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Abstract: Control charts are considered as powerful tools in detecting any shift in a process.
Usually, the Shewhart control chart is used when data follows the symmetrical property of a normal
distribution. In practice, the data from the industry may follow a non-symmetrical distribution
or an unknown distribution. The average run length (ARL) is a significant measure to assess the
performance of the control chart. The ARL may mislead when the statistic is computed from an
asymmetric distribution. To handle this issue, in this paper, an ARL-unbiased hybrid exponentially
weighted moving average proportion (HEWMA-p) chart is proposed for monitoring the process
variance for a non-normal distribution or an unknown distribution. The efficiency of the proposed
chart is compared with the existing chart in terms of ARLs. The proposed chart is more efficient than
the existing chart in terms of ARLs. A real example is given for the illustration of the proposed chart
in the industry.

Keywords: Binomial distribution; hybrid exponentially weighted moving average statistic; unknown
distribution; variance; average run length

1. Introduction

The aim of quality refers to the quality of those product characteristics that will appeal to potential
customers. It takes into account what it would cost to produce the product and what the customers are
willing to pay for the product. It can be thought of as the perspective for accomplishing manufactured
quality. Once the manufacturing process has started, the process does not always produce a unit in
conformity with what was proposed. This may be due to causes of defects arising in materials, parts,
subassemblies, assemblies, and in the final product. Due to defective or nonconforming resources, parts,
assemblies, and finished products that are discarded or reworked during the manufacturing process
result in increased cost and customer dissatisfaction. The waste of time and effort in manufacturing
the defective or nonconforming product, the delays in delivery, and other associated costs attributable
to a poorly manufactured product are the consequence of manufactured quality. If a company wishes
to produce higher quality products, it usually needs higher costs for manufactured products. However,
the aim should always be to offer customers good quality at a low cost. Therefore, quality is also
part of the corporate approach. Understanding quality concepts leads to correct implementation and
management of product quality, which adds benefits to the entire production endeavor. If an industry
understands and applies quality control principles in their manufactured products, it will produce
well finished products, and reduction of the costs of the products may be possible.
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The control charts are effectively used for the monitoring of the process. The Shewhart control
chart is designed under the assumption that the data coming from the industry follows a normal
distribution. This chart is more effective in detecting a relatively large shift in a process. The
Shewhart control chart cannot be applied for a monitoring process when the industrial data follow the
non-normal distribution or unknown distribution. Several authors focused on designing control charts
for monitoring process mean, including for example [1-3]. Some authors designed control charts for
monitoring the process variance; see for example [4,5]. More details on control charts can be seen
in [6-13].

As mentioned by [14] practitioners are often not statisticians and may have problems in
implementing control charts based on non-parametric approaches. Keeping in mind this issue,
several authors, including for example, references [15-41] focused on designing control charts for
monitoring the process mean that were easier to apply as compared to existing charts. Later on,
Yang et al. [42] worked on the extension of the chart designed in [43] to monitor the process variance
using a simple arcsin transformed symmetric exponentially weighted moving average (EWMA)
statistic. Yang et al. [42] further extended the work of [5] by mixing the arcsin transformed EWMA and
simple EWMA statistic. Yang et al. [5] designed the arcsin transformed EWMA to monitor process
variance. The average run length (ARL) is used to assess the performance of a control chart. Smaller
ARL means more efficient and faster detection of a shift in the process. According to [5] “For a
monitoring statistic with an asymmetrical distribution, the control chart leads to a biased ARL. That is,
the in-control ARL may be smaller than any out-of-control ARL, thus taking longer to detect shifts in
the parameter than to trigger a false alarm”. Lowry et al. [44] proposed a chart to tackle this issue.

Hagq [45] proposed a control chart using two EWMA statistics and called it a hybrid EWMA
(HEWMA) chart. He claimed that their proposed chart performed better than the usual EWMA
chart. The HEWMA statistic consists of two EWMA statistics and two smoothing constants. The
control chart based on HEWMA statistic has the ability to detect the shift in the process earlier than
the EWMA-based control chart. The operational process of the HEWMA based control chart is the
same as the EWMA control chart. Several authors worked on these statistics in the literature. There
are various variable charts for joint monitoring; see for example, Nyau et al. [11], who designed
the multivariate EWMA chart for the median run-length. Riaz et al. [12] proposed a mixed Tukey
EWMA-CUSUM (cumulative sum) control chart and Osei-Aning et al. [13] worked on the mixed
EWMA-CUSUM and mixed CUSUM-EWMA. Hagq [46] presented a discussion on the HEWMA control
chart. Noor-ul-Amin et al. [47] worked on the HEWMA chart for the regression estimator. Several
authors proposed the attribute control chart using EWMA and HEWMA statistics. Aslam et al. [48]
designed the mixed EWMA control chart. Haq [49] worked on the nonparametric EWMA chart.
Riaz et al. [50] designed the nonparametric double EWMA control chart. Aslam et al. [51] worked on
the HEWMA-CUSUM chart for the Weibull distribution. Aslam et al. [52] worked on the HEWMA
chart for the COM-Poisson distribution.

Yang et al. [14] designed an ARL unbiased EWMA-p chart. According to the best of our knowledge,
there is no work on designing a EWMA-p chart using a hybrid EWMA. The proposed methodology
presents an approach to evaluate the performance using the combination of a hybrid EWMA control
chart with weighted moving average proportion (EWMA-p) control chart. The hybrid EWMA and
EWMA-p charts are chosen since it has been shown that these charts are efficient in detecting small
but possibly detrimental shifts in the process. Aslam et al. [52] also pointed out that in a general
manufacturing process, an exponentially weighted moving average EWMA control chart is more
efficient in detecting small process shifts. The control chart based on the EWMA method consists
of an exponential weight factor applied to the data, which gives current or recent past observations
more weight than older data values. The combination of a hybrid EWMA chart and EWMA-p charts
will be explored to determine the best conditions, i.e., the appropriate values of control variables for
monitoring concrete strength. In this paper, we will present the enhanced hybrid exponential weighted
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moving average proportion (enhanced HEWMA-p) chart. The structure of the proposed chart will be
presented and its efficacy will be compared with [14].

2. Design of the Enhanced HEWMA-p Chart

In this section, we will present some equations taken from [14] and present the operational
procedure of the proposed control chart.

Let a random sample of size n be drawn from process X whose distribution is unknown with a
variance o to practitioners. Yang et al. [14] suggested to select an even sample size n for convenience.
Assuming that these samples are independently distributed with known variance, let

i*/ZZ(Xi*Xi—1)2/2, i=2,4,...,n. )
Then,
E(Y)=0% j=12,...,05n )
Define
0.5n
V=) 1 @3)
j=1
where

1, if Y*>o?
I = P> g i=1,2,...,05m.
0, otherwise

Therefore, when the process is in control, V is distributed as a binomial with parameters 0.5n
and py0, where the value of p,yp depends on the distribution of X;. Let us define p,y = P(Y]* > 0?).
The null hypothesis is that the process is in control state at p;o. The alternative hypothesis is that the
process has been shifted at p,;. According to [14], the statistic of V;/0.5n has the mean of p,o and the
variance of p,(1 — pyo)/0.5n.

We define the following two EWMA statistics:

EWMA,, = AyV;/0.5n + (1 — A))EWMA,, | (4)

HEWMAy, = MEWMAy, + (1 - A))HEWMA,, ®)

where A; € [0,1] and A, € [0, 1] are smoothing constants, and HEWMA,, is the statistic of enhanced
HEWMA-p at t.
The proposed control chart is stated as follows:

Step 1: Select a random sample of size n(Xy, ..., X;) from the process at time f. Compute V; using
(3) and HEWMA,, using (5).
Step 2: The process is declared to be as out-of-control if HEWMA,, > UCL or HEWMA,, < LCL
and to be in-control if LCL < HEWMA,, < UCL, here LCL and UCL show the lower control
limit and upper control limit.

The proposed control chart is the extension of the chart proposed by [14]. The proposed chart
reduces to [14] chart when Ay = A = A or A1 =1 or Ay = 1. The proposed chart becomes the Shewhart
chart when A; =1 and A; = 1. It is assumed that the starting value of HEWMA,, is the mean of py,
i.e., HEWMA,, = pyo for an in control process. By following [45], the mean and variance of statistic
HEWMA,, is given by

E(HEWMA,,) = pw 6)



Symmetry 2019, 11, 356 40f 13

and

~ MAapwo(l—po) [1-(1-2Ap* (- Az)z{(l — ) —(1- Al)Zf}
VIHEWMA,) = =5 05n | M2 =Ay) 1A= (1))

@)

Thus, the asymptotic variance of HEWMA,, is given as

B )\1)\2}700(1 _ pZ’O)
V(HEWMApt) = (2—A2)(2 - A1)0.5n o

As suggested by [14] “the new variance chart may be constructed based on the distribution of the
monitoring statistic V;/0.51, which is an asymmetric distribution having similar defects to those of
the corresponding Shewhart p chart”. Therefore, monitoring the process variance is the same as the
monitoring process proportion py0, as the proportion p,g of statistic V;/0.5n may not be same. The
control limits of the proposed control chart are given as

B MA2pw0(1 = poo)
et = p”°+k1\/(2—A2)(2—A1)0.5n ©)
o MA2pw0(1 = poo)
LCL = poo kz\/(z — 1) (2= A1)05m (10)
CL = pvg

where k1 > kj are control limit coefficients.

3. The Average Run Length of Enhanced HEWMA-p Control Chart

The proposed enhanced hybrid exponential weighted moving average proportion (enhanced
HEWMA-p) control chart performance measure can be used as the average run length (ARL). In this
paper, we have limited our study to non-normal distributions with finite variance. The control limits
of the enhanced HEWMA-p control chart are determined by setting the in-control ARL (ARL) to be
a specified value, usually 370. The ARL represents the expected number of samples until a control
chart signals. The proposed control chart comprises of two control coefficients, k1 and k;, which are
obtained by considering the desired in-control ARL. Once the coefficients ki and k; are determined,
the control limits of the enhanced HEWMA-p control chart are obtained and the out-of-control ARLs
(ARLy1) can be obtained according to various values of shift in proportion, p,1 = ¢ pyo, ¢ # 1, and
0 < py1 < 1. We use the following Monte Carlo simulation procedure to compute control coefficients
ki and ky, and to calculate the out-of-control ARL (ARL,;) under a specified n, py, A1,A2 and
ARL,q values.

Step 1. Setting specified values of 1, pyo, A1, A2, and ARLy.

Step 2. Evaluation of proposed control chart coefficients k and k; for in-control process

2.1. Generate 10,000 possible values of control chart coefficients k1 and ky.

2.2. When the process is in-control, from a binomial distribution with the in-control parameters
0.5n and pyp. a random sample of size 2000 is generated, i.e., V; ~ binomial(0.5n, py) at time ¢.
2.3. The enhanced HEWMA-p statistic HEWMA-p is computed for each subgroup of size 2000.
2.4. The proposed statistic HEWMA-p is plotted and in-control if LCL < HEWMA, < UCL; go
to step 2.5 and the run length for out of control process is noted.

2.5. Repeat 10,000 times steps 2.2 through 2.3, to compute run lengths. If the average of these run
lengths (ARLSs) is equal to the specified ARL,y note the corresponding values of ki and k,, and
move to step 3, otherwise select other possible values of k; and k;, and repeat the procedure from
steps 2.2.
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Step 3 Evaluation of ARL,; for proposed control chart when the process is shifted

3.1. Let the out-of-control proportion, p,1, be a proportion of the in-control proportion, p,g. That
is, pu1 =€ pro, ¢ # 1, and 0 < py1 < 1, where c is the amount of shift in the process proportion, pyo.
3.2. From binomial distribution, with the in-control parameters, 0.5n and p,1, a random sample of
size 2000 is generated, i.e., V; ~ binomial (0.5n, p,1) at time t.

3.3. The Enhanced HEWMA-p Statistic HEWMA-p is Computed for Each Subgroup of Size 2000.
3.4. Using the Values of k; and ky, the proposed statistic HEWMA-p is plotted and in-control if
LCL < HEWMA,, < UCL; go to step 3.5 and the run length for out of control process is noted.
3.5. Repeat 10,000 times steps 3.2 through 3.3, to compute run lengths. The average of run length
(ARL,1) and standard error of run length (SERL,) for each specified amount of shift is computed.

In Table 1, we present control chart coefficients k1 and kj, and corresponding upper and lower
control limits of the enhanced HEWMA-p control chart for n =8 (1) 30, p,o =0.1, A; = 0.2, and A, =0.2
with ARL;y =~ 370. Table 2 presents ARL,; and SERL,; values (in second row corresponding to each
n value) for p,; = 0.025 (0.025) 0.200 at n = 8 (1) 30, po = 0.1, A; = 0.2, and A, = 0.2 with ARL,y ~ 370.
In Table 3, we present control chart coefficients k; and ky, and corresponding upper and lower control
limits of the enhanced HEWMA-p control chart for n = 8 (1) 30, pyo = 0.3, A1 = 0.2, and A, = 0.2 with
ARLyy =~ 370. Table 4 presents ARL,; and SERL,,; values (in second row corresponding to each n value)
for py1 = 0.200 (0.025) 0.400 at n = 8 (1) 30, pyo = 0.3, A1 = 0.2, and A, = 0.2 with ARLg = 370.

From Tables 2 and 4 we observe the following trend in ARL;;

1. If nis increased, there is a decrease in ARL;; and SERL,; values, as we expected. For example,
for 0.5n = 4 and p,; = 0.05 from Table 2 we have ARL,; = 107.03 and SERL,; = 0.8830, whereas if
0.5n = 15, we have ARL,; = 18.12 and SERL,; = 0.0921. We also observed a similar trend from
Table 4.

2. The ARL,; and SERL,; values decrease when p;,; is far away from p.

3. The ARLy; and SERL,; values decrease more rapidly as c increases rather than it decreases.
For example, for 0.5n = 4 and p,; = 0.05 (¢ = 0.5) from Table 2 we have ARL,; = 107.03 and
SERL; =0.8830, whereas if p,; = 0.15 (c = 1.5), we have ARL,; = 47.74 and SERL,; = 0.4055. We
also observed a similar trend from Table 4.

The R codes for this study are given in the Appendix A.

Table 1. The control limits for enhanced HEWMA-p control chart with ARLy = 370 when A; = 0.2,
A2 =0.2, and pyp = 0.1. HEWMA-p is hybrid exponentially weighted moving average proportion, ARL
is average run length, UCL is upper control limit, LCL is lower control limit.

n 0.5 UCL LCL K ky

8 4 0.1892 0.0126 5.3509 5.2421
10 5 0.1823 0.0252 5.5211 5.0203
12 6 0.1751 0.0314 5.5216 5.0416
14 7 0.1699 0.0364 5.5459 5.0498
16 8 0.1689 0.0430 5.8435 4.8326
18 9 0.1612 0.0431 5.5045 5.1243
20 10 0.1573 0.0448 5.4378 5.2352
22 11 0.1618 0.0525 6.1448 47231
24 12 0.1553 0.0524 5.7484 4.9475
26 13 0.1566 0.0561 6.1275 4.7436
28 14 0.1492 0.0541 5.5185 5.1495

30 15 0.1477 0.0558 5.5422 5.1406
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Table 2. The ARLs of the enhanced HEWMA-p control chart for A; =0.2, A, =0.2, and p, = 0.1.

Pov1 = Pov1 = Pv1= Pvo = Pov1 = Pov1 = Pv1 = Pov1 =
n 051 0.025 0050 0075 0100 0125 0150 0175  0.200
3529 10703 22789 37030 10855 4774 2762 1852
8 4 02125 08830 41031 37450 10118 04055 02032  0.1169
2251 5524 20400 37036 10743 4555 2530  16.80
10 5 01067 04342 19517 37060 09798 03844 01749  0.0992
1922 4442 16819 37036 10122 4028 2200  14.99
12 6 00794 03273 15208  3.5468 09420 03305  0.1508  0.0837
1681 3703 14192 37009 9887 3621 1987  13.64
14 7 00630 02572 13294 37582 09133 02828 01276  0.0716
1415 2821 10020 37012 10617 3722 1871 12.36
16 8 00473 01753  0.8503  3.5983 09782 02861  0.1260  0.0680
1417 2927 11690 37035 8210 2998 1652 1166
18 ? 00443 01870 10169 36899 07268 02192 00986  0.0549
1341 2790 11463 37035 7467 2699 1520 9.83
20 10 00411 01772 10130 37271 06372 01921  0.0860  0.0478
1107 2020 6597 37020 10172 3172 1501 9.60
22 1 00285 01097 05498 35711 09293 02351  0.0942  0.0491
1012 1951 7104 37029 7848 2422 1261 8.29
24 12 00270 01122 05978  3.6796 07026 01885  0.0756  0.0420
9.21 1779 5710 37028 9092 2492  11.07 7.55
26 13 00219 00912 04547 36574 07930 01952  0.0787  0.0420
9.69 1933 7098 37034 6221 2178 1149 7.28
28 14 00231 01001 05895 38081 05213 01400 00600  0.0339
9.28 1812 6559 37011 6042 2057 1107 7.07
30 15 00213 00921 05349 38897 05151 01291  0.0566  0.0326

First row ARL and second row SERL (standard error of run length).

Table 3. The control constants with ARLgy = 370 for enhanced HEWMA-p control chart. when A1 =0.2,
Ay =0.2,and pyp =0.3.

n 0.5 UCL LCL K ky

8 4 0.4404 0.1691 5.5158 5.1435
10 5 0.4342 0.1873 5.8915 4.9485
12 6 0.4137 0.1911 5.4695 5.2405
14 7 0.4049 0.1990 5.4499 5.2481
16 8 0.4040 0.2094 5.7765 5.0350
18 9 0.3931 0.2111 5.4839 5.2395
20 10 0.3924 0.2186 5.7395 5.0565
22 11 0.3883 0.2225 5.7495 5.0485
24 12 0.3803 0.2230 5.4635 5.2414
26 13 0.3815 0.2287 5.7725 5.0515
28 14 0.3925 0.2352 6.7985 4.7655
30 15 0.3887 0.2376 6.7485 4.7465
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Table 4. The ARL,; of the enhanced HEWMA-p control chart for A; =0.2, A; = 0.2, and p,g = 0.3.

Pv1 = Po1 = Pl = Po1 = Pvo = Po1 = Pv1 = Po1 = Pv1 =
n 0.51 0.20 0.225 0.250 0.275 0.300 0.325 0.350 0.375 0.400

35.28 60.05 118.01  245.61 37090 22617 107.71 61.38 38.35

8 4 02524 04932 10515 23753 38363 22024 09818 05119 03029
2668 4327 8494 18898 37031 280.15 12492 6386  38.04
05 01754 03237 07445 17778 35587 27424 11877 05410  0.289
2594 4363 8821 21861 37036 19366 8210 4411 2730
126 01651 03323 07546 21131 37020 1.8944 07278 03442  0.1879
286 3841 7795 20334 37012 18032 7249 3813  23.90
47 01408 02824 0.6669 19692 3.6434 17636 06397 02950  0.1580
1908 3041  59.02 15532 37012 21384 8071 4005  23.99
6 8 01092 02102 04795 14364 36315 2079 07144 03078  0.1549
1864 2935 6147 16983 37012 16154 6254 3154  19.87
189 00991 01991 05082 1.6226 35624 15162 05296 02273  0.1222
1621 2520 4994 13981 37011 18581 6554 2922  19.90
20010 gos27 01632 03935 13342 36760 18122 05570 02378  0.1183
1502 2356 4565 12887 37029 17640 6105 2767 1629
2z 1 00716 01513 03694 11736 35888 1.6707 05079 02084  0.1034
1460 2350 4643 14141 37011 13292 4945 2294  16.06
2412 (0683 01484 03717 12653 35991 13040 04106 01661  0.0836
1354 2049 3945 11526 37011 16159 5272 2601 1538
26 13 00593 01236 03016 1.0572 3.6564 15568 04251 01730  0.0858
1208 1750 3206 8877 37020 35682 8825 2994 1328
28 14 0489 00966 02331 07514 36537 34724 07457 02628  0.1168
0 15 1149 1659 3072 8396 37008 32641 7990 2751 1322

0.0457  0.0902 02163 0.7208 3.6923 3.1849 0.6792  0.2246  0.1001
First row ARL and second row SERL (standard error of run length).

4. Comparative Study

Now, we discuss the performance of the proposed control chart with the existing control charts
proposed by [4,14] for A = 0.2. The proposed chart reduces to [14] chart when A = Ap = A =0.2
(for example). We present the values of ARL;; for the proposed control chart as well as control charts
given by [4,14] in Table 5 when in-control ARL,y ~ 370.

From Table 5, we observe that the proposed control chart has smaller values of ARL,; as compared
to the existing two control charts. For example, when 0.5n =6, A1 = Ay = A =0.2,p,0 =0.3,p,1 =04
the proposed control chart gives ARL,; is 27.30, the ARL,; from the two existing control charts are
31.36 and 34.20, respectively. Thus, the proposed control chart performs better than the existing
control charts.

Table 5 ARL,;5 comparison between the chart proposed by [4,14] for A = 0.2 and enhanced
HEWMA-p control chart for Ay = 0.2, A, = 0.2. Figure 1 depicts the ARL,; profile comparison at
pwo = 0.1 and p;1 = 0.2 for different values of n under HEWMA-p chart and two existing charts. From
Figure 1, we noticed that ARL,; values of enhanced HEWMA-p control chart are smaller than in the
two existing control charts. Hence, our proposed enhanced HEWMA-p control chart performed well
as compared with existing charts.
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Table 5. The comparison of the proposed chart with existing charts.

Poo =0.1 Pvo = 0.3

Yang and Yang and Yang and Yang and Yang and Yang and
" 0.5n Amold[i]  Amold 4]  Enhanced TRl Amelda  Eohanced O Amold[1y  [Fmhanced

Povl = 0.2 Povl = 0.2 Povl = 0.2 Pvl = 0.2 Pvl = 0.2 Po1 = 0.2 Po1 = 0.4 Po1 = 0.4 Po1 = 0.4
8 4 28.2 25.50 18.52 41.90 43.59 35.28 50.50 47.55 38.35
10 5 22.7 19.02 16.80 33.70 34.06 26.68 40.80 40.29 38.04
12 6 19 17.43 14.99 28.20 31.24 25.94 34.20 31.36 27.30
14 7 16.4 14.54 13.64 24.20 25.69 22.86 29.40 28.23 23.90
16 8 16.4 12.55 12.36 21.30 22.42 19.08 25.80 24.58 23.99
18 9 13 11.85 11.66 19.00 19.96 18.64 23.00 22.13 19.87
20 10 11.8 10.67 9.83 17.20 17.27 16.21 20.70 20.96 19.90
22 11 10.9 9.67 9.60 15.70 17.92 15.02 18.90 17.03 16.29
24 12 10.1 7.47 8.29 14.50 14.77 14.90 17.40 17.25 15.96
26 13 94 7.95 7.55 13.40 14.07 13.54 16.10 15.62 15.38
28 14 8.9 7.87 7.28 12.60 13.45 12.08 15.10 14.26 13.28

30 15 8.4 7.51 7.07 11.80 11.98 11.59 14.10 14.23 13.22
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g 4 —e— Yang and Amold (2012)
—e= Yang and Amold (2015)

- ®- Enhanced

20

ARLv1
1

Figure 1. The ARL,; profile comparison at p,o = 0.1 and p,; = 0.2 for different values of n under
HEWMA-p chart and Yang and Arnold [4,14].

5. Example

In this section, we present an example given by [14]. The service time of a bank branch in Taiwan
is used to illustrate the application of the proposed enhanced HEWMA-p control chart to monitor the
variability of service time. According to [14] “From the historical data, the in-control data of service
times (unit: minutes) is a non-normal/unknown distribution with variance 27.805. Reference [14]
illustrated that the resulting in-control probability that the service time is larger than the in-control
variance is pyo = P(Y]* > 27.805) = 0.31”. To construct the enhanced HEWMA-p control chart, we also
use the same value of p,o. The upper and lower control limits of the enhanced HEWMA-p control
chart with Ay = 0.2, A, = 0.2 when in-control ARL,y =~ 370 are UCL = 0.4454 and LCL = 0.1963.

Ten new samples of size 10 each from new automatic service system of the bank branch under
study were considered [14] and listed in Table 6. To illustrate the out-of-control detection ability;,
for each sample in Table 6, the statistic, V; and the monitoring statistic HEWMA,, = AMEWMA,, +
(1-A1) HEWMA,, , where ENMA,, = A;V;/0.5n + (1 —A2)EWMA,, | attimet, t=1,2,...,
10, were computed. The corresponding enhanced HEWMA-p control chart detected out-of-control
variance signals from the third sample onward (samples 3-10 on the enhanced HEWMA-p control
chart) (Figure 2). By comparing Figure 2 with the chart in [14], it can be seen that the existing chart
indicated a shift at the 4th sample. Therefore, the proposed chart was more efficient in detecting a shift
in the process as compared to existing chart of Yang and Arnold [14]. The same performance was also
shown by the results in Tables 2 and 4. For this study, we can conclude that the proposed chart shows
better performance than the existing two charts.

Table 6. The new service times from 10 counters in a bank branch. EWMA is exponentially weighted
moving average.

t X1 X2 X3 Xa Xs X¢ X; Xs Xo Xt Vi EWMA, HEWMAy
1 354 001 133 727 552 009 184 104 291 063 0 0.2480 0.2976
2 08 161 115 09 054 305 411 063 237 005 0 0.1984 0.2381
3 145 019 418 018 002 070 080 097 360 294 0 0.1587 0.1905
4 137 014 154 158 045 601 459 174 392 48 0 0.1270 0.1524
5 300 246 006 180 325 213 222 137 213 025 0 0.1016 0.1219
6 159 388 039 054 158 170 068 125 683 031 0 0.0813 0.0975
7 501 185 310 100 009 116 269 279 184 262 0 0.0650 0.0780
8 496 055 143 412 406 142 143 086 067 013 0 0.0520 0.0624
9 108 065 091 088 202 28 176 287 197 062 0 0.0416 0.0499
10 456 044 561 279 173 246 053 173 702 213 0 0.0333 0.0399
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EHEWMAp

‘Sample Number

Figure 2. The enhanced HEWMA-p chart for the example.
6. Concluding Remarks

In this paper, an enhanced hybrid EWMA-p chart is proposed for monitoring the process variance.
A simulation procedure is presented for calculating its average run lengths (ARLs). Some tables are
presented for practical use. The simulation study supports that the proposed chart is more efficient in
detecting a shift in the process. A real example is presented for illustration purposes. The proposed
control chart can be used in the industry for the monitoring of processes when the distribution is
unknown in practice. The limitation of the proposed chart is that it can be used for only a fixed
sample size. The variable sample size enhanced hybrid EWMA-p chart will be considered as our future
research. In addition, the proposed control chart for a variable sample size can be considered as future
research. The proposed chart using autocorrelation can be considered as future research.
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Nomenclature

ARL Average run length

HEWMA-p Hybrid exponentially weighted moving average proportion
EWMA Exponentially weighted moving average

HEWMA Hybrid exponentially weighted moving average
EWMA-CUSUM Exponentially weighted moving average-Cumulative sum
LCL Lower control limit

UCL Upper control limit

SERL Standard error of run length

Appendix A

R code to obtain chart coefficients
ARL.EHEWMAp<-function(rO,n,lal,la2,p0) {
# 10 is specified in-control ARL (ARL,0)

#1al is lamdal

#1a2 is lamda2

SRR S
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6. # p0 is specified in control p value

7.  options(digits =6)

8. N<-10,000

9. rl<-¢()

10.  vt<-c()

11.  G<-c()

12.  H<-c()

13. set.seed(5577)

14. m<-n/2

15.  v<-lal*1la2*p0*(1-p0)/((2-lal)*(2-1a2)*m)

16. g<-seq(2.65,7.09, by =0.1)

17. for (k1 in q){

18. for (k2in q)

19. |

20. if(k1>k2) {

21.  I<-p0-k2*sqrt(v)

22.  cl<-p0

23.  u<-p0+kl*sqrt(v)

a. for(j in 1:2000)

b. {

i. G[1]<-p0

ii. H[1]<-p0

iii.  for(iin 2:N)

iv. |

v.  vt[i]<-rbinom(1, m, p0)

vi. Glil<-la2*vt[i]/ m+(1-la2)*G[i-1]

vii. H[i]<-la1*G[i]+(1-lal)*H[i-1]

viil.  if ((H[i]<]) | (H[i]>w)){rl[j]=i;break;}else{rl[j]=0;}

iX.

c. |}

d. arl<-mean(rl)

e. if ((arl>=r0) && (arl<=r0+5)) {

i. print(c(nlalla2,p0,klk2,arl))}

f.  sdarl<-sd(r])

g. searl<-sdarl/sqrt(N)

24. |}

25. |}

26. }

27. }
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