
symmetryS S

Article

GPU-based Fast Motion Synthesis of Large Crowds
Using Adaptive Multi-Joint Models

Mankyu Sung 1 and Yejin Kim 2,*
1 Department of Game and Mobile, Keimyung University, Daegu 42601, Korea; mksung@kmu.ac.kr
2 School of Games, Hongik University, Sejong 30016, Korea
* Correspondence: yejkim@hongik.ac.kr

Received: 18 February 2019; Accepted: 20 March 2019; Published: 22 March 2019
����������
�������

Abstract: This paper introduces a GPU (graphics processing unit)-based fast motion synthesis
algorithm for a large crowd. The main parts of the algorithms were selecting the most appropriate joint
model given adaptive screen-space occupancy of each character and synthesizing motions for the joint
model with one or two input motion capture data. The different joint models had a character range
from fine-detailed and fully-articulated ones to the most simplified ones. The motion synthesizer,
running on a GPU, performed a series of motion blending for each joint of the characters in parallel.
For better performance of the motion synthesizer, the GPU maintained a novel cache structure for
given speed parameters. Using the high computation power of GPUs, the motion synthesizer could
generate arbitrary speeds and orientations for the motions of a vast number of characters. Experiments
showed that the proposed algorithm could animate more than 5000 characters in real-time on modest
graphics acceleration cards.

Keywords: crowd simulation; motion synthesis; multi-joints model; character animation;
GPU acceleration

1. Introduction

Crowd simulation has been one of the hottest topics among computer animation researchers over
the last decade [1]. Its applications range from entertainment industries, such as movies or games, to
crowd planning and management of transportation, architectural design, building safety, and so on.
For instance, when a sports stadium where a large crowd would gather is built, the architectural design
must consider the safety of the crowd in case of an emergency. Virtual crowds have an important role in
those applications for estimating the behaviors of a crowd in reality. Most research in those applications
focuses on improving the controllability over crowds or creating convincing and aggregate crowd
movements. However, animating a large crowd in real time still has many challenges to overcome.
First, because most motion synthesizing algorithms are based on complicated mathematical models,
those algorithms cannot be applied directly to large crowds while maintaining real-time performance.
As a result, most crowd simulation research often ignores the quality of the individual motions and,
rather, focuses on the overall aggregate behaviors of crowds. Thus, they are often described as simple
polygons, such as circles and triangles. Second, when large crowds are rendered, the camera often
moves dynamically, zooming in and out to show the entire crowd. Therefore, when we create detailed
motions for each character, their contribution for the scene should be considered from the given camera
viewpoint. This is also quite important when we deal with a large number of 3D characters to achieve
real-time performance.

In this paper, we proposed a GPU (graphics processing unit)-based motion synthesis algorithm
for a large number of characters. The algorithm fully utilized the high-performance computing power
of a GPU. First, it checked the screen-space pixel coverage of each character, which corresponds to
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the contribution or importance of the character from the given camera’s perspective. The larger the
coverage is, the more important the character is at that moment. Then, the algorithm automatically
selected a joint skeleton model for given pixel coverage. The different joint models had a different
number of joints. The factors for selecting a particular joint model included the character’s distance
from the camera and its orientation to the camera that takes space in the image plane. Once the
algorithm determined a set of joints for a character, it performed motion blending with the input motion
capture data on the GPU. In the proposed algorithm, only two cyclic input motions of high-speed
running and the slow running motion were used. By changing the weight value for blending these
motions, a continuously changing speed motion could be generated with an arbitrary orientation
spontaneously. To process the motions in a GPU-friendly manner, the input motions were converted
into so-called motion textures, in which each pixel represents a unit quaternion value representing a
local orientation of the joint. The joint hierarchy was also represented as an array to find a parent or
child joint index easily. For better performance, our algorithm maintained a cache structure, where
motion clips with speed parameters were stored. When a motion synthesis for a desired speed was
requested, the algorithm checked the motion in the cache and applied one to the character; otherwise,
it started to synthesize the motion. The experiments showed that the GPU-based motion synthesis has
at least a 10 magnitude faster performance than that of CPU-based methods.

The rest of this paper is organized as follows: Previous approaches for crowd motion simulation
are reviewed in Section 2. The main algorithms for the GPU-based fast motion synthesis of large
crowds are described in Section 3. The experimental results for animating a large number of characters
in real time are demonstrated in Section 4. We conclude this paper with a discussion of potential
improvements in Section 5.

2. Related Work

Many different approaches have been proposed for simulating and editing crowd motions [1].
Classical approaches usually viewed the entire crowd as a single group and focused the overall
moving patterns of it. Continuum crowds or aggregate dynamics [2] were one of those classical crowd
simulation approaches. Some researchers consider those approaches as macroscopic models. Those
techniques did not focus on individual behaviors. Instead, they concentrated on the crowd flow and
density control. Although those methods were able to generate interesting movements for special
situations, like queuing and jamming during a crowd’s exit [1], they usually did not consider the
quality of individual motions of crowds.

Microscopic models, on the other hand, were more interested in individual behaviors and
interactions between them. The agent-based approach falls into that category. The social force model
and Boids model [3,4] were two popular models for animating flocks based on interactions between
characters. Most of those agent-based models focused on how to get collision-free trajectories of each
agent by predicting other characters’ future positions even when they are in a jammed situation [5].
Barnett et al. proposed a method that could obtain congestion-free paths for crowds using topological
scene analysis techniques [6]. This method was especially useful when we needed a sort of ordered
behavior, such as a soldiers’ marching scene. It produced a sample path called a “guideline” from
the globally coordinated graph. This approach was quite efficient for simulating group behaviors but
had difficulties in manipulating each trajectory in a highly detailed manner. More recently, inspired
by observation on the real crowds, a statistical model has been proposed [7], which reveals a simple
power law interaction based on the projected time to a potential future collision between crowds.
Through experiments, they found out that the proposed model quite resembles the real crowds in terms
of their speeds and densities. Furthermore, they extended it to the generalized collision avoidance
model where arbitrary time steps are allowed [8]. However, in their approaches, the characters were
represented as a simple 3D humanoid model and were not realistic in movements as they did not
support subtle changes of the limb for the dynamically changing velocity of a character. Overall, most
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of microscopic models did not address the problem of solving the motion synthesis where the 3D
character must adjust their poses for supporting arbitrary changing speed and orientations of crowds.

In the meantime, researchers working on synthesizing realistic human motions through a set of
motion capture data have extended their methods to the multi-character cases [9,10]. Their algorithms
put efforts on editing a group of character motions in a controllable manner without damaging the
fidelity of the original motions. For example, inspired by the mesh deformation technique where users
are manipulating a vertex and deform the whole mesh interactively, they can put each character in the
position of a vertex of mesh and effectively specify the formation of crowds. Although these techniques
produced the natural motions of crowds, the number of characters that a system could manipulate
was just less than several hundred because the editing was a tedious manual work. The approach
proposed in this paper is similar to those mentioned above in that individual motions were also
synthesized with motion capture data. However, unlike their approaches, this study introduced a
method that fully utilized the power of a GPU and created motions for more than 10,000 characters
in real time rate. For better performance, our method considered the viewpoint of the camera and
divided whole crowds into a set of different joint-level groups. The factors for splitting characters into
specific groups included the pixel coverage of the joints of the characters and their distance from the
camera. Different joint levels had different numbers of joints. Joint models varied from fine-detailed to
the most simplified ones. The proposed approach is equivalent to the LOD (Level of Detail) technique
that has been widely used for rendering complicated terrain scene [11]. A major difference is that
rather than simplifying surface meshes dynamically, our algorithm selects the best joint model for the
given camera parameters. This makes sense for rendering a large crowd where camera is often set at
a wide, top down angle to show the entire movement of whole crowds. In this case, the motions for
every single joint of the characters do not need to be synthesized because the characters are barely seen.

Our motion synthesizing method was based on motion blending techniques [12]. To calculate
a joint orientation given the skeleton hierarchy, motion data, and speed parameter, a GPU-friendly
data structure was created called “motion textures”, in which each texel had joint orientation data
represented as a unit quaternion instead of color. This structure was efficient for being processed in
the GPU like regular image-based textures. Therefore, the blending could be done in parallel in the
GPU shaders.

3. Algorithms

The algorithm proposed in this paper is divided into CPU-bound jobs and GPU-bound jobs.
The CPU-bound jobs are first described including data initialization for motion textures, while the
GPU-bound jobs are explained including the calculation of the pixel coverage and the motion synthesis.
Figure 1 shows an overall step of the proposed algorithm.
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Figure 1. Overview of the proposed algorithm.

3.1. Motion Textures

One of the important CPU-bound jobs is data initialization. The data used include a couple of
motion capture data and joint hierarchy of the characters. For our algorithm, two input motions of
running motions with different speeds and the Biovision hierarchy (BVH) are used for the motion
data [13]. The BVH file format specifies the joint hierarchy, joint position, and orientation data in
a text file. Those motion data are read and then stored in a floating-point 2D texture. It is called
motion textures because each texel of texture represents a unit quaternion and a 3D offset instead of a
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color. Figure 2 shows an example of a motion texture. The x coordinate values are joint orientations
represented as unit quaternions and 3D offset vectors indicating the positions of the local joints relative
to their parent joints. The y coordinate values represent the frame numbers. For the root joint, which
does not have an offset, the 3D global position of the joint is stored instead of a 3D offset. A texel has
four floating-point values representing the x, y, z, and w values of a unit quaternion. In addition to
the 3D offset or global position data, each joint needs two four-floating point data. If 16-bit floating
point is used, each joint requires 2 × 16 × 4 bits. Because the original BVH data have an Euler angle
representation with a particular order of multiplication for each joint in the file, a process is needed
that converts from Euler to unit quaternion. In addition to the motion texture, an additional single
integer array is needed that contains the parent joint index number for joints to specify a hierarchy
in the motion texture. For example, in the bottom of Figure 2, a parent array contains the index that
indicates a joint number and its value representing the parent joint number. Because the root joint at
the index 0 does not have a parent joint, its value is set to –1. Also, because a joint may have multiple
child joints, some values of the array can be same.
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Once a floating-point motion texture is built, then it can be read in the GPU efficiently using a
texture coordinate that indicates the joint and the frame number. Given a motion texture called motex,
a joint number j, and a frame number f, the orientation of joint r and its offset o can be obtained using
the following GPU shader codes:

vec2 to = vec2(j × 2, f)
vec2 tp = vec2(j × 2 + 1, f)
vec4 r = texelFetch(motex, to)
vec3 o = texelFetch(motex, tp).xyz

Because there were two input motions with different speed parameters, two motion textures were
used and blended together to obtain the joint orientation for an arbitrary speed parameter.

3.2. Pixel Coverage of Characters

In a crowd simulation, the camera is often zoomed out so that it can oversee the overall movement
of the crowds from a remote location. In this scenario, characters may use small spaces on the final
image plane. Similar to LOD-based techniques, our motion synthesis algorithm took the pixel coverage
of the characters into account. In our approach, joint models were reduced depending on the pixel
coverage of the characters. That is, the number of joints for each character was changing dynamically,
according to their current pixel coverage on the view image plane. One of the important requirements
for calculating the pixel coverage of the characters is that it should be fast enough such that the camera
can change its position at any time through a user interface, such as mouse dragging. To calculate
the pixel coverage, the whole body of a character was divided into five different parts, four limbs
and the body, and a bounding sphere was put on each part, and then, the number of pixels that the
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bounding sphere was covering was counted on the image screen. Rather than having a fixed number
of joint models with different LOD levels, each character had a different number of joints, depending
on the camera position and orientation. Figure 3 illustrates the five bounding spheres put upon the
five different parts of body, and Figure 4 shows their projections on the image plane. The centers of
the bounding spheres present the global positions of two elbows, the middle of spine, and two knees
of the character. The size of bounding spheres was changing dynamically depending on the frames
of motions.
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A point p on a sphere can be described as a parametric form as follows:

|p− o| = r2. (1)

Here, o is the center of the sphere and r is the radius of the sphere.
Let us assume that a ray is shot from the camera to the image plane in a pinhole camera model.

Then, the ray arrives at point p on the sphere as it intersects the image plane at (x, y, 1), if the focal
length equals to 1 as follows:

p = td,
d = (x,y,1)√

x2+y2+1
. (2)

Here, d is the ray direction represented as a vector,−1 ≤ x, y ≤ 1 and |d| ≤ 1. The t corresponds to
the distance from the camera to the intersection point. If we associate Equation (1) with Equation (2)
with point p, the following equation is derived:

|(td)− o|2− r2 = 0. (3)
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If Equation (3) is rearranged with respect to t, a quadratic equation At2 + Bt + C = 0, is defined with
A, B, and C, as follows: 

A = 1
B = −2o·d

C = |o|2− r2
. (4)

Here (·) represents a dot product. This quadratic function has solutions only when its discriminant
is positive. Therefore, if we expand the discriminant, B2 − 4AC, and arrange it, we derive the
following inequality:

(o·d)2− (|o|2− r2) ≥ 0. (5)

By plugging d defined in Equation (2), eliminating positive constants, into Equation (5), we derive the
following equation:

(oxx + oyy + oz)
2− (x2 + y2 + 1)(|o|2− r2) ≥ 0 (6)

If an implicit equation is preferred rather than parametric ones, any rotated ellipse including circles can
be represented as a general second-degree equation in which the coefficients from a to e are defined as
follows [14]:

ax2 + by2 + cxy + dx + ey + f ≥ 0,

a = r2− o2
y− o2

z
b = r2− o2

x− o2
z

c = 2oxoy

d = 2oxoz

e = 2oyoz

f =
(

r2− o2
x− o2

y

)
.

(7)

Given this general implicit representation of an ellipse, the major and minor axis, a and b, of the general
conic section of an ellipse is given as follows [14]:

a =

√√√√√ 2
(

ae2−cde+bd2

4ad−c2 − f
)

(a + b−
√
(a− b)2 + c2

, b =

√√√√√ 2
(

ae2−cde+bd2

4ab−c2 − f
)

(a + b +
√
(a− b)2 + c2

. (8)

If we put a to f terms and simplify them, we have a final major and minor axis, a and b, as follows:

a =

√√√√√ −r2
(

r2− |o|2
)

(
|o|2− o2

z

)
(r2− o2

z)(r2− o2
z)

, b =

√√√√√ −r2
(

r2− |o|2
)

(
|o|2− o2

z

)
(r2− o2

z)
(

r2− |o|2
) . (9)

Once a and b were obtained, the area could be simply calculated by πab. The five bounding spheres
on the four limbs and the body of a character were separately projected on the image plane, and their
pixel coverage could be calculated. If the pixel coverage was smaller than the threshold, the motions
for the joints that belonged to the bounding sphere were not synthesized. In terms of implementation,
our algorithm computed those areas in a shader function such that they could be running at the GPU,
which drastically improved the calculation speed.

3.3. Motion Synthesis

After determining all active joints for a character that covered the image plane, the motion
synthesizing module generated the motions for the character using input motions. For each frame,
the motion synthesizer determined the local orientations of all active joints and the global position of
the root joint. The root joint, which corresponds to the root node of the joint hierarchy, is usually located
in pelvis. The global position of the root joint represented the location of the character. To synthesize
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the motions of crowds, the initial positions, direction, and frame number of characters were randomly
distributed. The initial frame numbers were also given randomly so that the whole crowd did not
animate the same poses at the same time. Given the speed parameter w, which is between 0 and
1, the algorithm synthesized motions frame-by-frame for a character by blending two input cyclic
motions. The algorithm could not change the speed parameter until it synthesized the final frame of
the input motions in order to prevent non-smooth artifacts in the blended motion.

First, the motion synthesizer determined the global position of root joint. The default position
of the root joint at frame f is denoted as p f which could be obtained from a motion texture. It was
noticeable that the default position was different from the initial position which was assigned randomly;
instead, it was given from the input motion. A 2D rigid transformation matrix could be applied
to the input motion to translate the character to the initial position. The two input motions had
fixed transformation between frames, and our algorithm blended them together for the given speed
parameter. That is, the new p f for speed parameter w could be calculated by transforming the previous
p f−1. The transformation could be done by multiplying the scaling, rotation, and translation matrix in
a row. Here, the scaling matrix adjusted the size difference between original motions and 3D characters.
The rotation matrix was the 2D rotation on the x and z plane, where y (up vector) became the rotation
axis from the orientation parameter r f . The translation matrix was built from a 3D offset vector d f
obtained by linear interpolation of the frame distances between the high-speed motion ph

f− ph
f−1 and

the low speed motion pl
f − pl

f−1. As shown in Equation (10), T, R, and S represent the translation,

rotation, and scaling matrix, respectively, while the ph
f and pl

f are the high and low speed motion,
respectively, as follows:

p f+1 = M f p f = T
(
d f ,w

)
R
(
r f
)
S
(
s f
)

pi,

d f ,w = w
(

ph
f − ph

f−1

)
+ (1−w)

(
pl

f − pl
f−1

)
.

(10)

After the root joint position is determined, the local orientation of joints for the frame f needs to be
calculated. Let us say that a user wants to synthesize a motion for joint j at frame number f. Our
method represents a joint orientation as a single matrix, say J f ,j where it can be further decomposed
into two separate transformation matrices Ff ,j and O f ,j. They are called a fixed transformation matrix
and joint transformation matrix, respectively. The final matrix J f ,j is the multiplication of matrix
Ff ,j and O f ,j. As the matrix Ff ,j is independent of the speed parameter w, they can be built as a
pre-processing step. The matrix Ff ,j corresponds to the world transformation of a joint offset, which
can be easily obtained from a motion texture. This matrix is quite useful for rendering the character
motion because it can locate meshes representing joints in the right position. For example, to represent
each joint with an ellipse, the matrix Ff ,j transforms the ellipse such that it can be aligned to the joint
offset at the middle of the joint. To compute Ff ,j, the orientation between the y axis and the joint offset
in quaternion form needs to be calculated and converted into a matrix. Additionally, depending on the
applications, the translation and scaling matrix can be also multiplied to transform the mesh associated
with the joint. On the other hand, the joint transformation matrix O f ,j, which represents the global
orientation of the joint at the speed parameter w for each frame, can be obtained by multiplying all
local orientations of ancestry joints in the hierarchy. The orientations of ancestry joints are calculated
by interpolating two location orientations of input motions at the same level of hierarchy using the
weight value w. This process of algorithm is explained in Figure 5.

At the final step, all matrices are combined into a single matrix for the joint as follows:

A f ,j = J f ,j M f , (11)

where f is the frame number, and j is the joint number.
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Figure 5. Algorithm for joint orientation estimation: This function returns a 4× 4 orientation matrix
for given three input parameters. The parent is the index number of parent joint, the frame is the frame
number of motion data, and w is the speed parameter. To calculate a joint orientation in the hierarchical
joint structure for the given parameters, the algorithm blends two input motions (i.e., slow and fast
motion) from the current joint to the root joint. For the blending operation, spherical linear interpolation
(SLERP) is used between two input joint orientations. All the joint orientations are represented as
unit quaternions.

3.4. Motion Catching

Once a short motion is synthesized with a desired speed, it can be reused for other output motions
by building a cache structure in the GPU memory. When a motion synthesis for a desired speed
was requested, our algorithm first checked the motion in the cache and applied one to the character.
Otherwise, it started the synthesizing process and stored the result motion into the cache. The cache
structure consists of a key and its associated data. In our approach, the speed parameter and the
local orientations of joints were used as the key and the associated data, respectively. Finding a
motion with an exact speed parameter is ambiguous due to the floating-point continuous value of
the speed parameter. For this reason, a small range of speed parameters are used to increase the
chances of cache-hit. In addition, when a cache-hit occurs, a small number of matrices are applied for
the motion synthesis as our algorithm needs only a subset of joints for the pixel coverage. Figure 6
shows the motion cache structure. The size of cache depends on the capacity of the GPU memory.
In our approach, the maximum size of cache was set to 20 megabytes. As the cache operates in a
First-In-First-Out (FIFO) manner, the oldest data were removed first when it was full.
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4. Experimental Results

We built a crowd simulation system on a Microsoft Windows 10 platform. The hardware
specifications were a single Intel i7 CPU with 16 GB main memory and a Nvidia GeForce GTX
1060 graphic card. OpenGL library was used to render the 3D characters. The two input cyclic
motions were fast-running and slow-running motions in a BVH format. Each motion had a skeleton
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model consisting of 25 joints and around 30 frames. To represent a character, the joints were rendered
with a set of squashed spheres. All simulation algorithms were implemented with OpenGL Shading
Language (GLSL) to run on the GPU. Updating the character positions and building all the required
matrices were implemented with a compute shader that OpenGL 4.3 or higher version provides.

Figure 7 shows a screenshot of 5000 characters simulated by our system. Figure 8 shows a
screenshot of the three different joint levels determined by their pixel coverage on the image plane.
In this experiment, the yellow characters had less than five joints because they were located far away
from the camera. The red characters had around eight joints due to their mid-range distance from
the camera, and the blue characters has a full number of joints as they were within a close distance.
Even though we used only three levels for simplicity, we could set any number of different joint
levels. The picture on the bottom of Figure 8 compares the three different approaches. Throughout all
experiments, the speed parameter w was set randomly between 0 and 1 for every character. Figure 9
shows the crowd motions of 1000 characters forming a circle. In this case, our algorithm sets the
orientation parameters automatically such that the characters can stay in the boundary of the circle
during the simulation.
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Figure 10 shows a performance graph. As the number of characters was increased, the frame
rates for three different methods were calculated. In the first case, crowds were only simulated on the
CPU. In the second case, crowds were simulated on the GPU, but the multi-joint models were not used.
Instead, only the full number of joints were used for the entire characters. In the third case, the crowds
were simulated on the GPU, but multi-joint models were used depending on their pixel coverage on
the image plane without using cache structure. As shown in the picture, the frame rate dropped down
significantly for the CPU-only method as the number of character increased. The GPU-based method
without the multi-joint model, however, maintained the frame rate around 60 frames per second, even
when we increased the number of characters to 10,000. The performance got better when we used
the GPU-based method with the multi-joint model, where we provided three different joint models.
Since the model selection depends on the camera position, we kept changing the camera position and
calculated the average frame rate. We found that the performance did not drop that much when we
used the multi-joint levels. It was slightly more saturated than the case of a single joint level. We also
noted that performance difference between the single joint and adaptive multi-joint case was getting
bigger as we increased the number of characters, which proved the performance upgrade of our
approach. Through several experiments, we verified that the proposed method could carry out at least
a 6-times faster performance than that of CPU-based methods and animate more than 10,000 characters
at the real time rate. Also, there was no artifact, such as foot-skating, and unnatural movement on the
characters, even when we randomly changed their orientation and speed of characters.
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Figure 11 compares the performances of two cases in which the cache structure was used for the
first case and not used for the second case as the number of characters are increased. The number
of cache-hits is highly related to the frequency of changes of the speed parameter. If the speed
parameter was changing frequently, the cache-hit did not occur many times. If the same speed was
used constantly, there was a high chance that the motion synthesized with the speed was stored in the
cache. In our experiments, the speed varied every five seconds between 0 and 1. As seen in Figure 11,
if the stored motions in the cache were applied without using the motion synthesis, the average of
around 15% performance improvement had been achieved. The experiment results can be seen on
the YouTube video that captured the animations in real time (Supplementary Materials located at
https://youtu.be/GXGdKyhPBBc).
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5. Conclusions

In this paper, we introduced a novel GPU-based motion synthesis method for large crowds.
The algorithm first built motion textures for input motion capture data so that it could be efficiently read
on the GPU. Those data were then blended and updated fully on the GPU. In addition, the algorithm
considered how much space each character of the crowd took on the image plane. Depending on
this coverage, the algorithm reduced the number of joints dynamically. Through several experiments,
we discovered that this algorithm could animate more than 5000 characters in real time. For the
performance improvement, a GPU-based cache structure was represented such that the motions stored
in the cache could be used without processing a full motion synthesis with all input frames.

As a future work, our approach could be extended to solve the skinning problem where the vertex
positions of a mesh needed to be calculated based on the weight values from a set of different joints.
We expect that the number of joints can be dynamically adjusted considering their pixel coverage on
the image plane. Also, we did not consider the occlusion between the characters. We just let each
character being projected individually, without considering others. We believe that we can extend
the algorithm by simply checking whether or not there is any overlapping area when we project the
bounding ellipses of characters. We believe that this will be able to improve the performance when the
crowds are in a highly compact situation.

Supplementary Materials: The experiment results can be seen on the YouTube video located at https://youtu.
be/GXGdKyhPBBc.
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