et al. [51] worked on
the HEWMA–CUSUM chart for the Weibull distribution. Aslam et al. [52] worked on the HEWMA
chart for the COM–Poisson distribution.

Yang et al. [14] designed an ARL unbiased EWMA-p chart. According to the best of our knowledge,
there is no work on designing a EWMA-p chart using a hybrid EWMA. The proposed methodology
presents an approach to evaluate the performance using the combination of a hybrid EWMA control
chart with weighted moving average proportion (EWMA-p) control chart. The hybrid EWMA and
EWMA-p charts are chosen since it has been shown that these charts are efficient in detecting small
but possibly detrimental shifts in the process. Aslam et al. [52] also pointed out that in a general
manufacturing process, an exponentially weighted moving average EWMA control chart is more
efficient in detecting small process shifts. The control chart based on the EWMA method consists
of an exponential weight factor applied to the data, which gives current or recent past observations
more weight than older data values. The combination of a hybrid EWMA chart and EWMA-p charts
will be explored to determine the best conditions, i.e., the appropriate values of control variables for
monitoring concrete strength. In this paper, we will present the enhanced hybrid exponential weighted
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moving average proportion (enhanced HEWMA-p) chart. The structure of the proposed chart will be
presented and its efficacy will be compared with [14].

2. Design of the Enhanced HEWMA-p Chart

In this section, we will present some equations taken from [14] and present the operational
procedure of the proposed control chart.

Let a random sample of size n be drawn from process X whose distribution is unknown with a
variance σ2 to practitioners. Yang et al. [14] suggested to select an even sample size n for convenience.
Assuming that these samples are independently distributed with known variance, let

Y∗i/2 = (Xi − Xi−1)
2/2, i = 2, 4, . . . , n. (1)

Then,
E(Y∗j ) = σ2, j = 1, 2, . . . , 0.5n. (2)

Define

V =
0.5n

∑
j=1

Ij, (3)

where

Ij =

{
1, i f Y∗j > σ2

0, otherwise
for j = 1, 2, . . . , 0.5n.

Therefore, when the process is in control, V is distributed as a binomial with parameters 0.5n
and pv0, where the value of pv0 depends on the distribution of Xi. Let us define pv0 = P(Y∗j > σ2).
The null hypothesis is that the process is in control state at pv0. The alternative hypothesis is that the
process has been shifted at pv1. According to [14], the statistic of Vt/0.5n has the mean of pv0 and the
variance of pv0(1− pv0)/0.5n.

We define the following two EWMA statistics:

EWMApt = λ2Vt/0.5n + (1− λ2)EWMApt−1 (4)

HEWMApt = λ1EWMApt + (1− λ1)HEWMApt−1 (5)

where λ1 ∈ [0, 1] and λ2 ∈ [0, 1] are smoothing constants, and HEWMApt is the statistic of enhanced
HEWMA-p at t.

The proposed control chart is stated as follows:

Step 1: Select a random sample of size n(X1, . . . , Xn) from the process at time t. Compute Vt using
(3) and HEWMApt using (5).
Step 2: The process is declared to be as out-of-control if HEWMApt ≥ UCL or HEWMApt ≤ LCL
and to be in-control if LCL < HEWMApt < UCL, here LCL and UCL show the lower control
limit and upper control limit.

The proposed control chart is the extension of the chart proposed by [14]. The proposed chart
reduces to [14] chart when λ1 = λ2 = λ or λ1 = 1 or λ2 = 1. The proposed chart becomes the Shewhart
chart when λ1 = 1 and λ2 = 1. It is assumed that the starting value of HEWMApt is the mean of pv0,
i.e., HEWMApt = pv0 for an in control process. By following [45], the mean and variance of statistic
HEWMApt is given by

E
(

HEWMApt

)
= pv0 (6)
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and

V
(

HEWMApt

)
=

λ2
1λ2 pv0(1− pv0)

(2− λ2)0.5n

1− (1− λ1)
2t

λ1(2− λ1)
−

(1− λ2)
2
{
(1− λ2)

2t − (1− λ1)
2t
}

(1− λ2)
2 − (1− λ1)

2

 (7)

Thus, the asymptotic variance of HEWMApt is given as

V
(

HEWMApt

)
=

λ1λ2 pv0(1− pv0)

(2− λ2)(2− λ1)0.5n
(8)

As suggested by [14] “the new variance chart may be constructed based on the distribution of the
monitoring statistic Vt/0.5n, which is an asymmetric distribution having similar defects to those of
the corresponding Shewhart p chart”. Therefore, monitoring the process variance is the same as the
monitoring process proportion pv0, as the proportion pv0 of statistic Vt/0.5n may not be same. The
control limits of the proposed control chart are given as

UCL = pv0 + k1

√
λ1λ2 pv0(1− pv0)

(2− λ2)(2− λ1)0.5n
(9)

LCL = pv0 − k2

√
λ1λ2 pv0(1− pv0)

(2− λ2)(2− λ1)0.5n
(10)

CL = pv0

where k1 > k2 are control limit coefficients.

3. The Average Run Length of Enhanced HEWMA-p Control Chart

The proposed enhanced hybrid exponential weighted moving average proportion (enhanced
HEWMA-p) control chart performance measure can be used as the average run length (ARL). In this
paper, we have limited our study to non-normal distributions with finite variance. The control limits
of the enhanced HEWMA-p control chart are determined by setting the in-control ARL (ARLv0) to be
a specified value, usually 370. The ARL represents the expected number of samples until a control
chart signals. The proposed control chart comprises of two control coefficients, k1 and k2, which are
obtained by considering the desired in-control ARL. Once the coefficients k1 and k2 are determined,
the control limits of the enhanced HEWMA-p control chart are obtained and the out-of-control ARLs
(ARLv1) can be obtained according to various values of shift in proportion, pv1 = c pv0, c 6= 1, and
0 < pv1 ≤ 1. We use the following Monte Carlo simulation procedure to compute control coefficients
k1 and k2, and to calculate the out-of-control ARL (ARLv1) under a specified n, pv0, λ1, λ2 and
ARLv0 values.

Step 1. Setting specified values of n, pv0, λ1, λ2, and ARLv0.
Step 2. Evaluation of proposed control chart coefficients k1 and k2 for in-control process
2.1. Generate 10,000 possible values of control chart coefficients k1 and k2.
2.2. When the process is in-control, from a binomial distribution with the in-control parameters
0.5n and pv0. a random sample of size 2000 is generated, i.e., Vt ∼ binomial(0.5n, pv0) at time t.
2.3. The enhanced HEWMA-p statistic HEWMA-p is computed for each subgroup of size 2000.
2.4. The proposed statistic HEWMA-p is plotted and in-control if LCL ≤ HEWMAp ≤ UCL; go
to step 2.5 and the run length for out of control process is noted.
2.5. Repeat 10,000 times steps 2.2 through 2.3, to compute run lengths. If the average of these run
lengths (ARLs) is equal to the specified ARLv0 note the corresponding values of k1 and k2, and
move to step 3, otherwise select other possible values of k1 and k2, and repeat the procedure from
steps 2.2.
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Step 3 Evaluation of ARLv1 for proposed control chart when the process is shifted
3.1. Let the out-of-control proportion, pv1, be a proportion of the in-control proportion, pv0. That
is, pv1 = c pv0, c 6= 1, and 0 < pv1 ≤ 1, where c is the amount of shift in the process proportion, pv0.
3.2. From binomial distribution, with the in-control parameters, 0.5n and pv1, a random sample of
size 2000 is generated, i.e., Vt ∼ binomial (0.5n, pv1) at time t.
3.3. The Enhanced HEWMA-p Statistic HEWMA-p is Computed for Each Subgroup of Size 2000.
3.4. Using the Values of k1 and k2, the proposed statistic HEWMA-p is plotted and in-control if
LCL < HEWMApt < UCL; go to step 3.5 and the run length for out of control process is noted.
3.5. Repeat 10,000 times steps 3.2 through 3.3, to compute run lengths. The average of run length
(ARLv1) and standard error of run length (SERLv1) for each specified amount of shift is computed.

In Table 1, we present control chart coefficients k1 and k2, and corresponding upper and lower
control limits of the enhanced HEWMA-p control chart for n = 8 (1) 30, pv0 = 0.1, λ1 = 0.2, and λ2 = 0.2
with ARLv0 ≈ 370. Table 2 presents ARLv1 and SERLv1 values (in second row corresponding to each
n value) for pv1 = 0.025 (0.025) 0.200 at n = 8 (1) 30, pv0 = 0.1, λ1 = 0.2, and λ2 = 0.2 with ARLv0 ≈ 370.
In Table 3, we present control chart coefficients k1 and k2, and corresponding upper and lower control
limits of the enhanced HEWMA-p control chart for n = 8 (1) 30, pv0 = 0.3, λ1 = 0.2, and λ2 = 0.2 with
ARLv0 ≈ 370. Table 4 presents ARLv1 and SERLv1 values (in second row corresponding to each n value)
for pv1 = 0.200 (0.025) 0.400 at n = 8 (1) 30, pv0 = 0.3, λ1 = 0.2, and λ2 = 0.2 with ARLv0 ≈ 370.

From Tables 2 and 4 we observe the following trend in ARLv1

1. If n is increased, there is a decrease in ARLv1 and SERLv1 values, as we expected. For example,
for 0.5n = 4 and pv1 = 0.05 from Table 2 we have ARLv1 = 107.03 and SERLv1 = 0.8830, whereas if
0.5n = 15, we have ARLv1 = 18.12 and SERLv1 = 0.0921. We also observed a similar trend from
Table 4.
2. The ARLv1 and SERLv1 values decrease when pv1 is far away from pv0.
3. The ARLv1 and SERLv1 values decrease more rapidly as c increases rather than it decreases.
For example, for 0.5n = 4 and pv1 = 0.05 (c = 0.5) from Table 2 we have ARLv1 = 107.03 and
SERLv1 = 0.8830, whereas if pv1 = 0.15 (c = 1.5), we have ARLv1 = 47.74 and SERLv1 = 0.4055. We
also observed a similar trend from Table 4.

The R codes for this study are given in the Appendix A.

Table 1. The control limits for enhanced HEWMA-p control chart with ARL0 = 370 when λ1 = 0.2,
λ2 = 0.2, and pv0 = 0.1. HEWMA-p is hybrid exponentially weighted moving average proportion, ARL
is average run length, UCL is upper control limit, LCL is lower control limit.

n 0.5n UCL LCL k1 k2

8 4 0.1892 0.0126 5.3509 5.2421
10 5 0.1823 0.0252 5.5211 5.0203
12 6 0.1751 0.0314 5.5216 5.0416
14 7 0.1699 0.0364 5.5459 5.0498
16 8 0.1689 0.0430 5.8435 4.8326
18 9 0.1612 0.0431 5.5045 5.1243
20 10 0.1573 0.0448 5.4378 5.2352
22 11 0.1618 0.0525 6.1448 4.7231
24 12 0.1553 0.0524 5.7484 4.9475
26 13 0.1566 0.0561 6.1275 4.7436
28 14 0.1492 0.0541 5.5185 5.1495
30 15 0.1477 0.0558 5.5422 5.1406
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Table 2. The ARLs of the enhanced HEWMA-p control chart for λ1 = 0.2, λ2 = 0.2, and pv0 = 0.1.

n 0.5n
pv1 =
0.025

pv1 =
0.050

pv1 =
0.075

pv0 =
0.100

pv1 =
0.125

pv1 =
0.150

pv1 =
0.175

pv1 =
0.200

8 4
35.29 107.03 227.89 370.30 108.55 47.74 27.62 18.52
0.2125 0.8830 4.1031 3.7450 1.0118 0.4055 0.2032 0.1169

10 5
22.51 55.24 204.00 370.36 107.43 45.55 25.30 16.80
0.1067 0.4342 1.9517 3.7060 0.9798 0.3844 0.1749 0.0992

12 6
19.22 44.42 168.19 370.36 101.22 40.28 22.00 14.99
0.0794 0.3273 1.5208 3.5468 0.9420 0.3305 0.1508 0.0837

14 7
16.81 37.03 141.92 370.09 98.87 36.21 19.87 13.64
0.0630 0.2572 1.3294 3.7582 0.9133 0.2828 0.1276 0.0716

16 8
14.15 28.21 100.20 370.12 106.17 37.22 18.71 12.36
0.0473 0.1753 0.8503 3.5983 0.9782 0.2861 0.1260 0.0680

18 9
14.17 29.27 116.90 370.35 82.10 29.98 16.52 11.66
0.0443 0.1870 1.0169 3.6899 0.7268 0.2192 0.0986 0.0549

20 10
13.41 27.90 114.63 370.35 74.67 26.99 15.20 9.83
0.0411 0.1772 1.0130 3.7271 0.6372 0.1921 0.0860 0.0478

22 11
11.07 20.20 65.97 370.20 101.72 31.72 15.01 9.60
0.0285 0.1097 0.5498 3.5711 0.9293 0.2351 0.0942 0.0491

24 12
10.12 19.51 71.04 370.29 78.48 24.22 12.61 8.29
0.0270 0.1122 0.5978 3.6796 0.7026 0.1885 0.0756 0.0420

26 13
9.21 17.79 57.10 370.28 90.92 24.92 11.07 7.55

0.0219 0.0912 0.4547 3.6574 0.7930 0.1952 0.0787 0.0420

28 14
9.69 19.33 70.98 370.34 62.21 21.78 11.49 7.28

0.0231 0.1001 0.5895 3.8081 0.5213 0.1400 0.0600 0.0339

30 15
9.28 18.12 65.59 370.11 60.42 20.57 11.07 7.07

0.0213 0.0921 0.5349 3.8897 0.5151 0.1291 0.0566 0.0326

First row ARL and second row SERL (standard error of run length).

Table 3. The control constants with ARL0 = 370 for enhanced HEWMA-p control chart. when λ1 = 0.2,
λ2 = 0.2, and pv0 = 0.3.

n 0.5n UCL LCL k1 k2

8 4 0.4404 0.1691 5.5158 5.1435
10 5 0.4342 0.1873 5.8915 4.9485
12 6 0.4137 0.1911 5.4695 5.2405
14 7 0.4049 0.1990 5.4499 5.2481
16 8 0.4040 0.2094 5.7765 5.0350
18 9 0.3931 0.2111 5.4839 5.2395
20 10 0.3924 0.2186 5.7395 5.0565
22 11 0.3883 0.2225 5.7495 5.0485
24 12 0.3803 0.2230 5.4635 5.2414
26 13 0.3815 0.2287 5.7725 5.0515
28 14 0.3925 0.2352 6.7985 4.7655
30 15 0.3887 0.2376 6.7485 4.7465
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Table 4. The ARLv1 of the enhanced HEWMA-p control chart for λ1 = 0.2, λ2 = 0.2, and pv0 = 0.3.

n 0.5n
pv1 =
0.20

pv1 =
0.225

pv1 =
0.250

pv1 =
0.275

pv0 =
0.300

pv1 =
0.325

pv1 =
0.350

pv1 =
0.375

pv1 =
0.400

8 4
35.28 60.05 118.01 245.61 370.90 226.17 107.71 61.38 38.35
0.2524 0.4932 1.0515 2.3753 3.8363 2.2024 0.9818 0.5119 0.3029

10 5
26.68 43.27 84.94 188.98 370.31 280.15 124.92 63.86 38.04
0.1754 0.3237 0.7445 1.7778 3.5587 2.7424 1.1877 0.5410 0.2896

12 6
25.94 43.63 88.21 218.61 370.36 193.66 82.10 44.11 27.30
0.1651 0.3323 0.7546 2.1131 3.7020 1.8944 0.7278 0.3442 0.1879

14 7
22.86 38.41 77.95 203.34 370.12 180.32 72.49 38.13 23.90
0.1408 0.2824 0.6669 1.9692 3.6434 1.7636 0.6397 0.2950 0.1580

16 8
19.08 30.41 59.02 155.32 370.12 213.84 80.71 40.05 23.99
0.1092 0.2102 0.4795 1.4364 3.6315 2.0796 0.7144 0.3078 0.1549

18 9
18.64 29.35 61.47 169.83 370.12 161.54 62.54 31.54 19.87
0.0991 0.1991 0.5082 1.6226 3.5624 1.5162 0.5296 0.2273 0.1222

20 10
16.21 25.20 49.94 139.81 370.11 185.81 65.54 29.22 19.90
0.0827 0.1632 0.3935 1.3342 3.6760 1.8122 0.5570 0.2378 0.1183

22 11
15.02 23.56 45.65 128.87 370.29 176.40 61.05 27.67 16.29
0.0716 0.1513 0.3694 1.1736 3.5888 1.6707 0.5079 0.2084 0.1034

24 12
14.60 23.50 46.43 141.41 370.11 132.92 49.45 22.94 16.06
0.0683 0.1484 0.3717 1.2653 3.5991 1.3040 0.4106 0.1661 0.0836

26 13
13.54 20.49 39.45 115.26 370.11 161.59 52.72 26.01 15.38
0.0593 0.1236 0.3016 1.0572 3.6564 1.5568 0.4251 0.1730 0.0858

28 14
12.08 17.50 32.06 88.77 370.20 356.82 88.25 29.94 13.28
0.0489 0.0966 0.2331 0.7514 3.6537 3.4724 0.7457 0.2628 0.1168

30 15
11.49 16.59 30.72 83.96 370.08 326.41 79.90 27.51 13.22
0.0457 0.0902 0.2163 0.7208 3.6923 3.1849 0.6792 0.2246 0.1001

First row ARL and second row SERL (standard error of run length).

4. Comparative Study

Now, we discuss the performance of the proposed control chart with the existing control charts
proposed by [4,14] for λ = 0.2. The proposed chart reduces to [14] chart when λ1 = λ2 = λ = 0.2
(for example). We present the values of ARLv1 for the proposed control chart as well as control charts
given by [4,14] in Table 5 when in-control ARLv0 ≈ 370.

From Table 5, we observe that the proposed control chart has smaller values of ARLv1 as compared
to the existing two control charts. For example, when 0.5n = 6, λ1 = λ2 = λ = 0.2, pv0 = 0.3, pv1 = 0.4
the proposed control chart gives ARLv1 is 27.30, the ARLv1 from the two existing control charts are
31.36 and 34.20, respectively. Thus, the proposed control chart performs better than the existing
control charts.

Table 5 ARLv1s comparison between the chart proposed by [4,14] for λ = 0.2 and enhanced
HEWMA-p control chart for λ1 = 0.2, λ2 = 0.2. Figure 1 depicts the ARLv1 profile comparison at
pv0 = 0.1 and pv1 = 0.2 for different values of n under HEWMA-p chart and two existing charts. From
Figure 1, we noticed that ARLv1 values of enhanced HEWMA-p control chart are smaller than in the
two existing control charts. Hence, our proposed enhanced HEWMA-p control chart performed well
as compared with existing charts.
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Table 5. The comparison of the proposed chart with existing charts.

n 0.5n

pv0 = 0.1 pv0 = 0.3

Yang and
Arnold [4]

Yang and
Arnold [14] Enhanced Yang and

Arnold [4]
Yang and

Arnold [14] Enhanced Yang and
Arnold [4]

Yang and
Arnold [14] Enhanced

pv1 = 0.2 pv1 = 0.2 pv1 = 0.2 pv1 = 0.2 pv1 = 0.2 pv1 = 0.2 pv1 = 0.4 pv1 = 0.4 pv1 = 0.4

8 4 28.2 25.50 18.52 41.90 43.59 35.28 50.50 47.55 38.35
10 5 22.7 19.02 16.80 33.70 34.06 26.68 40.80 40.29 38.04
12 6 19 17.43 14.99 28.20 31.24 25.94 34.20 31.36 27.30
14 7 16.4 14.54 13.64 24.20 25.69 22.86 29.40 28.23 23.90
16 8 16.4 12.55 12.36 21.30 22.42 19.08 25.80 24.58 23.99
18 9 13 11.85 11.66 19.00 19.96 18.64 23.00 22.13 19.87
20 10 11.8 10.67 9.83 17.20 17.27 16.21 20.70 20.96 19.90
22 11 10.9 9.67 9.60 15.70 17.92 15.02 18.90 17.03 16.29
24 12 10.1 7.47 8.29 14.50 14.77 14.90 17.40 17.25 15.96
26 13 9.4 7.95 7.55 13.40 14.07 13.54 16.10 15.62 15.38
28 14 8.9 7.87 7.28 12.60 13.45 12.08 15.10 14.26 13.28
30 15 8.4 7.51 7.07 11.80 11.98 11.59 14.10 14.23 13.22



Symmetry 2019, 11, 356 9 of 13

Symmetry 2019, 11, x FOR PEER REVIEW 10 of 15 

 

 

Figure 1. The ARLv1 profile comparison at pv0 = 0.1 and pv1 = 0.2 for different values of n 

under HEWMA-p chart and Yang and Arnold [4, 14]. 

From Table 5, we observe that the proposed control chart has smaller values of ARLv1 as 

compared to the existing two control charts. For example, when 0.5n = 6, 𝜆1 = 𝜆2 = 𝜆 = 0.2, pv0 = 0.3, 

pv1 = 0.4 the proposed control chart gives ARLv1 is 27.30, the ARLv1 from the two existing control 

charts are 31.36 and 34.20, respectively. Thus, the proposed control chart performs better than the 

existing control charts.  

Table 5. ARLv1s comparison between the chart proposed by [4] and [14] for 𝜆  = 0.2 and 

enhanced HEWMA-p control chart for 
1  = 0.2, 

2  = 0.2. Figure 1 depicts the ARLv1 profile 

comparison at pv0 = 0.1 and pv1 = 0.2 for different values of n under HEWMA-p chart and two existing 

charts. From Figure 1, we noticed that ARLv1 values of enhanced HEWMA-p control chart are 

smaller than in the two existing control charts. Hence, our proposed enhanced HEWMA-p control 

chart performed well as compared with existing charts. 

5. Example 

In this section, we present an example given by [14]. The service time of a bank branch in 

Taiwan is used to illustrate the application of the proposed enhanced HEWMA-p control chart to 

monitor the variability of service time. According to [14] “From the historical data, the in-control 

data of service times (unit: minutes) is a non-normal/unknown distribution with variance 27.805. 

Reference [14] illustrated that the resulting in-control probability that the service time is larger than 

the in-control variance is 𝑝𝑣0 = 𝑃(𝑌𝑗
∗ > 27.805) = 0.31”. To construct the enhanced HEWMA-p 

control chart, we also use the same value of 𝑝𝑣0. The upper and lower control limits of the enhanced 

HEWMA-p control chart with 𝜆1 = 0.2, 𝜆2 = 0.2 when in-control ARLv0 ≈ 370 are UCL = 0.4454 and 

LCL = 0.1963.  

Table 6. The new service times from 10 counters in a bank branch. EWMA is exponentially 

weighted moving average. 

t X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Vt EWMApt HEWMApt 

1 3.54 0.01 1.33 7.27 5.52 0.09 1.84 1.04 2.91 0.63 0 0.2480 0.2976 

2 0.86 1.61 1.15 0.96 0.54 3.05 4.11 0.63 2.37 0.05 0 0.1984 0.2381 

3 1.45 0.19 4.18 0.18 0.02 0.70 0.80 0.97 3.60 2.94 0 0.1587 0.1905 

4 1.37 0.14 1.54 1.58 0.45 6.01 4.59 1.74 3.92 4.82 0 0.1270 0.1524 

5 3.00 2.46 0.06 1.80 3.25 2.13 2.22 1.37 2.13 0.25 0 0.1016 0.1219 

Figure 1. The ARLv1 profile comparison at pv0 = 0.1 and pv1 = 0.2 for different values of n under
HEWMA-p chart and Yang and Arnold [4,14].

5. Example

In this section, we present an example given by [14]. The service time of a bank branch in Taiwan
is used to illustrate the application of the proposed enhanced HEWMA-p control chart to monitor the
variability of service time. According to [14] “From the historical data, the in-control data of service
times (unit: minutes) is a non-normal/unknown distribution with variance 27.805. Reference [14]
illustrated that the resulting in-control probability that the service time is larger than the in-control
variance is pv0 = P(Y∗j > 27.805) = 0.31”. To construct the enhanced HEWMA-p control chart, we also
use the same value of pv0. The upper and lower control limits of the enhanced HEWMA-p control
chart with λ1 = 0.2, λ2 = 0.2 when in-control ARLv0 ≈ 370 are UCL = 0.4454 and LCL = 0.1963.

Ten new samples of size 10 each from new automatic service system of the bank branch under
study were considered [14] and listed in Table 6. To illustrate the out-of-control detection ability,
for each sample in Table 6, the statistic, Vt and the monitoring statistic HEWMApt = λ1EWMApt +

(1− λ1) HEWMApt−1 where EWMApt = λ2Vt/0.5n + (1− λ2)EWMApt−1 at time t, t = 1, 2, . . . ,
10, were computed. The corresponding enhanced HEWMA-p control chart detected out-of-control
variance signals from the third sample onward (samples 3–10 on the enhanced HEWMA-p control
chart) (Figure 2). By comparing Figure 2 with the chart in [14], it can be seen that the existing chart
indicated a shift at the 4th sample. Therefore, the proposed chart was more efficient in detecting a shift
in the process as compared to existing chart of Yang and Arnold [14]. The same performance was also
shown by the results in Tables 2 and 4. For this study, we can conclude that the proposed chart shows
better performance than the existing two charts.

Table 6. The new service times from 10 counters in a bank branch. EWMA is exponentially weighted
moving average.

t X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Vt EWMApt HEWMApt

1 3.54 0.01 1.33 7.27 5.52 0.09 1.84 1.04 2.91 0.63 0 0.2480 0.2976
2 0.86 1.61 1.15 0.96 0.54 3.05 4.11 0.63 2.37 0.05 0 0.1984 0.2381
3 1.45 0.19 4.18 0.18 0.02 0.70 0.80 0.97 3.60 2.94 0 0.1587 0.1905
4 1.37 0.14 1.54 1.58 0.45 6.01 4.59 1.74 3.92 4.82 0 0.1270 0.1524
5 3.00 2.46 0.06 1.80 3.25 2.13 2.22 1.37 2.13 0.25 0 0.1016 0.1219
6 1.59 3.88 0.39 0.54 1.58 1.70 0.68 1.25 6.83 0.31 0 0.0813 0.0975
7 5.01 1.85 3.10 1.00 0.09 1.16 2.69 2.79 1.84 2.62 0 0.0650 0.0780
8 4.96 0.55 1.43 4.12 4.06 1.42 1.43 0.86 0.67 0.13 0 0.0520 0.0624
9 1.08 0.65 0.91 0.88 2.02 2.88 1.76 2.87 1.97 0.62 0 0.0416 0.0499
10 4.56 0.44 5.61 2.79 1.73 2.46 0.53 1.73 7.02 2.13 0 0.0333 0.0399
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6. Concluding Remarks

In this paper, an enhanced hybrid EWMA-p chart is proposed for monitoring the process variance.
A simulation procedure is presented for calculating its average run lengths (ARLs). Some tables are
presented for practical use. The simulation study supports that the proposed chart is more efficient in
detecting a shift in the process. A real example is presented for illustration purposes. The proposed
control chart can be used in the industry for the monitoring of processes when the distribution is
unknown in practice. The limitation of the proposed chart is that it can be used for only a fixed
sample size. The variable sample size enhanced hybrid EWMA-p chart will be considered as our future
research. In addition, the proposed control chart for a variable sample size can be considered as future
research. The proposed chart using autocorrelation can be considered as future research.
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Nomenclature

ARL Average run length
HEWMA-p Hybrid exponentially weighted moving average proportion
EWMA Exponentially weighted moving average
HEWMA Hybrid exponentially weighted moving average
EWMA–CUSUM Exponentially weighted moving average–Cumulative sum
LCL Lower control limit
UCL Upper control limit
SERL Standard error of run length

Appendix A

1. R code to obtain chart coefficients
2. ARL.EHEWMAp<-function(r0,n,la1,la2,p0) {
3. # r0 is specified in-control ARL (ARLv0)
4. # la1 is lamda1
5. # la2 is lamda2
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6. # p0 is specified in control p value
7. options(digits =6)
8. N<-10,000
9. rl<-c()
10. vt<-c()
11. G<-c()
12. H<-c()
13. set.seed(5577)
14. m<-n/2
15. v<-la1*la2*p0*(1-p0)/((2-la1)*(2-la2)*m)
16. q<-seq(2.65,7.09, by =0.1)
17. for (k1 in q){
18. for (k2 in q)
19. {
20. if(k1>k2) {
21. l<-p0-k2*sqrt(v)
22. cl<-p0
23. u<-p0+k1*sqrt(v)
a. for(j in 1:2000)
b. {
i. G[1]<-p0
ii. H[1]<-p0
iii. for(i in 2:N)
iv. {
v. vt[i]<-rbinom(1, m, p0)
vi. G[i]<-la2*vt[i]/m+(1-la2)*G[i-1]
vii. H[i]<-la1*G[i]+(1-la1)*H[i-1]
viii. if ((H[i]<l) | (H[i]>u)){rl[j]=i;break;}else{rl[j]=0;}
ix. }
c. }
d. arl<-mean(rl)
e. if ((arl>=r0) && (arl<=r0+5)) {
i. print(c(n,la1,la2,p0,k1,k2,arl))}
f. sdarl<-sd(rl)
g. searl<-sdarl/sqrt(N)
24. }
25. }
26. }
27. }
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