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Abstract: The aim of this article is to use the fundamental modus and the properties of the
Euler polynomials and Bernoulli polynomials to prove some new congruences related to Bernoulli
polynomials. One of them is that for any integer h or any non-negative integer n, we obtain the
congruence B2n+1(2h) ≡ 0 mod (2n + 1), where Bn(x) are Bernoulli polynomials.
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1. Introduction

As usual, for the real number x, if m ≥ 0 denotes any integer, the famous Bernoulli polynomials
Bm(x) (see [1–4]) and Euler polynomials Em(x) (see [2–5]) are decided by the coefficients of the series
of powers:

z · ezx

ez − 1
=

∞

∑
m=0

Bm(x)
m!

· zm (1)

and:

2ezx

ez + 1
=

∞

∑
m=0

Em(x)
m!

· zm. (2)

If x = 0, then Em = Em(0) and Bm = Bm(0) are known as the mth Euler numbers and mth

Bernoulli numbers, respectively. For example, some values of Bm and Em are B0 = 1, B1 = − 1
2 , B2 = 1

6 ,
B3 = 0, B4 = − 1

30 , B5 = 0, B6 = 1
42 and E0 = 1, E1 = − 1

2 , E2 = 0, E3 = 1
4 , E4 = 0, E5 = − 1

2 ,
E6 = 0, etc. These polynomials and numbers occupy a very important position in number theory
and combinatorics; this is not only because Bernoulli and Euler polynomials are well known, but also
because they have a wide range of theoretical and applied values. Because of this, many scholars have
studied the properties of these polynomials and numbers, and they also have obtained some valuable
research conclusions. For instance, Zhang Wenpeng [6] studied a few combinational identities. As a
continuation of the conclusion in [6], he showed that if p is a prime, one can obtain the congruence
expression:

(−1)
p−1

2 · 2p−1 · Ep−1

(
1
2

)
≡
{

0 mod p if p ≡ 1 mod 4;
−2 mod p if p ≡ 3 mod 4.

Hou Yiwei and Shen Shimeng [3] proved the identity:

E2n−1 = −
(
22n − 1

)
n

· B2n.
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As some corollaries of [3], Hou Yiwei and Shen Shimeng obtained several interesting congruences.
For example, for p in an odd prime, one can obtain the expression:

E p−3
2
≡ 0 (mod p), if p ≡ 1 mod 8.

Zhao Jianhong and Chen Zhuoyu [7] obtained the following deduction: if m is a positive integer,
k ≥ 2, one obtains the equation:

∑
a1+a2+···+ak=m

Ea1

(a1)!
· Ea2

(a2)!
· · ·

Eak

(ak)!
=

2k−1

(k− 1)!
· 1

m!

k−1

∑
i=0

C(k− 1, i)Em+k−1−i,

for which the summation is taken over all k-dimensional nonnegative integer coordinates
(a1, a2, · · · , ak) such that the equation a1 + a2 + · · ·+ ak = m, and the sequence {C(k, i)} is decided as
follows: for any integers 0 ≤ i ≤ k, C(k, k) = k!, C(k, 0) = 1,

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), for all 0 ≤ i < k,

providing C(k, i) = 0, if i > k, and k is a positive integer.
T.Kim et al. did a good deal of research work and obtained a series of significant results;

see [5,8–14]. Specifically, in [5], T. Kim found many valuable results involving Euler numbers and
polynomials connected with zeta functions. Other papers in regard to the Bernoulli polynomials and
Euler polynomials can be found in [15–19]; we will not go into detail here.

Here, we will make use of the properties of the Euler numbers, Euler polynomials,
Bernoulli numbers, and Bernoulli polynomials to verify a special relationship between the Bernoulli
polynomials and Euler polynomials. As some of the applications of our conclusions, we also deduce
two unusual congruences involving the Bernoulli polynomials.

Theorem 1. For any positive integers m and h, the following identity should be obtained, that is:

2 · B2m+1(2h) = (2m + 1) ·
(

E2m(2h) + 2
2h−1

∑
i=0

E2m(i)

)
.

Theorem 2. For any positive integers m and h, we derive the identity as below:

B2m(2h)− B2n + m (E2m−1(2h)− E2m−1) = (2m) ·
2h

∑
i=1

E2m−1(i).

From these deductions, the following several corollaries can be inferred:

Corollary 1. Let m be a non-negative integer. Thus, for any integer h, we obtain the congruence:

B2m+1(2h) ≡ 0 mod (2m + 1),

where a
b ≡ 0 mod k implies (a, b) = 1 and k | a for any integers b(b 6= 0) and a.

Corollary 2. For any positive integer m and integer h, 22m−1 · (B2m(2h)− B2m) must be an integer, and:

22m−1 · (B2m(2h)− B2m) ≡ 0 mod m.

Corollary 3. For any integer h, let p be an odd prime; as a result, we have:

Bp(2h) ≡ 0 mod p and B2p(2h) ≡ B2p mod p.
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Corollary 4. Let p be an odd prime. In this way, there exits an integer N with N ≡ 1 mod p such that the
polynomial congruence:

N · Bp(x) ≡ (x− 2)(x− 1)x · (x− p + 1) ≡ x ·
(

xp−1 − 1
)

mod p.

Some notes: It is well known that congruences regarding Bernoulli numbers have interesting
applications in number theory; in particular, for studying the class numbers of class-groups of number
fields. Therefore, our corollaries will promote the further development of research in this field.
Some important results in this field can also be found in [20–23]. Here, we will not list them one by one.

2. Several Lemmas

In this part, we will provide three straightforward lemmas. Henceforth, we will handle
certain mathematical analysis knowledge and the properties of the Euler polynomials and Bernoulli
polynomials, all of which can be discovered from [1–3]. Thus, they will not be repeated here.

Lemma 1. If m ≥ 0 is an integer, polynomial 2m · Em(x) denotes the integral coefficient polynomial of x.

Proof. First, from Definition 2 of the Euler polynomials Em(x), we have:

2exz = (ez + 1) · 2exz

ez + 1
=

(
1 +

∞

∑
m=0

1
n!
· zm

)(
∞

∑
m=0

Em(x)
m!

· zm

)
. (3)

On the other hand, we also have:

2exz = 2 ·
∞

∑
m=0

xm

m!
· zm. (4)

uniting (3) and (4), then comparing the coefficients of the power series, we obtain that:

2xm = Em(x) +
m

∑
k=0

(
m
k

)
Ek(x)

or identity:

2Em(x) = 2xm −
m−1

∑
k=0

(
m
k

)
Ek(x). (5)

Note that E0(x) = 1, E1(x) = x− 1
2 , so from (5) and mathematical induction, we may immediately

deduce that 2m · Em(x) is an integral coefficient polynomial of x.

Lemma 2. If m is a positive integer, the following equation can be obtained:

2m · Bm(x) = Bm(2x)− 1
2
·m · Em−1(2x).

Proof. From Definitions 1 and 2 of the Euler polynomials and Bernoulli polynomials, we discover the
identity as below:

2ze2xz

e2z − 1
=

∞

∑
m=0

2m · Bm(x)
m!

· zm =

(
z · e2xz

ez − 1
− z · e2xz

ez + 1

)
=

∞

∑
m=0

Bm(2x)
m!

· zm − 1
2

∞

∑
m=0

Em(2x)
m!

· zm+1. (6)
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Relating the coefficients of the power series in (6), we obtain:

2m · Bm(x) = Bm(2x)− m
2
· Em−1(2x).

This proves Lemma 2.

Lemma 3. If m is a positive integer, then for any positive integer M, we will be able to obtain the identities:

2m · (Bm (M)− Bm) = m ·
2M−1

∑
i=0

Em−1(i).

Proof. On the basis of Definition 2 of the Euler polynomials, we obtain:

N−1

∑
i=0

2zeiz

ez + 1
=

∞

∑
m=0

1
n!

(
N−1

∑
i=0

Em(i)

)
· zm+1. (7)

In another aspect, we also obtain:

N−1

∑
i=0

2zeiz

ez + 1
=

2z
(
eNz − 1

)
(ez + 1) (ez − 1)

=
2zeNz − 2z

e2z − 1

=
∞

∑
m=0

2m · Bm

(
N
2

)
m!

· zm −
∞

∑
m=0

2m · Bm

m!
· zm. (8)

Combining (7) and (8), then comparing the coefficients of the power series, we will obtain:

2m ·
(

Bm

(
N
2

)
− Bm

)
= m ·

N−1

∑
i=0

Em−1(i). (9)

Now, Lemma 3 follows from (9) with N = 2M.

3. Proofs of the Theorems

Applying three simple lemmas in Section 2, we can easily finish the proofs of our theorems.
Above all, we study Theorem 1. For any positive integer m, from Lemma 2, we have:

22m+1 · B2m+1(M) = B2m+1(2M)− 2m + 1
2

· E2m(2M). (10)

Note that B2m+1 = 0. From Lemma 3, we also have:

22m+1 · B2m+1 (M) = (2m + 1) ·
2M−1

∑
i=0

E2m(i). (11)

Combining (10) and (11), we have:

B2m+1(2M) =
2m + 1

2
· E2m(2M) + (2m + 1) ·

2M−1

∑
i=0

E2m(i).

Afterwards, we prove Theorem 2. According to Lemma 2 with x = M and x = 0, we have:

22m · B2m(M) = B2m(2M)−m · E2m−1(2M) (12)

and:
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22m · B2m = B2m −m · E2m−1. (13)

Applying Lemma 3, we also have:

22m · (B2m (M)− B2m) = (2m) ·
2M−1

∑
i=0

E2m−1(i). (14)

Combining (12), (13), and (14), we have the identity:

B2m (2M)− B2m = m · E2m−1(2M)−m · E2m−1 + 2m ·
2M−1

∑
i=0

E2m−1(i).

This proves Theorem 2.
From Lemma 1, we know that all 22m · E2m(i) (i = 0, 1, · · · , 2M) are integers, and (22m, 2m+ 1) = 1,

so on the basis of Theorem 1, we may directly deduce the congruence:

B2m+1(2M) ≡ 0 mod (2m + 1). (15)

Since B2m+1(x) is an odd function (that is, B2m+1(−x) = −B2m+1(x)), and B2m+1 = 0, so (15) also
holds for any integer M and non-negative integer m.

This completes the proof of Corollary 1.
Now, we study Corollary 2. On the basis of Lemma 1, we know that 22m−1 · E2m−1(i) is an integer

for all 1 ≤ i ≤ 2M, so from Theorem 1, we know that 22m−1 · (B2m (2M)− B2m) must be an integer,
and it can be divided by m, that is,

22m−1 · (B2m (2M)− B2m) ≡ 0 mod m. (16)

Note that B2m(x) is an even function, and if M = 0, after that, the left-hand side of (16) becomes
zero; thus, the congruence (16) is correct for all integers M.

This completes the proof of Corollary 2.
Corollary 3 is a special case of Corollary 1 with 2m + 1 = p and Corollary 2 with 2m = 2p.
Now, we prove Corollary 4. Since Bp(x) is a pth rational coefficient polynomial of x and its first

item is xp, from Lemma 3, we know that the congruence equation Bp(2x) ≡ 0 mod p has exactly p
different solutions x = 0, 1, 2, · · · p− 1, so there exits an integer N with N ≡ 1 mod p satisfied with
N · Bp(x), an integral coefficient polynomial of x. From [1] (see Theorem 5.23), we have the congruence:

N · Bp(x) ≡ x(x− 1)(x− 2) · (x− p + 1) mod p.

This completes the proofs of our all results.

4. Conclusions

As we all know, the congruences of Bernoulli numbers have important applications in number
theory; in particular, for studying the class numbers of class-groups of number fields. The main results
of this paper are two theorems involving Bernoulli and Euler polynomials and numbers and four
corollaries (or congruences). Two theorems gave some new equations regarding Bernoulli polynomials
and Euler polynomials. As some applications of these theorems, we gave four interesting congruences
involving Bernoulli polynomials. Especially, Corollaries 1 and 4 are very simple and beautiful. It is
clear that Corollary 4 is a good reference for further research on Bernoulli polynomials.
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